Abstract

Coupling of a single dipole with a nanofiber Bragg cavity (NFBC) approximating an actually fabricated structure was numerically analyzed using three dimensional finite-difference time-domain simulations for different dipole positions. For the given model structure, the Purcell factor and coupling efficiency reached to 19.1 and 82%, respectively, when the dipole is placed outside the surface of the fiber. Interestingly, these values are very close to the highest values of 20.2 and 84% obtained for the case when the dipole was located inside the fiber at the center. The analysis performed in this study will be useful in improving the performance of single-photon emitter-related quantum devices using NFBCs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanowire coupling to photonic crystal nanocavities for single photon sources

Christian Grillet, Christelle Monat, Cameron L. C. Smith, Benjamin J. Eggleton, David J. Moss, Simon Frédérick, Dan Dalacu, Philip J. Poole, Jean Lapointe, Geof Aers, and Robin L. Williams
Opt. Express 15(3) 1267-1276 (2007)

Anomalous enhanced emission from PbS quantum dots on a photonic-crystal microcavity

Ting Shan Luk, Shisheng Xiong, Weng W. Chow, Xiaoyu Miao, Ganapathi Subramania, Paul J. Resnick, Arthur J. Fischer, and Jeffrey C. Brinker
J. Opt. Soc. Am. B 28(6) 1365-1373 (2011)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
    [Crossref] [PubMed]
  2. H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256(5053), 66–70 (1992).
    [Crossref] [PubMed]
  3. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref] [PubMed]
  4. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, and J. Vuc, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
    [Crossref] [PubMed]
  5. H. Oka, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Effects of Decoherence on the Nonlinear Optical Phase Shift Obtained from a One-Dimensional Atom,” Jpn. J. Appl. Phys. 43(11A), 7495–7500 (2004).
    [Crossref]
  6. H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
    [Crossref] [PubMed]
  7. F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4–6), 445–455 (2004).
    [Crossref]
  8. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref] [PubMed]
  9. M. Almokhtar, M. Fujiwara, H. Takashima, and S. Takeuchi, “Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices,” Opt. Express 22(17), 20045–20059 (2014).
    [Crossref] [PubMed]
  10. M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
    [Crossref] [PubMed]
  11. R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
    [Crossref] [PubMed]
  12. A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, “Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber,” Opt. Express 17(24), 21704–21711 (2009).
    [Crossref] [PubMed]
  13. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express 15(9), 5431–5438 (2007).
    [Crossref] [PubMed]
  14. T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
    [Crossref] [PubMed]
  15. L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
    [Crossref]
  16. S. Takeuchi, “Taper optical fiber,” Japanese Patent No. 2010–211192 (2010).
  17. F. Le Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80(5), 053826 (2009).
    [Crossref]
  18. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19(15), 14040–14050 (2011).
    [Crossref] [PubMed]
  19. K. P. Nayak, P. Zhang, and K. Hakuta, “Optical nanofiber-based photonic crystal cavity,” Opt. Lett. 39(2), 232–235 (2014).
    [Crossref] [PubMed]
  20. R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity Quantum Electrodynamics on a Nanofiber Using a Composite Photonic Crystal Cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
    [Crossref] [PubMed]
  21. A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
    [Crossref] [PubMed]
  22. E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1985).
  23. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006).
    [Crossref] [PubMed]
  24. T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94(17), 173104 (2009).
    [Crossref]
  25. A. W. Schell, G. Kewes, T. Hanke, A. Leitenstorfer, R. Bratschitsch, O. Benson, and T. Aichele, “Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures,” Opt. Express 19(8), 7914–7920 (2011).
    [Crossref] [PubMed]
  26. M. R. Henderson, S. A. v, A. D. Greentree, and T. M. Monro, “Dipole emitters in fiber: interface effects, collection efficiency and optimization,” Opt. Express 19(17), 16182–16194 (2011).
    [Crossref] [PubMed]
  27. J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97(14), 141108 (2010).
    [Crossref]
  28. O. Benson, A. W. Schell, T. Neumer, Q. Shi, J. Kaschke, J. Fischer, and M. Wegener, “Strategies for optical integration of single-photon sources,” Proc. SPIE 9371, 93710D (2015).
    [Crossref]
  29. K. Matsushige, H. Yamada, H. Tanaka, T. Horiuchi, and X. Q. Chen, “Nanoscale control and detection of electric dipoles in organic molecules,” Nanotechnology 9(3), 208–211 (1998).
    [Crossref]
  30. M. Palamaru and P. Lalanne, “Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78(11), 1466 (2001).
    [Crossref]
  31. C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities,” Opt. Express 13(1), 245–255 (2005).
    [Crossref] [PubMed]
  32. M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16(23), 19136–19145 (2008).
    [Crossref] [PubMed]
  33. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref] [PubMed]
  34. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009).
    [Crossref] [PubMed]

