Abstract

A direct-liquid-cooled side-pumped Nd:YAG multi-disk QCW laser resonator is presented, in which the oscillating laser propagates through multiple thin disks and cooling flow layers in Brewster angle. Twenty Nd:YAG thin disks side-pumped by LD arrays are directly cooled by flowing deuteroxide at the end surfaces. A laser output with the highest pulse energy of 17.04 J is obtained at the pulse width of 250 μs and repetition rate of 25 Hz, corresponding to an optical-optical efficiency of 34.1% and a slope efficiency of 44.5%. The maximum average output power of 7.48 kW is achieved at the repetition rate of 500 Hz. Due to thermal effects, the corresponding optical-optical efficiency decreases to 30%. Under the 12.5 kW pumping condition while not oscillating, the wavefront of a He-Ne probe passing through the gain module is as low as 0.256 μm (RMS) with the defocus and tetrafoil subtracted.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
3kW liquid–cooled elastically-supported Nd:YAG multi-slab CW laser resonator

Xing Fu, Peilin Li, Qiang Liu, and Mali Gong
Opt. Express 22(15) 18421-18432 (2014)

Kilowatt-level direct-‘refractive index matching liquid’-cooled Nd:YLF thin disk laser resonator

Zhibin Ye, Chong Liu, Bo Tu, Ke Wang, Qingsong Gao, Chun Tang, and Zhen Cai
Opt. Express 24(2) 1758-1772 (2016)

Numerical simulation of 30-kW class liquid-cooled Nd:YAG multi-slab resonator

Xing Fu, Qiang Liu, Peilin Li, Lei Huang, and Mali Gong
Opt. Express 23(14) 18458-18470 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [Crossref]
  2. R. Brockmann and D. Havrilla, “Disk laser: a new generation of industrial lasers,” Proc. SPIE 7193, 71931R (2009).
  3. P. Li, Q. Liu, X. Fu, and M. Gong, “Large-aperture end-pumped Nd:YAG thin-disk laser directly cooled by liquid,” Chin. Opt. Lett. 11(4), 041408 (2013).
    [Crossref]
  4. R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
    [Crossref]
  5. J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5), 549–558 (2006).
    [Crossref]
  6. H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
    [Crossref]
  7. P. Li, X. Fu, Q. Liu, and M. Gong, “Analysis of wavefront aberration induced by turbulent flow field in liquid convection-cooled disk laser,” J. Opt. Soc. Am. B 30(8), 2161–2167 (2013).
    [Crossref]
  8. V. Sazegari, M. R. Milani, and A. K. Jafari, “Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers,” Appl. Opt. 49(36), 6910–6916 (2010).
    [Crossref] [PubMed]
  9. A. Mandl and D. E. Klimek, “Textron’s J-HPSSL 100 kW ThinZag laser program” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper JThH2.
    [Crossref]
  10. M. D. Perry, P. S. Banks, J. Zweiback, and R. W. Schleicher, “Laser containing a distributed gain medium,” U.S.Patent 7,366,211 (April 29, 2008).
  11. “Gen 3 High Energy Laser Completes Beam Quality Evaluation,” http://www.ga-asi.com/gen-3-high-energy-laser-completes-beam-quality-evaluation .
  12. X. Fu, P. Li, Q. Liu, and M. Gong, “3kW liquid-cooled elastically-supported Nd:YAG multi-slab CW laser resonator,” Opt. Express 22(15), 18421–18432 (2014).
    [Crossref] [PubMed]
  13. X. Fu, Q. Liu, P. Li, L. Huang, and M. Gong, “Numerical simulation of 30-kW class liquid-cooled Nd:YAG multi-slab resonator,” Opt. Express 23(14), 18458–18470 (2015).
    [Crossref] [PubMed]
  14. Z. Ye, C. Liu, B. Tu, K. Wang, Q. Gao, C. Tang, and Z. Cai, “Kilowatt-level direct-‘refractive index matching liquid’-cooled Nd:YLF thin disk laser resonator,” Opt. Express 24(2), 1758–1772 (2016).
    [Crossref] [PubMed]
  15. W. Koechner, Solid-State Lasers Engineering (Springer, 2006).
  16. S. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, 1980).
  17. H. Su, Y. Wei, X. Wang, and C. Tang, “Modal instability in high power solid-state lasers with an unstable cavity,” Opt. Commun. 341(1), 37–46 (2015).
    [Crossref]

2016 (1)

2015 (2)

X. Fu, Q. Liu, P. Li, L. Huang, and M. Gong, “Numerical simulation of 30-kW class liquid-cooled Nd:YAG multi-slab resonator,” Opt. Express 23(14), 18458–18470 (2015).
[Crossref] [PubMed]

H. Su, Y. Wei, X. Wang, and C. Tang, “Modal instability in high power solid-state lasers with an unstable cavity,” Opt. Commun. 341(1), 37–46 (2015).
[Crossref]

2014 (2)

R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

X. Fu, P. Li, Q. Liu, and M. Gong, “3kW liquid-cooled elastically-supported Nd:YAG multi-slab CW laser resonator,” Opt. Express 22(15), 18421–18432 (2014).
[Crossref] [PubMed]

2013 (2)

2010 (1)

2009 (1)

R. Brockmann and D. Havrilla, “Disk laser: a new generation of industrial lasers,” Proc. SPIE 7193, 71931R (2009).

2007 (1)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

2006 (2)

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5), 549–558 (2006).
[Crossref]

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

Brockmann, R.

