Abstract

In the microwave domain, signal interference bandstop filters with high extinction and wide stopbands are achieved through destructive interference of two signals. Implementation of this filtering concept using RF photonics will lead to unique filters with high performance, enhanced tuning range and reconfigurability. Here we demonstrate an RF photonic signal interference filter, achieved through the combination of precise synthesis of stimulated Brillouin scattering (SBS) loss with advanced phase and amplitude tailoring of RF modulation sidebands. We achieve a square-shaped, 20-dB extinction RF photonic filter over a tunable bandwidth of up to 1 GHz with a central frequency tuning range of 16 GHz using a low SBS loss of ~3 dB. Wideband destructive interference in this novel filter leads to the decoupling of the filter suppression from its bandwidth and shape factor. This allows the creation of a filter with all-optimized qualities.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Independent manipulation of the phase and amplitude of optical sidebands in a highly-stable RF photonic filter

Shayan Shahnia, Mattia Pagani, Blair Morrison, Benjamin J. Eggleton, and David Marpaung
Opt. Express 23(18) 23278-23286 (2015)

Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity

David Marpaung, Blair Morrison, Mattia Pagani, Ravi Pant, Duk-Yong Choi, Barry Luther-Davies, Steve J. Madden, and Benjamin J. Eggleton
Optica 2(2) 76-83 (2015)

Microwave photonic signal processing

R. A. Minasian, E. H. W. Chan, and X. Yi
Opt. Express 21(19) 22918-22936 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. A. J. Seeds and K. J. Williams, “Microwave Photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [Crossref]
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  4. W. J. Chappell, E. J. Naglich, C. Maxey, and A. C. Guyette, “Putting the Radio in “Software-Defined Radio”: Hardware Developments for Adaptable RF Systems,” Proc. IEEE 102(3), 307–320 (2014).
    [Crossref]
  5. M. S. Rasras, D. M. Kun-Yii Tu, D. M. Gill, A. E. Young-Kai Chen, S. S. White, A. Patel, D. Pomerene, J. Carothers, M. Beattie, J. Beals, Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol. 27(12), 2105–2110 (2009).
    [Crossref]
  6. D. Zhang, X. Feng, X. Li, K. Cui, F. Liu, and Y. Huang, “Tunable and reconfigurable bandstop microwave photonic filter based on integrated microrings and mach-zehnder interferometer,” J. Lightwave Technol. 31(23), 3668–3675 (2013).
    [Crossref]
  7. J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5, 7 (2013).
  8. J. Ge, H. Feng, G. Scott, and M. P. Fok, “High-speed tunable microwave photonic notch filter based on phase modulator incorporated Lyot filter,” Opt. Lett. 40(1), 48–51 (2015).
    [Crossref] [PubMed]
  9. K. Divyabramham, M. K. Mandal, and S. Sanyal, “Sharp-rejection wideband bandstop filters,” IEEE Microw. Wirel. Compon. Lett. 18(10), 662–664 (2008).
    [Crossref]
  10. R. Gomez-Garcia and J. I. Alonso, “Design of sharp-rejection and low-loss wide-band planar filters using signal-interference techniques,” IEEE Microw. Wirel. Compon. Lett. 15(8), 530–532 (2005).
    [Crossref]
  11. M. Á. Sanchez-Soriano, G. Torregrosa-Penalva, and E. Bronchalo, “Compact Wideband Bandstop Filter With Four Transmission Zeros,” IEEE Microw. Wirel. Compon. Lett. 20(6), 313–315 (2010).
    [Crossref]
  12. D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76–83 (2015).
    [Crossref]
  13. D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, and B. J. Eggleton, “Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection,” Opt. Express 21(20), 23286–23294 (2013).
    [Crossref] [PubMed]
  14. D. Marpaung, B. Morrison, M. Pagani, R. Pant, and B. J. Eggleton, “Ultra-high suppression microwave photonic bandstop filters,” Chin. Sci. Bull. 59(22), 2684–2692 (2014).
    [Crossref]
  15. B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
    [Crossref]
  16. A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. Luther-Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
    [Crossref] [PubMed]
  17. W. Wei, L. Yi, Y. Jaouën, and W. Hu, “Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber,” Opt. Express 22(19), 23249–23260 (2014).
    [Crossref] [PubMed]
  18. M. Pagani, D. Marpaung, B. Morrison, and B. J. Eggleton, “Bandwidth Tunable, High Suppression RF Photonic Filter with Improved Insertion Loss,” in Cleo:2014 (Optical Society of America, 2014), pp. STu2G.7.
  19. I. Aryanfar, L. Kok-Sing, W.-Y. Chong, S. Wadi Harun, and H. Ahmad, “Add-Drop Filter Based on Microfiber Mach-Zehnder/Sagnac Interferometer,” IEEE J. Quantum Electron. 48(11), 1411–1414 (2012).
    [Crossref]
  20. X. Y. Zhang, C. H. Chan, Q. Xue, and B. J. Hu, “RF tunable bandstop filters with constant bandwidth based on a doublet configuration,” IEEE Trans. Ind. Electron. 59(2), 1257–1265 (2012).
    [Crossref]
  21. W. Li, C. Yang, L. Wang, Z. Yuan, J. Liu, M. Li, and N. Zhu, “Microwave photonic bandstop filter with wide tunability and adjustable bandwidth,” Opt. Express 23(26), 33579–33586 (2015).
    [Crossref] [PubMed]