2015 (2)

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

O. Benson, A. W. Schell, T. Neumer, Q. Shi, J. Kaschke, J. Fischer, and M. Wegener, “Strategies for optical integration of single-photon sources,” Proc. SPIE 9371, 93710D (2015).
[Crossref]

2014 (4)

M. Almokhtar, M. Fujiwara, H. Takashima, and S. Takeuchi, “Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices,” Opt. Express 22(17), 20045–20059 (2014).
[Crossref] [PubMed]

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

K. P. Nayak, P. Zhang, and K. Hakuta, “Optical nanofiber-based photonic crystal cavity,” Opt. Lett. 39(2), 232–235 (2014).
[Crossref] [PubMed]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity Quantum Electrodynamics on a Nanofiber Using a Composite Photonic Crystal Cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

2012 (3)

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
[Crossref] [PubMed]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

2011 (6)

2010 (1)

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97(14), 141108 (2010).
[Crossref]

2009 (4)

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94(17), 173104 (2009).
[Crossref]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009).
[Crossref] [PubMed]

A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, “Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber,” Opt. Express 17(24), 21704–21711 (2009).
[Crossref] [PubMed]

F. Le Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80(5), 053826 (2009).
[Crossref]

2008 (2)

2007 (1)

2006 (1)

2005 (1)

2004 (2)

H. Oka, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Effects of Decoherence on the Nonlinear Optical Phase Shift Obtained from a One-Dimensional Atom,” Jpn. J. Appl. Phys. 43(11A), 7495–7500 (2004).
[Crossref]

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4–6), 445–455 (2004).
[Crossref]

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

2002 (1)

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, and J. Vuc, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

2001 (1)

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78(11), 1466 (2001).
[Crossref]

1998 (1)

K. Matsushige, H. Yamada, H. Tanaka, T. Horiuchi, and X. Q. Chen, “Nanoscale control and detection of electric dipoles in organic molecules,” Nanotechnology 9(3), 208–211 (1998).
[Crossref]

1992 (1)

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256(5053), 66–70 (1992).
[Crossref] [PubMed]

Aichele, T.

Almokhtar, M.

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Balykin, V. I.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express 15(9), 5431–5438 (2007).
[Crossref] [PubMed]

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4–6), 445–455 (2004).
[Crossref]

Barth, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97(14), 141108 (2010).
[Crossref]

Benson, O.

O. Benson, A. W. Schell, T. Neumer, Q. Shi, J. Kaschke, J. Fischer, and M. Wegener, “Strategies for optical integration of single-photon sources,” Proc. SPIE 9371, 93710D (2015).
[Crossref]

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
[Crossref] [PubMed]

A. W. Schell, G. Kewes, T. Hanke, A. Leitenstorfer, R. Bratschitsch, O. Benson, and T. Aichele, “Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures,” Opt. Express 19(8), 7914–7920 (2011).
[Crossref] [PubMed]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97(14), 141108 (2010).
[Crossref]

Borselli, M.

Bratschitsch, R.

Burchardt, D.

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Camacho, R.

Chan, J.

Chen, X. Q.

K. Matsushige, H. Yamada, H. Tanaka, T. Horiuchi, and X. Q. Chen, “Nanoscale control and detection of electric dipoles in organic molecules,” Nanotechnology 9(3), 208–211 (1998).
[Crossref]

de Lange, G.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94(17), 173104 (2009).
[Crossref]

Dmochowski, G. M.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94(17), 173104 (2009).
[Crossref]

Döscher, H.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97(14), 141108 (2010).
[Crossref]

Eichenfield, M.

Figueroa, E.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

Fischer, J.

O. Benson, A. W. Schell, T. Neumer, Q. Shi, J. Kaschke, J. Fischer, and M. Wegener, “Strategies for optical integration of single-photon sources,” Proc. SPIE 9371, 93710D (2015).
[Crossref]

Fujiwara, M.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

M. Almokhtar, M. Fujiwara, H. Takashima, and S. Takeuchi, “Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices,” Opt. Express 22(17), 20045–20059 (2014).
[Crossref] [PubMed]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Garcia-Fernandez, R.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Greentree, A. D.

Hakuta, K.

