Abstract

We demonstrate a single-mode high-Q (Q>100) mid-infrared thermal emitter operating with high power-utilization efficiency. The emitter consists of a rod-type photonic crystal (PC) slab interacting with GaAs/AlGaAs multiple quantum wells (MQWs), a GaAs substrate frame supporting the PC slab, and electric wires for Joule heating of the device. We carefully design the structure of the PC slab and the supporting frame/wires to minimize unwanted thermal losses and realize narrowband thermal emission having a peak intensity, under a given electrical input power, that is an order of magnitude higher than that of a reference blackbody emitter due to the efficient increase of the device temperature.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources

Takuya Inoue, Takashi Asano, Menaka De Zoysa, Ardavan Oskooi, and Susumu Noda
J. Opt. Soc. Am. B 30(1) 165-172 (2013)

Realization of narrowband thermal emission with optical nanostructures

Takuya Inoue, Menaka De Zoysa, Takashi Asano, and Susumu Noda
Optica 2(1) 27-35 (2015)

Highly efficient and broadband mid-infrared metamaterial thermal emitter for optical gas sensing

Yongkang Gong, Zuobin Wang, Kang Li, Leshan Uggalla, Jungang Huang, Nigel Copner, Yang Zhou, Dun Qiao, and Jiuyuan Zhu
Opt. Lett. 42(21) 4537-4540 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Stuart, Infrared Spectroscopy: Fundamentals and Applications (John Wiley & Sons, 2004).
  2. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
    [Crossref]
  3. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
    [Crossref]
  4. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
    [Crossref]
  5. K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
    [Crossref]
  6. I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
    [Crossref]
  7. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  8. V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
    [Crossref] [PubMed]
  9. M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
    [Crossref]
  10. T. Inoue, T. Asano, M. D. Zoysa, A. Oskooi, and S. Noda, “Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources,” J. Opt. Soc. Am. B 30(1), 165–172 (2013).
    [Crossref]
  11. T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
    [Crossref]
  12. G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
    [Crossref]
  13. T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “On-chip integration and high-speed switching of multi-wavelength narrowband thermal emitters,” Appl. Phys. Lett. 108(9), 091101 (2016).
    [Crossref]
  14. T. S. Kuan, P. E. Batson, T. N. Jackson, H. Rupprecht, and E. L. Wilkie, “Electron microscope studies of an alloyed Au/Ni/Au-Ge ohmic contact to GaAs,” J. Appl. Phys. 54(12), 6952–6957 (1983).
    [Crossref]
  15. A. K. Sinha and J. M. Poate, “Effect of alloying behavior on the electrical characteristics of nGaAs Schottky diodes metallized with W, Au, and Pt,” Appl. Phys. Lett. 23(12), 666–668 (1973).
    [Crossref]
  16. T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Electrical tuning of emissivity and linewidth of thermal emission spectra,” Phys. Rev. B 91(23), 235316 (2015).
    [Crossref]
  17. Emissivity table: http://www.optotherm.com/emiss-table.htm
  18. W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102–2106 (1961).
    [Crossref]
  19. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [Crossref]
  20. Y. Bai, N. Baandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
    [Crossref]
  21. LASERDIODESOURCE.com, http://www.laserdiodesource.com/laser-diode-by-technology/quantum_cascade
  22. O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
    [Crossref] [PubMed]

2016 (2)

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “On-chip integration and high-speed switching of multi-wavelength narrowband thermal emitters,” Appl. Phys. Lett. 108(9), 091101 (2016).
[Crossref]

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

2015 (1)

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Electrical tuning of emissivity and linewidth of thermal emission spectra,” Phys. Rev. B 91(23), 235316 (2015).
[Crossref]

2014 (1)

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

2013 (4)

2012 (1)

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

2011 (2)

Y. Bai, N. Baandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

2008 (2)

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[Crossref]

2003 (1)

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

2002 (1)

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

1983 (1)

T. S. Kuan, P. E. Batson, T. N. Jackson, H. Rupprecht, and E. L. Wilkie, “Electron microscope studies of an alloyed Au/Ni/Au-Ge ohmic contact to GaAs,” J. Appl. Phys. 54(12), 6952–6957 (1983).
[Crossref]

1982 (1)

1973 (1)

A. K. Sinha and J. M. Poate, “Effect of alloying behavior on the electrical characteristics of nGaAs Schottky diodes metallized with W, Au, and Pt,” Appl. Phys. Lett. 23(12), 666–668 (1973).
[Crossref]

1961 (1)

W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102–2106 (1961).
[Crossref]

Asano, T.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “On-chip integration and high-speed switching of multi-wavelength narrowband thermal emitters,” Appl. Phys. Lett. 108(9), 091101 (2016).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Electrical tuning of emissivity and linewidth of thermal emission spectra,” Phys. Rev. B 91(23), 235316 (2015).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

T. Inoue, T. Asano, M. D. Zoysa, A. Oskooi, and S. Noda, “Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources,” J. Opt. Soc. Am. B 30(1), 165–172 (2013).
[Crossref]

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Baandyopadhyay, N.