2016 (1)

2015 (3)

2014 (3)

D. Marpaung, B. Morrison, M. Pagani, R. Pant, and B. J. Eggleton, “Ultra-high suppression microwave photonic bandstop filters,” Chin. Sci. Bull. 59(22), 2684–2692 (2014).
[Crossref]

W. J. Chappell, E. J. Naglich, C. Maxey, and A. C. Guyette, “Putting the Radio in “Software-Defined Radio”: Hardware Developments for Adaptable RF Systems,” Proc. IEEE 102(3), 307–320 (2014).
[Crossref]

W. Wei, L. Yi, Y. Jaouën, and W. Hu, “Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber,” Opt. Express 22(19), 23249–23260 (2014).
[Crossref] [PubMed]

2013 (4)

D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, and B. J. Eggleton, “Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection,” Opt. Express 21(20), 23286–23294 (2013).
[Crossref] [PubMed]

D. Zhang, X. Feng, X. Li, K. Cui, F. Liu, and Y. Huang, “Tunable and reconfigurable bandstop microwave photonic filter based on integrated microrings and mach-zehnder interferometer,” J. Lightwave Technol. 31(23), 3668–3675 (2013).
[Crossref]

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5, 7 (2013).

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

2012 (2)

I. Aryanfar, L. Kok-Sing, W.-Y. Chong, S. Wadi Harun, and H. Ahmad, “Add-Drop Filter Based on Microfiber Mach-Zehnder/Sagnac Interferometer,” IEEE J. Quantum Electron. 48(11), 1411–1414 (2012).
[Crossref]

X. Y. Zhang, C. H. Chan, Q. Xue, and B. J. Hu, “RF tunable bandstop filters with constant bandwidth based on a doublet configuration,” IEEE Trans. Ind. Electron. 59(2), 1257–1265 (2012).
[Crossref]

2010 (1)

M. Á. Sanchez-Soriano, G. Torregrosa-Penalva, and E. Bronchalo, “Compact Wideband Bandstop Filter With Four Transmission Zeros,” IEEE Microw. Wirel. Compon. Lett. 20(6), 313–315 (2010).
[Crossref]

2009 (2)

2008 (1)

K. Divyabramham, M. K. Mandal, and S. Sanyal, “Sharp-rejection wideband bandstop filters,” IEEE Microw. Wirel. Compon. Lett. 18(10), 662–664 (2008).
[Crossref]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (1)

2005 (1)

R. Gomez-Garcia and J. I. Alonso, “Design of sharp-rejection and low-loss wide-band planar filters using signal-interference techniques,” IEEE Microw. Wirel. Compon. Lett. 15(8), 530–532 (2005).
[Crossref]

Ahmad, H.

I. Aryanfar, L. Kok-Sing, W.-Y. Chong, S. Wadi Harun, and H. Ahmad, “Add-Drop Filter Based on Microfiber Mach-Zehnder/Sagnac Interferometer,” IEEE J. Quantum Electron. 48(11), 1411–1414 (2012).
[Crossref]

Alonso, J. I.

