Abstract

A stable high-power single-frequency laser at 1645 nm from a monolithic Er:YAG ceramic nonplanar ring oscillator (NPRO) was demonstrated. 10.7 W single-frequency laser output was obtained with a slope efficiency of 61.2% and an optical efficiency of 52.1% with respect to incident pump power. The laser always stably operated in single-frequency mode with the pump power increasing from threshold to maximum pump power. When the crystal’s set temperature changed from 17.2°C to 26.6°C, the Er:YAG ceramic NPRO had stable single-frequency laser output, and the widest continuous tuning range without mode-hoping was 4.5 GHz. The linewidth of the single-frequency laser was 5.75 kHz. The beam quality M2 factors were 1.23 and 1.24 in x and y directions, respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room temperature single longitudinal mode laser output at 1645 nm from a laser-diode pumped Er:YAG nonplanar ring oscillator

B. Q. Yao, X. Yu, X. L. Liu, X. M. Duan, Y. L. Ju, and Y. Z. Wang
Opt. Express 21(7) 8916-8921 (2013)

Resonantly pumped Q-switched Er:YAG ceramic laser at 1645 nm

Yong Wang, Ting Zhao, Deyuan Shen, Heyuan Zhu, Jian Zhang, and Dingyuan Tang
Opt. Express 22(20) 24004-24009 (2014)

Resonantly pumped monolithic nonplanar Ho:YAG ring laser with high-power single-frequency laser output at 2122 nm

Lei Wang, Chunqing Gao, Mingwei Gao, and Yan Li
Opt. Express 21(8) 9541-9546 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. N. Zhang, X. H. Chen, Q. P. Wang, X. Y. Zhang, J. Chang, L. Gao, H. B. Shen, Z. H. Cong, Z. J. Liu, X. T. Tao, and P. Li, “High efficiency Nd:YAG ceramic eye-safe laser operating at 1442.8 nm,” Opt. Lett. 38(16), 3075–3077 (2013).
    [Crossref] [PubMed]
  2. H. Yang, L. Zhang, D. W. Luo, X. B. Qiao, J. Zhang, T. Zhao, D. Y. Shen, and D. Y. Tang, “Optical properties of Ho:YAG and Ho:LuAG polycrystalline transparent ceramics,” Opt. Express 5(1), 142–146 (2015).
    [Crossref]
  3. S. Lee, J. T. Jin, D. S. Jang, B. H. Cha, S. Kwon, C. J. Kim, and H. S. Kim, “A diode-pumped Nd:YAG ceramic laser with a 540-W output power,” J. Korean Phys. Soc. 51(91), 372–376 (2007).
    [Crossref]
  4. Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
    [Crossref] [PubMed]
  5. A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
    [Crossref] [PubMed]
  6. J. L. Li, K. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33(22), 2686–2688 (2008).
    [Crossref] [PubMed]
  7. Y. Wang, D. Shen, H. Chen, J. Zhang, X. Qin, D. Tang, X. Yang, and T. Zhao, “Highly efficient Tm:YAG ceramic laser resonantly pumped at 1617 nm,” Opt. Lett. 36(23), 4485–4487 (2011).
    [Crossref] [PubMed]
  8. L. Wang, C. Gao, M. Gao, Y. Li, F. Yue, J. Zhang, and D. Tang, “A resonantly-pumped tunable Q-switched Ho:YAG ceramic laser with diffraction-limit beam quality,” Opt. Express 22(1), 254–261 (2014).
    [Crossref] [PubMed]
  9. R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulsewidth Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
    [Crossref]
  10. C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
    [Crossref]
  11. A. Aubourg, F. Balembois, and P. Georges, “Comment on ‘Dual-wavelength Q-switched Er:YAG laser around 1.6 μm for methane differential absorption lidar’,” Laser Phys. Lett. 11(4), 048001 (2014).
    [Crossref]
  12. N. Ter-Gabrielyan, L. D. Merkle, E. R. Kupp, G. L. Messing, and M. Dubinskii, “Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm,” Opt. Lett. 35(7), 922–924 (2010).
    [Crossref] [PubMed]
  13. C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
    [Crossref] [PubMed]
  14. Y. Wang, T. Zhao, D. Shen, H. Zhu, J. Zhang, and D. Tang, “Resonantly pumped Q-switched Er:YAG ceramic laser at 1645 nm,” Opt. Express 22(20), 24004–24009 (2014).
    [Crossref] [PubMed]
  15. D. W. Chen, P. M. Belden, T. S. Rose, and S. M. Beck, “Narrowband Er:YAG nonplanar ring oscillator at 1645 nm,” Opt. Lett. 36(7), 1197–1199 (2011).
    [PubMed]
  16. L. Zhu, C. Gao, R. Wang, M. Gao, Y. Zheng, and Z. Wang, “Resonantly pumped 1.645 μm single longitudinal mode Er:YAG laser with intracavity etalons,” Appl. Opt. 51(10), 1616–1618 (2012).
    [Crossref] [PubMed]
  17. L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674–677 (2012).
    [Crossref]
  18. C. Gao, L. Zhu, R. Wang, M. Gao, Y. Zheng, and L. Wang, “6.1 W single frequency laser output at 1645 nm from a resonantly pumped Er:YAG nonplanar ring oscillator,” Opt. Lett. 37(11), 1859–1861 (2012).
    [Crossref] [PubMed]
  19. B. Q. Yao, X. Yu, X. L. Liu, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Room temperature single longitudinal mode laser output at 1645 nm from a laser-diode pumped Er:YAG nonplanar ring oscillator,” Opt. Express 21(7), 8916–8921 (2013).
    [Crossref] [PubMed]
  20. Y. Zheng, C. Gao, R. Wang, M. Gao, and Q. Ye, “Single frequency 1645 nm Er:YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode,” Opt. Lett. 38(5), 784–786 (2013).
    [Crossref] [PubMed]
  21. R. Wang, C. Q. Gao, Y. Zheng, M. W. Gao, and Q. Ye, “A resonantly pumped 1645 nm Er:YAG nonplanar ring oscillator with 10.5 W single frequency output,” IEEE Photonics Technol. Lett. 25(10), 955–957 (2013).
    [Crossref]
  22. I. Freitag, A. Tiinnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115(5-6), 511–515 (1995).
    [Crossref]
  23. P. Burdack, T. Fox, M. Bode, and I. Freitag, “1 W of stable single-frequency output at 1.03 mum from a novel, monolithic, non-planar Yb:YAG ring laser operating at room temperature,” Opt. Express 14(10), 4363–4367 (2006).
    [Crossref] [PubMed]
  24. C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 microm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34(19), 3029–3031 (2009).
    [Crossref] [PubMed]
  25. L. Wang, C. Gao, M. Gao, and Y. Li, “Resonantly pumped monolithic nonplanar Ho:YAG ring laser with high-power single-frequency laser output at 2122 nm,” Opt. Express 21(8), 9541–9546 (2013).
    [Crossref] [PubMed]
  26. L. Harris, D. Ottaway, and P. J. Veitch, “The Verdet constant of Er-doped crystalline YAG and tellurite glass at 1645 nm,” Appl. Phys. B 106(2), 429–433 (2012).
    [Crossref]
  27. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10(2), 65–67 (1985).
    [Crossref] [PubMed]
  28. J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, “Influence of energy-transfer-upconversion on threshold pump power in quasi-three-level solid-state lasers,” Opt. Express 17(14), 11935–11943 (2009).
    [Crossref] [PubMed]