K. P. Nayak, P. Zhang, and K. Hakuta, “Optical nanofiber-based photonic crystal cavity,” Opt. Lett. 39(2), 232–235 (2014).
[Crossref] [PubMed]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity Quantum Electrodynamics on a Nanofiber Using a Composite Photonic Crystal Cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19(15), 14040–14050 (2011).
[Crossref] [PubMed]

F. Le Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80(5), 053826 (2009).
[Crossref]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express 15(9), 5431–5438 (2007).
[Crossref] [PubMed]

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4–6), 445–455 (2004).
[Crossref]

Hanke, T.

Hannappel, T.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97(14), 141108 (2010).
[Crossref]

Hanson, R.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94(17), 173104 (2009).
[Crossref]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Heeres, E. C.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94(17), 173104 (2009).
[Crossref]

Henderson, M. R.

Hermelbracht, J.

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Hofmann, H. F.

H. Oka, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Effects of Decoherence on the Nonlinear Optical Phase Shift Obtained from a One-Dimensional Atom,” Jpn. J. Appl. Phys. 43(11A), 7495–7500 (2004).
[Crossref]

Horiuchi, T.

K. Matsushige, H. Yamada, H. Tanaka, T. Horiuchi, and X. Q. Chen, “Nanoscale control and detection of electric dipoles in organic molecules,” Nanotechnology 9(3), 208–211 (1998).
[Crossref]

Hugonin, J.

Kamioka, S.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

Kaschke, J.

O. Benson, A. W. Schell, T. Neumer, Q. Shi, J. Kaschke, J. Fischer, and M. Wegener, “Strategies for optical integration of single-photon sources,” Proc. SPIE 9371, 93710D (2015).
[Crossref]

Kawai, Y.

Kewes, G.

A. W. Schell, G. Kewes, T. Hanke, A. Leitenstorfer, R. Bratschitsch, O. Benson, and T. Aichele, “Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures,” Opt. Express 19(8), 7914–7920 (2011).
[Crossref] [PubMed]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97(14), 141108 (2010).
[Crossref]

Kien, F. L.

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

Krishna, S.

Krueger, A.

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Lalanne, P.

C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities,” Opt. Express 13(1), 245–255 (2005).
[Crossref] [PubMed]

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78(11), 1466 (2001).
[Crossref]

Le Kien, F.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19(15), 14040–14050 (2011).
[Crossref] [PubMed]

F. Le Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80(5), 053826 (2009).
[Crossref]

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4–6), 445–455 (2004).
[Crossref]

Lecamp, G.

Leitenstorfer, A.

Liang, J. Q.

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4–6), 445–455 (2004).
[Crossref]

Liebermeister, L.

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Löchel, B.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97(14), 141108 (2010).
[Crossref]

Loncar, M.

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Matsushige, K.

K. Matsushige, H. Yamada, H. Tanaka, T. Horiuchi, and X. Q. Chen, “Nanoscale control and detection of electric dipoles in organic molecules,” Nanotechnology 9(3), 208–211 (1998).
[Crossref]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

McCutcheon, M. W.

Meinhardt, T.

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Melentiev, P. N.

Miyazaki, H. T.

Monro, T. M.

Morinaga, M.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express 15(9), 5431–5438 (2007).
[Crossref] [PubMed]

Nakajima, K.

Nayak, K. P.

Neumer, T.

O. Benson, A. W. Schell, T. Neumer, Q. Shi, J. Kaschke, J. Fischer, and M. Wegener, “Strategies for optical integration of single-photon sources,” Proc. SPIE 9371, 93710D (2015).
[Crossref]

Noda, T.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Nölleke, C.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

Nüsse, N.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97(14), 141108 (2010).
[Crossref]

Oe, Y.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

Oka, H.

H. Oka, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Effects of Decoherence on the Nonlinear Optical Phase Shift Obtained from a One-Dimensional Atom,” Jpn. J. Appl. Phys. 43(11A), 7495–7500 (2004).
[Crossref]

Oosterkamp, T. H.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94(17), 173104 (2009).
[Crossref]

Painter, O.

Palamaru, M.

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78(11), 1466 (2001).
[Crossref]

Pelton, M.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, and J. Vuc, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Petersen, F.

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Plant, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, and J. Vuc, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Quan, Q.

Rauschenbeutel, A.

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, “Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber,” Opt. Express 17(24), 21704–21711 (2009).
[Crossref] [PubMed]

Rehband, O.

Reiserer, A.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

Rempe, G.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

Ritter, S.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

Robledo, L.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94(17), 173104 (2009).
[Crossref]

Sadgrove, M.