Y. Bai, N. Baandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Bai, Y.

Y. Bai, N. Baandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Batson, P. E.

T. S. Kuan, P. E. Batson, T. N. Jackson, H. Rupprecht, and E. L. Wilkie, “Electron microscope studies of an alloyed Au/Ni/Au-Ge ohmic contact to GaAs,” J. Appl. Phys. 54(12), 6952–6957 (1983).
[Crossref]

Benisty, H.

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

Bermel, P.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

Besbes, M.

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

Biswas, R.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Bouchon, P.

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

Brucoli, G.

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

Celanovic, I.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

Chan, W. R.

Chen, G.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

Choi, D. S.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Cochran, W.

W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102–2106 (1961).
[Crossref]

Daly, J. T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

El-Kady, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Fray, S. J.

W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102–2106 (1961).
[Crossref]

Fujimura, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

George, T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Greenwald, A. C.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Greffet, J.-J.

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

Haïdar, R.

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

Hatade, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Ikeda, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Ilic, O.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

Inoue, T.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “On-chip integration and high-speed switching of multi-wavelength narrowband thermal emitters,” Appl. Phys. Lett. 108(9), 091101 (2016).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Electrical tuning of emissivity and linewidth of thermal emission spectra,” Phys. Rev. B 91(23), 235316 (2015).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

T. Inoue, T. Asano, M. D. Zoysa, A. Oskooi, and S. Noda, “Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources,” J. Opt. Soc. Am. B 30(1), 165–172 (2013).
[Crossref]

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Inoue, Y.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Jackson, T. N.

T. S. Kuan, P. E. Batson, T. N. Jackson, H. Rupprecht, and E. L. Wilkie, “Electron microscope studies of an alloyed Au/Ni/Au-Ge ohmic contact to GaAs,” J. Appl. Phys. 54(12), 6952–6957 (1983).
[Crossref]

Joannopoulos, J. D.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

Johnson, E. A.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Johnson, F. A.

W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102–2106 (1961).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Kanakugi, T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Kasaya, T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Kitagawa, S.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Kuan, T. S.

T. S. Kuan, P. E. Batson, T. N. Jackson, H. Rupprecht, and E. L. Wilkie, “Electron microscope studies of an alloyed Au/Ni/Au-Ge ohmic contact to GaAs,” J. Appl. Phys. 54(12), 6952–6957 (1983).
[Crossref]

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

McNeal, M. P.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Miyazaki, H. T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Mochizuki, K.

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Moelders, N.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Noda, S.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “On-chip integration and high-speed switching of multi-wavelength narrowband thermal emitters,” Appl. Phys. Lett. 108(9), 091101 (2016).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Electrical tuning of emissivity and linewidth of thermal emission spectra,” Phys. Rev. B 91(23), 235316 (2015).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

T. Inoue, T. Asano, M. D. Zoysa, A. Oskooi, and S. Noda, “Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources,” J. Opt. Soc. Am. B 30(1), 165–172 (2013).
[Crossref]

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Okada, M.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Oskooi, A.

T. Inoue, T. Asano, M. D. Zoysa, A. Oskooi, and S. Noda, “Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources,” J. Opt. Soc. Am. B 30(1), 165–172 (2013).
[Crossref]

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Poate, J. M.

A. K. Sinha and J. M. Poate, “Effect of alloying behavior on the electrical characteristics of nGaAs Schottky diodes metallized with W, Au, and Pt,” Appl. Phys. Lett. 23(12), 666–668 (1973).
[Crossref]

Pralle, M. U.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Puscasu, I.

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[Crossref]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Quarington, J. E.

W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102–2106 (1961).
[Crossref]

Razeghi, M.

Y. Bai, N. Baandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Rinnerbauer, V.

Rupprecht, H.

T. S. Kuan, P. E. Batson, T. N. Jackson, H. Rupprecht, and E. L. Wilkie, “Electron microscope studies of an alloyed Au/Ni/Au-Ge ohmic contact to GaAs,” J. Appl. Phys. 54(12), 6952–6957 (1983).
[Crossref]

Schaich, W. L.

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[Crossref]

Senkevich, J. J.

Sinha, A. K.

A. K. Sinha and J. M. Poate, “Effect of alloying behavior on the electrical characteristics of nGaAs Schottky diodes metallized with W, Au, and Pt,” Appl. Phys. Lett. 23(12), 666–668 (1973).
[Crossref]

Slivken, S.

Y. Bai, N. Baandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Soljacic, M.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Tsao, S.

Y. Bai, N. Baandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Wilkie, E. L.

T. S. Kuan, P. E. Batson, T. N. Jackson, H. Rupprecht, and E. L. Wilkie, “Electron microscope studies of an alloyed Au/Ni/Au-Ge ohmic contact to GaAs,” J. Appl. Phys. 54(12), 6952–6957 (1983).
[Crossref]

Williams, N.