2015 (1)

H. Yang, L. Zhang, D. W. Luo, X. B. Qiao, J. Zhang, T. Zhao, D. Y. Shen, and D. Y. Tang, “Optical properties of Ho:YAG and Ho:LuAG polycrystalline transparent ceramics,” Opt. Express 5(1), 142–146 (2015).
[Crossref]

2014 (3)

2013 (5)

2012 (4)

L. Harris, D. Ottaway, and P. J. Veitch, “The Verdet constant of Er-doped crystalline YAG and tellurite glass at 1645 nm,” Appl. Phys. B 106(2), 429–433 (2012).
[Crossref]

L. Zhu, C. Gao, R. Wang, M. Gao, Y. Zheng, and Z. Wang, “Resonantly pumped 1.645 μm single longitudinal mode Er:YAG laser with intracavity etalons,” Appl. Opt. 51(10), 1616–1618 (2012).
[Crossref] [PubMed]

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674–677 (2012).
[Crossref]

C. Gao, L. Zhu, R. Wang, M. Gao, Y. Zheng, and L. Wang, “6.1 W single frequency laser output at 1645 nm from a resonantly pumped Er:YAG nonplanar ring oscillator,” Opt. Lett. 37(11), 1859–1861 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (1)

2009 (4)

2008 (1)

2007 (2)

S. Lee, J. T. Jin, D. S. Jang, B. H. Cha, S. Kwon, C. J. Kim, and H. S. Kim, “A diode-pumped Nd:YAG ceramic laser with a 540-W output power,” J. Korean Phys. Soc. 51(91), 372–376 (2007).
[Crossref]

R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulsewidth Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
[Crossref]

2006 (1)

1995 (1)

I. Freitag, A. Tiinnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115(5-6), 511–515 (1995).
[Crossref]

1985 (1)

Alderighi, D.