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity Quantum Electrodynamics on a Nanofiber Using a Composite Photonic Crystal Cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

Santori, C.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, and J. Vuc, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Sasaki, K.

H. Oka, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Effects of Decoherence on the Nonlinear Optical Phase Shift Obtained from a One-Dimensional Atom,” Jpn. J. Appl. Phys. 43(11A), 7495–7500 (2004).
[Crossref]

Sauvan, C.

Schell, A. W.

O. Benson, A. W. Schell, T. Neumer, Q. Shi, J. Kaschke, J. Fischer, and M. Wegener, “Strategies for optical integration of single-photon sources,” Proc. SPIE 9371, 93710D (2015).
[Crossref]

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

A. W. Schell, G. Kewes, T. Hanke, A. Leitenstorfer, R. Bratschitsch, O. Benson, and T. Aichele, “Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures,” Opt. Express 19(8), 7914–7920 (2011).
[Crossref] [PubMed]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97(14), 141108 (2010).
[Crossref]

Schoengen, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97(14), 141108 (2010).
[Crossref]

Schröder, T.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Shi, Q.

O. Benson, A. W. Schell, T. Neumer, Q. Shi, J. Kaschke, J. Fischer, and M. Wegener, “Strategies for optical integration of single-photon sources,” Proc. SPIE 9371, 93710D (2015).
[Crossref]

Solomon, G. S.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, and J. Vuc, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Specht, H. P.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

Srinivasan, K.

Stiebeiner, A.

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, “Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber,” Opt. Express 17(24), 21704–21711 (2009).
[Crossref] [PubMed]

Stintz, A.

Sugimoto, Y.

Takashima, H.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

M. Almokhtar, M. Fujiwara, H. Takashima, and S. Takeuchi, “Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices,” Opt. Express 22(17), 20045–20059 (2014).
[Crossref] [PubMed]

Takeuchi, S.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

M. Almokhtar, M. Fujiwara, H. Takashima, and S. Takeuchi, “Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices,” Opt. Express 22(17), 20045–20059 (2014).
[Crossref] [PubMed]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

H. Oka, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Effects of Decoherence on the Nonlinear Optical Phase Shift Obtained from a One-Dimensional Atom,” Jpn. J. Appl. Phys. 43(11A), 7495–7500 (2004).
[Crossref]

Tanaka, H.

K. Matsushige, H. Yamada, H. Tanaka, T. Horiuchi, and X. Q. Chen, “Nanoscale control and detection of electric dipoles in organic molecules,” Nanotechnology 9(3), 208–211 (1998).
[Crossref]

Tashima, T.

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Toubaru, K.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Uphoff, M.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

v, S. A.

v Münchow, A.

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

van der Sar, T.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94(17), 173104 (2009).
[Crossref]

Vollmer, F.

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

Vuc, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, and J. Vuc, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Vuckovic, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, and J. Vuc, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Weber, M.

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Wegener, M.

O. Benson, A. W. Schell, T. Neumer, Q. Shi, J. Kaschke, J. Fischer, and M. Wegener, “Strategies for optical integration of single-photon sources,” Proc. SPIE 9371, 93710D (2015).
[Crossref]

Weinfurter, H.

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

Wolters, J.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97(14), 141108 (2010).
[Crossref]

Yalla, R.

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity Quantum Electrodynamics on a Nanofiber Using a Composite Photonic Crystal Cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

Yamada, H.

K. Matsushige, H. Yamada, H. Tanaka, T. Horiuchi, and X. Q. Chen, “Nanoscale control and detection of electric dipoles in organic molecules,” Nanotechnology 9(3), 208–211 (1998).
[Crossref]

Yamamoto, Y.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, and J. Vuc, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Yang, L.

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

Yokoyama, H.

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256(5053), 66–70 (1992).
[Crossref] [PubMed]

Zhang, B.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, and J. Vuc, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Zhang, P.