R. Gomez-Garcia and J. I. Alonso, “Design of sharp-rejection and low-loss wide-band planar filters using signal-interference techniques,” IEEE Microw. Wirel. Compon. Lett. 15(8), 530–532 (2005).
[Crossref]

Aryanfar, I.

Beals, J.

Beattie, M.

Bronchalo, E.

M. Á. Sanchez-Soriano, G. Torregrosa-Penalva, and E. Bronchalo, “Compact Wideband Bandstop Filter With Four Transmission Zeros,” IEEE Microw. Wirel. Compon. Lett. 20(6), 313–315 (2010).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Carothers, J.

Chan, C. H.

X. Y. Zhang, C. H. Chan, Q. Xue, and B. J. Hu, “RF tunable bandstop filters with constant bandwidth based on a doublet configuration,” IEEE Trans. Ind. Electron. 59(2), 1257–1265 (2012).
[Crossref]

Chappell, W. J.

W. J. Chappell, E. J. Naglich, C. Maxey, and A. C. Guyette, “Putting the Radio in “Software-Defined Radio”: Hardware Developments for Adaptable RF Systems,” Proc. IEEE 102(3), 307–320 (2014).
[Crossref]

Choi, D.-Y.

Chong, W.-Y.

I. Aryanfar, L. Kok-Sing, W.-Y. Chong, S. Wadi Harun, and H. Ahmad, “Add-Drop Filter Based on Microfiber Mach-Zehnder/Sagnac Interferometer,” IEEE J. Quantum Electron. 48(11), 1411–1414 (2012).
[Crossref]

Choudhary, A.

Cui, K.

Divyabramham, K.

K. Divyabramham, M. K. Mandal, and S. Sanyal, “Sharp-rejection wideband bandstop filters,” IEEE Microw. Wirel. Compon. Lett. 18(10), 662–664 (2008).
[Crossref]

Dong, J.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5, 7 (2013).

Eggleton, B. J.

Feng, H.

Feng, X.

Fok, M. P.

Gao, D.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5, 7 (2013).

Ge, J.

Gill, D. M.

Gomez-Garcia, R.

R. Gomez-Garcia and J. I. Alonso, “Design of sharp-rejection and low-loss wide-band planar filters using signal-interference techniques,” IEEE Microw. Wirel. Compon. Lett. 15(8), 530–532 (2005).
[Crossref]

Guyette, A. C.

W. J. Chappell, E. J. Naglich, C. Maxey, and A. C. Guyette, “Putting the Radio in “Software-Defined Radio”: Hardware Developments for Adaptable RF Systems,” Proc. IEEE 102(3), 307–320 (2014).
[Crossref]

Heideman, R.

Hoekman, M.

Hu, B. J.

X. Y. Zhang, C. H. Chan, Q. Xue, and B. J. Hu, “RF tunable bandstop filters with constant bandwidth based on a doublet configuration,” IEEE Trans. Ind. Electron. 59(2), 1257–1265 (2012).
[Crossref]

Hu, W.

Huang, Y.

Jaouën, Y.

Kimerling, L. C.

Kok-Sing, L.

I. Aryanfar, L. Kok-Sing, W.-Y. Chong, S. Wadi Harun, and H. Ahmad, “Add-Drop Filter Based on Microfiber Mach-Zehnder/Sagnac Interferometer,” IEEE J. Quantum Electron. 48(11), 1411–1414 (2012).
[Crossref]

Kun-Yii Tu, D. M.

Leinse, A.

Li, M.

Li, W.

Li, X.

Liu, F.

Liu, J.

Liu, L.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5, 7 (2013).

Luther-Davies, B.

Madden, S.

Madden, S. J.

Mandal, M. K.

K. Divyabramham, M. K. Mandal, and S. Sanyal, “Sharp-rejection wideband bandstop filters,” IEEE Microw. Wirel. Compon. Lett. 18(10), 662–664 (2008).
[Crossref]

Marpaung, D.

Maxey, C.

W. J. Chappell, E. J. Naglich, C. Maxey, and A. C. Guyette, “Putting the Radio in “Software-Defined Radio”: Hardware Developments for Adaptable RF Systems,” Proc. IEEE 102(3), 307–320 (2014).
[Crossref]

Michel,

Morrison, B.

Naglich, E. J.

