Abstract

A supercontinuum (SC) source spanning from 2 to 4 μm is demonstrated in As2S3-chalcogenide fibers pumped by a nanosecond supercontinuum pump source in the normal dispersion region. In this experiment, two pieces of 3-m-long step-index As2S3 fiber with different core diameters of 7 μm and 9 μm are pumped by a 1.9-2.5 μm nanosecond supercontinuum source. The zero dispersion wavelengths are both beyond 6.6 μm, thus cascaded stimulated Raman scattering is believed to be the dominant mechanism responsible for spectral broadening. With a low peak pump power of ~2.9 kW, both of the output spectra have extended to 4 μm with enhanced power distribution in the MIR region. The maximum output power of the mid-infrared supercontinua is ~140 mW. To the best of our knowledge, it is the first supercontinuum extenting to 4 μm in an As2S3 fiber pumped by shortwave-infrared SC pluses in the normal dispersion region.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared supercontinuum generation based on cascaded Raman scattering in a few-mode As2S3 fiber pumped by a thulium-doped fiber laser

Jinmei Yao, Bin Zhang, Ke Yin, Linyong Yang, Jing Hou, and Qisheng Lu
Opt. Express 24(13) 14717-14724 (2016)

Broadband mid-infrared supercontinuum generation in 1-meter-long As2S3-based fiber with ultra-large core diameter

Peiqing Zhang, Peilong Yang, Xunsi Wang, Rongping Wang, Shixun Dai, and Qiuhua Nie
Opt. Express 24(25) 28400-28408 (2016)

Multioctave infrared supercontinuum generation in large-core As2S3 fibers

Francis Théberge, Nicolas Thiré, Jean-François Daigle, Pierre Mathieu, Bruno E. Schmidt, Younès Messaddeq, Réal Vallée, and François Légaré
Opt. Lett. 39(22) 6474-6477 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 3(2), 177–191 (2011).
    [Crossref]
  2. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
    [Crossref] [PubMed]
  3. B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
  4. R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trac. Trends Anal. Chem. 18(2), 85–93 (1999).
    [Crossref]
  5. J. Nishii, T. Yamashita, and T. Yamagishi, “Chalcogenide glass fiber with a core-cladding structure,” Appl. Opt. 28(23), 5122–5127 (1989).
    [Crossref] [PubMed]
  6. L. E. Busse, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Chalcogenide fibers deliver high IR power,” Laser Focus World 32(9), 143–166 (1996).
  7. M. Asobe, K. I. Suzuki, T. Kanamori, and K. I. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60(10), 1153–1154 (1992).
    [Crossref]
  8. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
    [PubMed]
  9. H. Ebendorff-Heidepriem, “Non-silica microstructured optical fibers for infrared applications.” in 19th Optoelectronics and Communications Conference and the 39th Australian Conference on Optical Fibre Technology, (Engineers Australia, 2014), pp. 627–629.
  10. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
    [PubMed]
  11. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  12. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
    [Crossref] [PubMed]
  13. B. Zhang, G. Wei, Y. Yi, C. Zhai, S. Qi, A. Yang, L. Lei, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Opt. Soc. Am. B 98(5), 1389–1392 (2015).
  14. D. Deng, L. Liu, T. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10 µm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Ceram. Soc. Jpn. 124(1), 103–105 (2016).
    [Crossref]
  15. F. Théberge, N. Thiré, J. F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallée, and F. Légaré, “Multioctave infrared supercontinuum generation in large-core As₂S₃ fibers,” Opt. Lett. 39(22), 6474–6477 (2014).
    [Crossref] [PubMed]
  16. R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
    [Crossref]
  17. L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 µm,” Proc. SPIE 7914, 79140P (2011).
    [Crossref]
  18. R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40(21), 5074–5077 (2015).
    [Crossref] [PubMed]
  19. O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J. Freeman, B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan, “Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient,” Opt. Express 14(17), 7924–7930 (2006).
    [Crossref] [PubMed]
  20. R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As₂S₃ and As₂Se₃ optical fibers,” Opt. Lett. 36(12), 2351–2353 (2011).
    [Crossref] [PubMed]
  21. J. Geng, Q. Wang, and S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51(7), 834–840 (2012).
    [Crossref] [PubMed]
  22. I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
    [Crossref] [PubMed]
  23. C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24(2), 749–758 (2016).
    [Crossref] [PubMed]
  24. K. Yin, B. Zhang, J. Yao, L. Yang, S. Chen, and J. Hou, “Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers,” Opt. Lett. 41(5), 946–949 (2016).
    [Crossref] [PubMed]
  25. A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77(2–3), 227–234 (2003).
    [Crossref]
  26. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  27. W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X-Ray photoelectron, and extended X-Ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
    [Crossref]