W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102–2106 (1961).
[Crossref]

Yablonovitch, E.

Yamamoto, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Yeng, Y. X.

Zoysa, M. D.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “On-chip integration and high-speed switching of multi-wavelength narrowband thermal emitters,” Appl. Phys. Lett. 108(9), 091101 (2016).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Electrical tuning of emissivity and linewidth of thermal emission spectra,” Phys. Rev. B 91(23), 235316 (2015).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

T. Inoue, T. Asano, M. D. Zoysa, A. Oskooi, and S. Noda, “Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources,” J. Opt. Soc. Am. B 30(1), 165–172 (2013).
[Crossref]

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Appl. Phys. Lett. (9)

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

G. Brucoli, P. Bouchon, R. Haïdar, M. Besbes, H. Benisty, and J.-J. Greffet, “High efficiency quasi-monochromatic infrared emitter,” Appl. Phys. Lett. 104(8), 081101 (2014).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “On-chip integration and high-speed switching of multi-wavelength narrowband thermal emitters,” Appl. Phys. Lett. 108(9), 091101 (2016).
[Crossref]

A. K. Sinha and J. M. Poate, “Effect of alloying behavior on the electrical characteristics of nGaAs Schottky diodes metallized with W, Au, and Pt,” Appl. Phys. Lett. 23(12), 666–668 (1973).
[Crossref]

Y. Bai, N. Baandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

J. Appl. Phys. (2)

W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102–2106 (1961).
[Crossref]

T. S. Kuan, P. E. Batson, T. N. Jackson, H. Rupprecht, and E. L. Wilkie, “Electron microscope studies of an alloyed Au/Ni/Au-Ge ohmic contact to GaAs,” J. Appl. Phys. 54(12), 6952–6957 (1983).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Nat. Nanotechnol. (1)

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

M. D. Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Electrical tuning of emissivity and linewidth of thermal emission spectra,” Phys. Rev. B 91(23), 235316 (2015).
[Crossref]

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Other (3)

Emissivity table: http://www.optotherm.com/emiss-table.htm

B. Stuart, Infrared Spectroscopy: Fundamentals and Applications (John Wiley & Sons, 2004).

LASERDIODESOURCE.com, http://www.laserdiodesource.com/laser-diode-by-technology/quantum_cascade

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of a single-mode high-Q thermal emitter composed of GaAs/AlGaAs MQWs and a square-lattice rod-type PC slab. (b) Upper panel: the transmission spectrum of the flat MQW wafer. Lower panel: the emissivity spectrum of a fabricated PC slab (Nw = 20, h = 2.4 µm, t = 0.8 µm, a = 7.4 µm, r1 = 0.14a, r2 = 0.13a) in the surface-normal direction, measured with a temperature-controlled external heater at 200 °C.

Fig. 2
Fig. 2

(a) Schematic diagram of a high-Q thermal emitter which can be heated by current injection. (b)(c) Microscope image of the top-side and bottom-side of the fabricated emitters. (d) Infrared camera image of the fabricated emitter heated by current injection with an input power of 1.5 mW.

Fig. 3
Fig. 3

(a) Measured thermal emission peak of the fabricated device in the surface-normal direction at various electrical input powers. (b) Central wavenumber and Q factor of the emission peak shown in Fig. 3(a) as a function of the electrical power. (c) Relationship between the device temperature and the electrical power. Red: rod-type PC, blue: airhole PC [9], black: reference blackbody [9]. The error bars show the estimation errors discussed in the main text. The three emitters have light-emitting surfaces with the same area (5.76 mm2). (d) Measured thermal emission spectra of the rod-type PC and the reference blackbody in the surface-normal direction at the same electrical power (2.26 mW).

Tables (1)

Tables Icon

Table 1 Calculated power consumption of the emitter. For each calculation, the range of estimation (smallest – most likely – largest) is listed.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ξ 1+ξ × 1/ Q abs Q rad (ω/ ω res 1) 2 + (1/2 Q abs +1/2 Q rad ) 2 ,
η= ε pc [ I bb ( T pc , ω peak ) I bb ( T 0 , ω peak ) ] ε bb [ I bb ( T b , ω peak ) I bb ( T 0 , ω peak ) ] ,
P pc U(D) =S 0 2π dϕ 0 π/2 sinθcosθdθ 0 ε pc U(D) (ω,θ,ϕ)[ I bb ( T pc ,ω) I bb ( T 0 ,ω)]dω
k w ( π r 2 ) d 2 T d x 2 ε w σ(2πr)( T 4 T 0 4 )+ ρ w π r 2 I 2 =0(0<x<L), T(0)= T pc ,T(L)= T 0 .
P wires =2 k w ( π r 2 )( dT dx | x=0 )+2 ρ w L π r 2 I 2 .

Metrics