W. J. Chappell, E. J. Naglich, C. Maxey, and A. C. Guyette, “Putting the Radio in “Software-Defined Radio”: Hardware Developments for Adaptable RF Systems,” Proc. IEEE 102(3), 307–320 (2014).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Pagani, M.

Pant, R.

Patel, A.

Pomerene, D.

Poulton, C. G.

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

Rasras, M. S.

Roeloffzen, C.

Sanchez-Soriano, M. Á.

M. Á. Sanchez-Soriano, G. Torregrosa-Penalva, and E. Bronchalo, “Compact Wideband Bandstop Filter With Four Transmission Zeros,” IEEE Microw. Wirel. Compon. Lett. 20(6), 313–315 (2010).
[Crossref]

Sanyal, S.

K. Divyabramham, M. K. Mandal, and S. Sanyal, “Sharp-rejection wideband bandstop filters,” IEEE Microw. Wirel. Compon. Lett. 18(10), 662–664 (2008).
[Crossref]

Scott, G.

Seeds, A. J.

Shahnia, S.

Torregrosa-Penalva, G.

M. Á. Sanchez-Soriano, G. Torregrosa-Penalva, and E. Bronchalo, “Compact Wideband Bandstop Filter With Four Transmission Zeros,” IEEE Microw. Wirel. Compon. Lett. 20(6), 313–315 (2010).
[Crossref]

Vu, K.

Wadi Harun, S.

I. Aryanfar, L. Kok-Sing, W.-Y. Chong, S. Wadi Harun, and H. Ahmad, “Add-Drop Filter Based on Microfiber Mach-Zehnder/Sagnac Interferometer,” IEEE J. Quantum Electron. 48(11), 1411–1414 (2012).
[Crossref]

Wang, L.

Wei, W.

White, S. S.

Williams, K. J.

Xue, Q.

X. Y. Zhang, C. H. Chan, Q. Xue, and B. J. Hu, “RF tunable bandstop filters with constant bandwidth based on a doublet configuration,” IEEE Trans. Ind. Electron. 59(2), 1257–1265 (2012).
[Crossref]

Yang, C.

Yang, T.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5, 7 (2013).

Yao, J.

Yi, L.

Young-Kai Chen, A. E.

Yu, Y.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5, 7 (2013).

Yuan, Z.

Zhang, D.

Zhang, X.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5, 7 (2013).

Zhang, X. Y.

X. Y. Zhang, C. H. Chan, Q. Xue, and B. J. Hu, “RF tunable bandstop filters with constant bandwidth based on a doublet configuration,” IEEE Trans. Ind. Electron. 59(2), 1257–1265 (2012).
[Crossref]

Zheng, A.

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5, 7 (2013).

Zhu, N.

Adv. Opt. Photonics (1)

B. J. Eggleton, C. G. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 5(4), 536–587 (2013).
[Crossref]

Chin. Sci. Bull. (1)

D. Marpaung, B. Morrison, M. Pagani, R. Pant, and B. J. Eggleton, “Ultra-high suppression microwave photonic bandstop filters,” Chin. Sci. Bull. 59(22), 2684–2692 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

I. Aryanfar, L. Kok-Sing, W.-Y. Chong, S. Wadi Harun, and H. Ahmad, “Add-Drop Filter Based on Microfiber Mach-Zehnder/Sagnac Interferometer,” IEEE J. Quantum Electron. 48(11), 1411–1414 (2012).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (3)

K. Divyabramham, M. K. Mandal, and S. Sanyal, “Sharp-rejection wideband bandstop filters,” IEEE Microw. Wirel. Compon. Lett. 18(10), 662–664 (2008).
[Crossref]

R. Gomez-Garcia and J. I. Alonso, “Design of sharp-rejection and low-loss wide-band planar filters using signal-interference techniques,” IEEE Microw. Wirel. Compon. Lett. 15(8), 530–532 (2005).
[Crossref]

M. Á. Sanchez-Soriano, G. Torregrosa-Penalva, and E. Bronchalo, “Compact Wideband Bandstop Filter With Four Transmission Zeros,” IEEE Microw. Wirel. Compon. Lett. 20(6), 313–315 (2010).
[Crossref]

IEEE Photonics J. (1)

J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photonics J. 5, 7 (2013).