2016 (4)

2015 (3)

2014 (3)

2012 (2)

J. Geng, Q. Wang, and S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51(7), 834–840 (2012).
[Crossref] [PubMed]

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

2011 (4)

L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 µm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 3(2), 177–191 (2011).
[Crossref]

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As₂S₃ and As₂Se₃ optical fibers,” Opt. Lett. 36(12), 2351–2353 (2011).
[Crossref] [PubMed]

2006 (2)

2005 (1)

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X-Ray photoelectron, and extended X-Ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[Crossref]

2003 (1)

A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77(2–3), 227–234 (2003).
[Crossref]

2000 (1)

1999 (1)

R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trac. Trends Anal. Chem. 18(2), 85–93 (1999).
[Crossref]

1998 (1)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
[Crossref] [PubMed]

1996 (1)

L. E. Busse, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Chalcogenide fibers deliver high IR power,” Laser Focus World 32(9), 143–166 (1996).

1992 (1)

M. Asobe, K. I. Suzuki, T. Kanamori, and K. I. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60(10), 1153–1154 (1992).
[Crossref]

1989 (1)

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Aggarwal, I.

L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 µm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

Aggarwal, I. D.

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
[PubMed]

L. E. Busse, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Chalcogenide fibers deliver high IR power,” Laser Focus World 32(9), 143–166 (1996).

Aitken, B. G.

Allen, M. G.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
[Crossref] [PubMed]

Antoine, K.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X-Ray photoelectron, and extended X-Ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[Crossref]

Asobe, M.

M. Asobe, K. I. Suzuki, T. Kanamori, and K. I. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60(10), 1153–1154 (1992).
[Crossref]

Bang, O.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref] [PubMed]

Brilland, L.

Busse, L. E.

L. E. Busse, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Chalcogenide fibers deliver high IR power,” Laser Focus World 32(9), 143–166 (1996).

Chen, S.

Cheng, T.

Cheong, S. W.

Chin, G.

Choi, D. Y.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Currie, S. C.

Daigle, J. F.

Davies, B. L.

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

Deng, D.

D. Deng, L. Liu, T. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10 µm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Ceram. Soc. Jpn. 124(1), 103–105 (2016).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

Freeman, M. J.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gai, X.

Gattass, R. R.

R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40(21), 5074–5077 (2015).
[Crossref] [PubMed]

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 µm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

Geng, J.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gibson, D.

Guo, W.

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77(2–3), 227–234 (2003).
[Crossref]

Hou, J.

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77(2–3), 227–234 (2003).
[Crossref]

Hwang, H. Y.

Islam, M. N.

Jain, H.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X-Ray photoelectron, and extended X-Ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[Crossref]

Jiang, S.

Kanamori, T.

M. Asobe, K. I. Suzuki, T. Kanamori, and K. I. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60(10), 1153–1154 (1992).
[Crossref]

Kanou, Y.

D. Deng, L. Liu, T. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10 µm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Ceram. Soc. Jpn. 124(1), 103–105 (2016).
[Crossref]

Katsufuji, T.

Kim, W.

Kubat, I.

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kubodera, K. I.

M. Asobe, K. I. Suzuki, T. Kanamori, and K. I. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60(10), 1153–1154 (1992).
[Crossref]

Kuditcher, A.

Kulkarni, O. P.

Kumar, M.

Lee, D. J.

Légaré, F.

Lei, L.

B. Zhang, G. Wei, Y. Yi, C. Zhai, S. Qi, A. Yang, L. Lei, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Opt. Soc. Am. B 98(5), 1389–1392 (2015).

Lenz, G.

Li, W.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X-Ray photoelectron, and extended X-Ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[Crossref]

Lines, M. E.

Liu, L.

D. Deng, L. Liu, T. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10 µm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Ceram. Soc. Jpn. 124(1), 103–105 (2016).
[Crossref]

Lopez, C.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X-Ray photoelectron, and extended X-Ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[Crossref]

Luther-Davies, B.