Amediek, A.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
[Crossref]

Aubourg, A.

A. Aubourg, F. Balembois, and P. Georges, “Comment on ‘Dual-wavelength Q-switched Er:YAG laser around 1.6 μm for methane differential absorption lidar’,” Laser Phys. Lett. 11(4), 048001 (2014).
[Crossref]

Balembois, F.

A. Aubourg, F. Balembois, and P. Georges, “Comment on ‘Dual-wavelength Q-switched Er:YAG laser around 1.6 μm for methane differential absorption lidar’,” Laser Phys. Lett. 11(4), 048001 (2014).
[Crossref]

Beck, S. M.

Belden, P. M.

Bode, M.

Burdack, P.

Byer, R. L.

Cha, B. H.

S. Lee, J. T. Jin, D. S. Jang, B. H. Cha, S. Kwon, C. J. Kim, and H. S. Kim, “A diode-pumped Nd:YAG ceramic laser with a 540-W output power,” J. Korean Phys. Soc. 51(91), 372–376 (2007).
[Crossref]

Chang, J.

Chen, D. W.

Chen, H.

Chen, X. H.

Clarkson, W. A.

Cong, Z. H.

Duan, X. M.

Dubinskii, M.

Ehret, G.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
[Crossref]

Fix, A.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
[Crossref]

Fox, T.

Freitag, I.

P. Burdack, T. Fox, M. Bode, and I. Freitag, “1 W of stable single-frequency output at 1.03 mum from a novel, monolithic, non-planar Yb:YAG ring laser operating at room temperature,” Opt. Express 14(10), 4363–4367 (2006).
[Crossref] [PubMed]

I. Freitag, A. Tiinnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115(5-6), 511–515 (1995).
[Crossref]

Gao, C.

Gao, C. Q.

R. Wang, C. Q. Gao, Y. Zheng, M. W. Gao, and Q. Ye, “A resonantly pumped 1645 nm Er:YAG nonplanar ring oscillator with 10.5 W single frequency output,” IEEE Photonics Technol. Lett. 25(10), 955–957 (2013).
[Crossref]

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674–677 (2012).
[Crossref]

Gao, L.

Gao, M.

Gao, M. W.

R. Wang, C. Q. Gao, Y. Zheng, M. W. Gao, and Q. Ye, “A resonantly pumped 1645 nm Er:YAG nonplanar ring oscillator with 10.5 W single frequency output,” IEEE Photonics Technol. Lett. 25(10), 955–957 (2013).
[Crossref]

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674–677 (2012).
[Crossref]

Garvin, C. G.

R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulsewidth Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
[Crossref]

Georges, P.

A. Aubourg, F. Balembois, and P. Georges, “Comment on ‘Dual-wavelength Q-switched Er:YAG laser around 1.6 μm for methane differential absorption lidar’,” Laser Phys. Lett. 11(4), 048001 (2014).
[Crossref]

Hao, Q.

Harris, L.

L. Harris, D. Ottaway, and P. J. Veitch, “The Verdet constant of Er-doped crystalline YAG and tellurite glass at 1645 nm,” Appl. Phys. B 106(2), 429–433 (2012).
[Crossref]

Hartman, R.

R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulsewidth Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
[Crossref]

Henderson, S. W.

R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulsewidth Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
[Crossref]

Jang, D. S.

S. Lee, J. T. Jin, D. S. Jang, B. H. Cha, S. Kwon, C. J. Kim, and H. S. Kim, “A diode-pumped Nd:YAG ceramic laser with a 540-W output power,” J. Korean Phys. Soc. 51(91), 372–376 (2007).
[Crossref]

Jiang, B.

Jin, J. T.

S. Lee, J. T. Jin, D. S. Jang, B. H. Cha, S. Kwon, C. J. Kim, and H. S. Kim, “A diode-pumped Nd:YAG ceramic laser with a 540-W output power,” J. Korean Phys. Soc. 51(91), 372–376 (2007).
[Crossref]

Ju, Y. L.

Kane, T. J.

Kiemle, C.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
[Crossref]

Kim, C. J.

S. Lee, J. T. Jin, D. S. Jang, B. H. Cha, S. Kwon, C. J. Kim, and H. S. Kim, “A diode-pumped Nd:YAG ceramic laser with a 540-W output power,” J. Korean Phys. Soc. 51(91), 372–376 (2007).
[Crossref]

Kim, H. S.

S. Lee, J. T. Jin, D. S. Jang, B. H. Cha, S. Kwon, C. J. Kim, and H. S. Kim, “A diode-pumped Nd:YAG ceramic laser with a 540-W output power,” J. Korean Phys. Soc. 51(91), 372–376 (2007).
[Crossref]

Kim, J. W.