Zhao, H.-Q.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

L. Liebermeister, F. Petersen, A. v Münchow, D. Burchardt, J. Hermelbracht, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, H. Weinfurter, M. Weber, T. Tashima, A. Rauschenbeutel, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, and et al., “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104(3), 031101 (2014).
[Crossref]

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94(17), 173104 (2009).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97(14), 141108 (2010).
[Crossref]

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78(11), 1466 (2001).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Oka, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Effects of Decoherence on the Nonlinear Optical Phase Shift Obtained from a One-Dimensional Atom,” Jpn. J. Appl. Phys. 43(11A), 7495–7500 (2004).
[Crossref]

Nano Lett. (1)

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref] [PubMed]

Nanophotonics (1)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

K. Matsushige, H. Yamada, H. Tanaka, T. Horiuchi, and X. Q. Chen, “Nanoscale control and detection of electric dipoles in organic molecules,” Nanotechnology 9(3), 208–211 (1998).
[Crossref]

Nature (3)

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242(4–6), 445–455 (2004).
[Crossref]

Opt. Express (12)

M. Almokhtar, M. Fujiwara, H. Takashima, and S. Takeuchi, “Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices,” Opt. Express 22(17), 20045–20059 (2014).
[Crossref] [PubMed]

A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, “Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber,” Opt. Express 17(24), 21704–21711 (2009).
[Crossref] [PubMed]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express 15(9), 5431–5438 (2007).
[Crossref] [PubMed]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20(10), 10490–10497 (2012).
[Crossref] [PubMed]

K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19(15), 14040–14050 (2011).
[Crossref] [PubMed]

C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities,” Opt. Express 13(1), 245–255 (2005).
[Crossref] [PubMed]

M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16(23), 19136–19145 (2008).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009).
[Crossref] [PubMed]

A. W. Schell, G. Kewes, T. Hanke, A. Leitenstorfer, R. Bratschitsch, O. Benson, and T. Aichele, “Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures,” Opt. Express 19(8), 7914–7920 (2011).
[Crossref] [PubMed]

M. R. Henderson, S. A. v, A. D. Greentree, and T. M. Monro, “Dipole emitters in fiber: interface effects, collection efficiency and optimization,” Opt. Express 19(17), 16182–16194 (2011).
[Crossref] [PubMed]

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (1)

F. Le Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A 80(5), 053826 (2009).
[Crossref]

Phys. Rev. Lett. (3)

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity Quantum Electrodynamics on a Nanofiber Using a Composite Photonic Crystal Cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref] [PubMed]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, and J. Vuc, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref] [PubMed]

Proc. SPIE (1)

O. Benson, A. W. Schell, T. Neumer, Q. Shi, J. Kaschke, J. Fischer, and M. Wegener, “Strategies for optical integration of single-photon sources,” Proc. SPIE 9371, 93710D (2015).
[Crossref]

Sci. Rep. (1)

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity,” Sci. Rep. 5, 9619 (2015).
[Crossref] [PubMed]

Science (1)

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256(5053), 66–70 (1992).
[Crossref] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1985).

S. Takeuchi, “Taper optical fiber,” Japanese Patent No. 2010–211192 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Sketch of top and side views of calculation model. The inset is a cross section at the bottom of a groove. The solid and dotted lines indicate the grating structure and original surface of the nanofiber, respectively. (b) Geometry of FDTD simulation. Note that the number of grooves in this sketch is less than that in the actual simulated geometry.

Fig. 2
Fig. 2

(a) Calculated resonance spectra for x- and y-polarized modes (black and red lines, respectively). Electric field distributions |E| at the center of the fiber for (b) x- and (c) y-polarized modes. The black lines are sketches of the cavity structure.

Fig. 3
Fig. 3

Calculated photoluminescence spectra inside the nanofiber when a single dipole is placed at (a) positions A (black line) and C (red line) and (b) positions B (black, blue, and green lines) and D (red line). The dipole orientation of the black line, the red line and the green line is the radial, tangential, and longitudinal orientation, respectively. Spectra are normalized to the highest value. (c) Dipole positions A and B on the transverse side of the fiber. (d) Dipole positions C and D on the top side of the fiber.

Fig. 4
Fig. 4

Dependence of (a) Purcell factor, (b) coupling efficiency, and (c) power Pcouple coupled to the fundamental mode on the number of grating periods.

Fig. 5
Fig. 5

(a) Cross-sectional image of NFBC in the xz plane. The dipoles (solid red circles with arrows) were scanned along the z-axis at intervals of 20 nm. (b) Purcell factor Γ and (c) coupling efficiency η. Solid black dots and empty black triangles indicate when the dipole was located on the surface and at the center of the NFBC with 160 grating periods, respectively. Empty red diamonds indicate when the dipole was located on the surface of the NFBC with 80 grating periods.

Fig. 6
Fig. 6

(a) Cross-sectional image of NFBC in xz plane. The dipole (solid red circle with arrows) was moved along the x-axis at intervals of 20 nm. (b) Purcell factor Γ and (c) coupling efficiency η.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V eff = V ε( r ) | E( r ) | 2 d 3 r max[ ε( r ) | E( r ) | 2 ] ,

Metrics