Madden, S.

Mathieu, P.

Matsumoto, M.

D. Deng, L. Liu, T. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10 µm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Ceram. Soc. Jpn. 124(1), 103–105 (2016).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

McCarthy, J. E.

Méchin, D.

Messaddeq, Y.

Miller, A. C.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X-Ray photoelectron, and extended X-Ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[Crossref]

Møller, U.

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24(2), 749–758 (2016).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Møller, U. V.

Monro, T. M.

Moon, J. A.

L. E. Busse, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Chalcogenide fibers deliver high IR power,” Laser Focus World 32(9), 143–166 (1996).

Moselund, P. M.

Myneni, S.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X-Ray photoelectron, and extended X-Ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[Crossref]

Nagasaka, K.

Nguyen, V.

R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40(21), 5074–5077 (2015).
[Crossref] [PubMed]

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Nishii, J.

Nolan, D. A.

Ohishi, Y.

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

D. Deng, L. Liu, T. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10 µm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Ceram. Soc. Jpn. 124(1), 103–105 (2016).
[Crossref]

Petersen, C.

Petersen, C. R.

Pope, A.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X-Ray photoelectron, and extended X-Ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[Crossref]

Powley, M. L.

Pureza, P.

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Qi, S.

B. Zhang, G. Wei, Y. Yi, C. Zhai, S. Qi, A. Yang, L. Lei, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Opt. Soc. Am. B 98(5), 1389–1392 (2015).

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[PubMed]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Richardson, K.

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X-Ray photoelectron, and extended X-Ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[Crossref]

Rivero, C.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X-Ray photoelectron, and extended X-Ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[Crossref]

Sanghera, J.

L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 µm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

Sanghera, J. S.

Schmidt, B. E.

Schulte, A.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X-Ray photoelectron, and extended X-Ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[Crossref]

Seal, S.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X-Ray photoelectron, and extended X-Ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[Crossref]

Seddon, A.

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seddon, A. B.

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 3(2), 177–191 (2011).
[Crossref]

Shaw, L. B.

R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40(21), 5074–5077 (2015).
[Crossref] [PubMed]

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 µm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

Slusher, R. E.

Spälter, S.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Suzuki, K. I.

M. Asobe, K. I. Suzuki, T. Kanamori, and K. I. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60(10), 1153–1154 (1992).
[Crossref]

Suzuki, T.

D. Deng, L. Liu, T. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10 µm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Ceram. Soc. Jpn. 124(1), 103–105 (2016).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

Tang, D.

B. Zhang, G. Wei, Y. Yi, C. Zhai, S. Qi, A. Yang, L. Lei, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Opt. Soc. Am. B 98(5), 1389–1392 (2015).

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tapp, H. S.

R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trac. Trends Anal. Chem. 18(2), 85–93 (1999).
[Crossref]

Terry, F. L.

Tezuka, H.

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

D. Deng, L. Liu, T. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10 µm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Ceram. Soc. Jpn. 124(1), 103–105 (2016).
[Crossref]

Thapa, R.

Théberge, F.

Thiré, N.

Tuan, T.

D. Deng, L. Liu, T. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10 µm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Ceram. Soc. Jpn. 124(1), 103–105 (2016).
[Crossref]

Tuan, T. H.

Vallée, R.

Wang, Q.

Wang, R.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[PubMed]

B. Zhang, G. Wei, Y. Yi, C. Zhai, S. Qi, A. Yang, L. Lei, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Opt. Soc. Am. B 98(5), 1389–1392 (2015).

Wei, G.

B. Zhang, G. Wei, Y. Yi, C. Zhai, S. Qi, A. Yang, L. Lei, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Opt. Soc. Am. B 98(5), 1389–1392 (2015).

White, R. T.

Wilson, R. H.

R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trac. Trends Anal. Chem. 18(2), 85–93 (1999).
[Crossref]

Xia, C.

Xue, X.

Yamagishi, T.

Yamashita, T.

Yang, A.

B. Zhang, G. Wei, Y. Yi, C. Zhai, S. Qi, A. Yang, L. Lei, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Opt. Soc. Am. B 98(5), 1389–1392 (2015).

Yang, L.

Yang, Z.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[PubMed]

B. Zhang, G. Wei, Y. Yi, C. Zhai, S. Qi, A. Yang, L. Lei, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Opt. Soc. Am. B 98(5), 1389–1392 (2015).