R. Brockmann and D. Havrilla, “Disk laser: a new generation of industrial lasers,” Proc. SPIE 7193, 71931R (2009).

Cai, Z.

Fu, X.

Fujita, H.

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

Gao, Q.

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Gong, M.

Havrilla, D.

R. Brockmann and D. Havrilla, “Disk laser: a new generation of industrial lasers,” Proc. SPIE 7193, 71931R (2009).

Huang, L.

Jafari, A. K.

Li, F.

R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Li, P.

Liu, C.

Liu, Q.

Milani, M. R.

Min, J. C.

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5), 549–558 (2006).
[Crossref]

Nakatsuka, M.

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

Nie, R.

R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Okada, H.

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

Peng, B.

R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Sazegari, V.

She, J.

R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Song, Y. Z.

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5), 549–558 (2006).
[Crossref]

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Su, H.

H. Su, Y. Wei, X. Wang, and C. Tang, “Modal instability in high power solid-state lasers with an unstable cavity,” Opt. Commun. 341(1), 37–46 (2015).
[Crossref]

Tang, C.

Tu, B.

Wang, J. R.

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5), 549–558 (2006).
[Crossref]

Wang, K.

Wang, X.

H. Su, Y. Wei, X. Wang, and C. Tang, “Modal instability in high power solid-state lasers with an unstable cavity,” Opt. Commun. 341(1), 37–46 (2015).
[Crossref]

Wei, Y.

H. Su, Y. Wei, X. Wang, and C. Tang, “Modal instability in high power solid-state lasers with an unstable cavity,” Opt. Commun. 341(1), 37–46 (2015).
[Crossref]

Ye, Z.

Yoshida, H.

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

Zhao, P.

R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Therm. Eng. (1)

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5), 549–558 (2006).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Opt. Commun. (2)

H. Su, Y. Wei, X. Wang, and C. Tang, “Modal instability in high power solid-state lasers with an unstable cavity,” Opt. Commun. 341(1), 37–46 (2015).
[Crossref]

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

Opt. Express (3)

Proc. SPIE (1)

R. Brockmann and D. Havrilla, “Disk laser: a new generation of industrial lasers,” Proc. SPIE 7193, 71931R (2009).

Other (5)

W. Koechner, Solid-State Lasers Engineering (Springer, 2006).

S. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, 1980).

A. Mandl and D. E. Klimek, “Textron’s J-HPSSL 100 kW ThinZag laser program” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper JThH2.
[Crossref]

M. D. Perry, P. S. Banks, J. Zweiback, and R. W. Schleicher, “Laser containing a distributed gain medium,” U.S.Patent 7,366,211 (April 29, 2008).

“Gen 3 High Energy Laser Completes Beam Quality Evaluation,” http://www.ga-asi.com/gen-3-high-energy-laser-completes-beam-quality-evaluation .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Configuration of direct-liquid-cooled side-pumped Nd:YAG multi-slab laser resonator: (a) overall setup; (b) oscillating laser; (c) pumping light. GM, gain module; LDS, laser diode stack; HR, high reflector; OC, output coupler.

Fig. 2
Fig. 2

Demonstration of interface loss: (a) interface loss as a function of offset angle, the inset is the interface loss as a function of the number of thin disks; (b) change of Brewster angle versus temperature rise at the interface.

Fig. 3
Fig. 3

Sketch map of the cooling flow: (a) structure of the cooling channel and flow field; (b) velocity distribution of the cross section at the entrance of cooling zone; (c) normalized RMS of velocity profile in cross section along the flowing direction.

Fig. 4
Fig. 4

Pumping density (average) and gain distribution of the GM: (a) side surface of the GM; (b) the plane 5 mm away from the side surface in the GM; (c) normalized gain distribution of one disk in the laser aperture in parallel with the end surfaces of the thin disk

Fig. 5
Fig. 5

Thermal calculation: (a) temperature distribution; (b) equivalent stress distribution.

Fig. 6
Fig. 6

Near-field profile of the laser output at Epump = 30 J and fpum = 25 Hz

Fig. 7
Fig. 7

Output energy versus pumping energy with different output coupling (RHR = 2 m).

Fig. 8
Fig. 8

Average output power and optical-optical efficiency as a function of pump frequency at the highest Epump of 49.9J, the inset is the output energy as a function of pump frequency.

Fig. 9
Fig. 9

Average output power as a function of the operating time at Epump = 49.9 J and fpump = 500 Hz, the inset is the waveform of a single pulse

Fig. 10
Fig. 10

Measured wavefront of a He-Ne probe passing through the GM at a pumping power of 12.5kW under the non-lasing condition: (a) original wavefront; (b) wavefront with the 3 major low-order terms subtracted; (c) coefficients of Legendre polynomial expansion.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Re= u 0 D h v

Metrics