IEEE Trans. Ind. Electron. (1)

X. Y. Zhang, C. H. Chan, Q. Xue, and B. J. Hu, “RF tunable bandstop filters with constant bandwidth based on a doublet configuration,” IEEE Trans. Ind. Electron. 59(2), 1257–1265 (2012).
[Crossref]

J. Lightwave Technol. (4)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

Proc. IEEE (1)

W. J. Chappell, E. J. Naglich, C. Maxey, and A. C. Guyette, “Putting the Radio in “Software-Defined Radio”: Hardware Developments for Adaptable RF Systems,” Proc. IEEE 102(3), 307–320 (2014).
[Crossref]

Other (1)

M. Pagani, D. Marpaung, B. Morrison, and B. J. Eggleton, “Bandwidth Tunable, High Suppression RF Photonic Filter with Improved Insertion Loss,” in Cleo:2014 (Optical Society of America, 2014), pp. STu2G.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Operating principle of MWP cancellation notch filters. (a) An optical carrier generated from a laser (LD) is modulated by a phase modulator resulting in upper and lower sidebands with unequal amplitudes that are out-of-phase by π. An optical loss resonance is used to attenuate a band of the lower sideband spectrum, making its amplitude equal to the corresponding band in the upper sideband. (b) Corresponding phase responses of the sidebands after using the optical loss resonance. (c) The mixing product measured at the photodetector (PD). Beating these out-of-phase sidebands and the carrier results in a notch response.

Fig. 2
Fig. 2

(a) The normalized SBS loss resonance (solid black curve) with the corresponding SBS phase response (solid red curve) and the lower sideband phase response (dashed red line) and amplitude (dashed black line), the modified phase of the lower sideband to compensate the phase difference applied by the SBS loss (dashed green line), and (b) the resulting microwave photonic filter responses before and after phase compensation indicated by the black and the red solid curves, respectively.

Fig. 3
Fig. 3

The simplified setup and principle of operation of the reconfigurable and square-shaped bandstop MWP filter based on the signal interference technique. (I) and (II) are the phase modulated signals of two optical carriers filtered using a demultiplexer. (III) is the tailored SBS pump operating at the frequency ωpn (where n is the number of the pump line) to achieve a broadened SBS profile. (IV) Amplitude matching and phase engineering of both sidebands to fulfil the cancellation condition. (V) Destructive interference of the sidebands with the corresponding carriers at the photodetector resulting in a bandstop response over the SBS profile.

Fig. 4
Fig. 4

(a) and (b) Normalized loss and gain resonances (solid black curve) with the corresponding SBS phase response (solid red curve) and the unprocessed sideband phase (dashed red line), and (c) the resulting MWP filter responses.

Fig. 5
Fig. 5

Schematic of the bandstop MWP filter employing two probe arms for phase management.

Fig. 6
Fig. 6

Profiles of a 300-MHz bandwidth tailored SBS loss and the unprocessed sideband (black). (a) Imprecise matching of the flat-bottom SBS response with the unprocessed sideband, (b) SBS loss profile precisely matches the unprocessed sideband, (c) the optimized response with precise amplitude matching and a rabbit-ear profile, and (d) the corresponding VNA traces depicting the filter responses.

Fig. 7
Fig. 7

(a) Bandwidth reconfigurability of the bandstop filters from 0.013 to 1 GHz; (b) the 3-dB bandwidth (circle) and the 10-dB bandwidth (triangle) as a function of the central frequency.

Tables (1)

Tables Icon

Table 1 Performance comparison of microwave filters

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E(t)= E 0 [ J 0 e j ω s t J 1 e j( ω s ω RF )t + J 1 e j( ω s + ω RF )t ]
[ E 1 (t) E 2 (t) ]= E 0 [ J 0 e j ω s1 t J 1 e j( ω s1 ω RF )t J 0 e j ω s2 t + J 1 e j( ω s2 + ω RF )t ]
[ E 1 (t) E 2 (t) ]= E 0 [ J 0 e j ω s1 t T(ω) J 1 e j( ω s1 ω RF )t A e j φ TDL t J 0 e j ω s2 t +A e j φ TDL t J 1 e j( ω s2 + ω RF )t ]
T(ω)= e g(ω) e jϕ(ω)
g(ω)=G Γ B 2 4Δ ω 2 + Γ B 2
ϕ(ω)=G Γ B Δω 4Δ ω 2 + Γ B 2
G= g 0 A eff P p (0) L eff

Metrics