Yao, J.

Yi, Y.

B. Zhang, G. Wei, Y. Yi, C. Zhai, S. Qi, A. Yang, L. Lei, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Opt. Soc. Am. B 98(5), 1389–1392 (2015).

Yin, K.

Yu, Y.

Zhai, C.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[PubMed]

B. Zhang, G. Wei, Y. Yi, C. Zhai, S. Qi, A. Yang, L. Lei, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Opt. Soc. Am. B 98(5), 1389–1392 (2015).

Zhang, B.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zimmermann, J.

Appl. Opt. (2)

Appl. Phys. B (1)

A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77(2–3), 227–234 (2003).
[Crossref]

Appl. Phys. Lett. (1)

M. Asobe, K. I. Suzuki, T. Kanamori, and K. I. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60(10), 1153–1154 (1992).
[Crossref]

Int. J. Appl. Glass Sci. (1)

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 3(2), 177–191 (2011).
[Crossref]

J. Appl. Phys. (1)

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X-Ray photoelectron, and extended X-Ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[Crossref]

J. Ceram. Soc. Jpn. (1)

D. Deng, L. Liu, T. Tuan, Y. Kanou, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum covering 3–10 µm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber,” J. Ceram. Soc. Jpn. 124(1), 103–105 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

B. Zhang, G. Wei, Y. Yi, C. Zhai, S. Qi, A. Yang, L. Lei, Z. Yang, R. Wang, and D. Tang, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Opt. Soc. Am. B 98(5), 1389–1392 (2015).

Laser Focus World (1)

L. E. Busse, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Chalcogenide fibers deliver high IR power,” Laser Focus World 32(9), 143–166 (1996).

Meas. Sci. Technol. (1)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
[Crossref] [PubMed]

Nat. Photonics (2)

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

R. R. Gattass, L. B. Shaw, V. Nguyen, P. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Opt. Lett. (7)

R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As₂S₃ and As₂Se₃ optical fibers,” Opt. Lett. 36(12), 2351–2353 (2011).
[Crossref] [PubMed]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
[PubMed]

F. Théberge, N. Thiré, J. F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallée, and F. Légaré, “Multioctave infrared supercontinuum generation in large-core As₂S₃ fibers,” Opt. Lett. 39(22), 6474–6477 (2014).
[Crossref] [PubMed]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[PubMed]

R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40(21), 5074–5077 (2015).
[Crossref] [PubMed]

K. Yin, B. Zhang, J. Yao, L. Yang, S. Chen, and J. Hou, “Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers,” Opt. Lett. 41(5), 946–949 (2016).
[Crossref] [PubMed]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

Proc. SPIE (1)

L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 µm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Trac. Trends Anal. Chem. (1)

R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trac. Trends Anal. Chem. 18(2), 85–93 (1999).
[Crossref]

Other (1)

H. Ebendorff-Heidepriem, “Non-silica microstructured optical fibers for infrared applications.” in 19th Optoelectronics and Communications Conference and the 39th Australian Conference on Optical Fibre Technology, (Engineers Australia, 2014), pp. 627–629.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for the MIR SC generation. UHNA: ultra-high numerical aperture fiber; BD lens: black diamond lens.

Fig. 2
Fig. 2

(a) Calculated group velocity dispersions and (b) nonlinear coefficients of the As2S3 fibers with core diameter of 7 μm and 9 μm

Fig. 3
Fig. 3

Measured spectrum at the output end of the UHNA fiber.

Fig. 4
Fig. 4

Measured performance of MIR SC generated in the 3-m-long As2S3 fiber with a core diameter of 7 μm (a) Spectral evolution versus peak power. Each spectrum is shifted upwards by 7 dB for a better expression. (b) The SC output power versus average pump power.

Fig. 5
Fig. 5

Measured performance of MIR SC generation in the 3-m-long As2S3 fiber with a core diameter of 9 μm (a) Spectral evolution versus peak power. Each spectrum is shifted upwards by 5 dB for a better expression. (b) The SC output power versus average pump power.

Fig. 6
Fig. 6

Fraction of SC power generated beyond 2.4 μm (star) and 3 μm (diamond) in the 3-m-long As2S3 fibers with core diameters of 7 μm (a) and 9 μm (b)

Metrics