Kupp, E. R.

Kwon, S.

S. Lee, J. T. Jin, D. S. Jang, B. H. Cha, S. Kwon, C. J. Kim, and H. S. Kim, “A diode-pumped Nd:YAG ceramic laser with a 540-W output power,” J. Korean Phys. Soc. 51(91), 372–376 (2007).
[Crossref]

Lee, S.

S. Lee, J. T. Jin, D. S. Jang, B. H. Cha, S. Kwon, C. J. Kim, and H. S. Kim, “A diode-pumped Nd:YAG ceramic laser with a 540-W output power,” J. Korean Phys. Soc. 51(91), 372–376 (2007).
[Crossref]

Li, J. L.

Li, P.

Li, W.

Li, Y.

Lin, Z.

Liu, X. L.

Liu, Z. J.

Luo, D. W.

H. Yang, L. Zhang, D. W. Luo, X. B. Qiao, J. Zhang, T. Zhao, D. Y. Shen, and D. Y. Tang, “Optical properties of Ho:YAG and Ho:LuAG polycrystalline transparent ceramics,” Opt. Express 5(1), 142–146 (2015).
[Crossref]

Mackenzie, J. I.

Merkle, L. D.

Messing, G. L.

Musha, M.

Ottaway, D.

L. Harris, D. Ottaway, and P. J. Veitch, “The Verdet constant of Er-doped crystalline YAG and tellurite glass at 1645 nm,” Appl. Phys. B 106(2), 429–433 (2012).
[Crossref]

Pan, H.

Pan, Y.

Pirri, A.

Qian, L. J.

Qiao, X. B.

H. Yang, L. Zhang, D. W. Luo, X. B. Qiao, J. Zhang, T. Zhao, D. Y. Shen, and D. Y. Tang, “Optical properties of Ho:YAG and Ho:LuAG polycrystalline transparent ceramics,” Opt. Express 5(1), 142–146 (2015).
[Crossref]

Qin, X.

Qin, X. P.

Quatrevalet, M.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
[Crossref]

Rose, T. S.

Schneider, E. A.

R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulsewidth Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
[Crossref]

Shen, D.

Shen, D. Y.

H. Yang, L. Zhang, D. W. Luo, X. B. Qiao, J. Zhang, T. Zhao, D. Y. Shen, and D. Y. Tang, “Optical properties of Ho:YAG and Ho:LuAG polycrystalline transparent ceramics,” Opt. Express 5(1), 142–146 (2015).
[Crossref]

C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
[Crossref] [PubMed]

Shen, H. B.

Shirakawa, A.

Stoneman, R. C.

R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulsewidth Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
[Crossref]

Tang, D.

Tang, D. Y.

H. Yang, L. Zhang, D. W. Luo, X. B. Qiao, J. Zhang, T. Zhao, D. Y. Shen, and D. Y. Tang, “Optical properties of Ho:YAG and Ho:LuAG polycrystalline transparent ceramics,” Opt. Express 5(1), 142–146 (2015).
[Crossref]

C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
[Crossref] [PubMed]

Tao, X. T.

Ter-Gabrielyan, N.

Tiinnermann, A.

I. Freitag, A. Tiinnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115(5-6), 511–515 (1995).
[Crossref]

Toci, G.

Ueda, K.

Vannini, M.

Veitch, P. J.

L. Harris, D. Ottaway, and P. J. Veitch, “The Verdet constant of Er-doped crystalline YAG and tellurite glass at 1645 nm,” Appl. Phys. B 106(2), 429–433 (2012).
[Crossref]

Wang, L.

Wang, Q. P.

Wang, R.

Wang, Y.

Wang, Y. Z.

Wang, Z.

Welling, H.

I. Freitag, A. Tiinnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115(5-6), 511–515 (1995).
[Crossref]

Wirth, M.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
[Crossref]

Yang, H.

H. Yang, L. Zhang, D. W. Luo, X. B. Qiao, J. Zhang, T. Zhao, D. Y. Shen, and D. Y. Tang, “Optical properties of Ho:YAG and Ho:LuAG polycrystalline transparent ceramics,” Opt. Express 5(1), 142–146 (2015).
[Crossref]

Yang, X.

Yang, X. F.

Yao, B. Q.

Ye, Q.

Y. Zheng, C. Gao, R. Wang, M. Gao, and Q. Ye, “Single frequency 1645 nm Er:YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode,” Opt. Lett. 38(5), 784–786 (2013).
[Crossref] [PubMed]

R. Wang, C. Q. Gao, Y. Zheng, M. W. Gao, and Q. Ye, “A resonantly pumped 1645 nm Er:YAG nonplanar ring oscillator with 10.5 W single frequency output,” IEEE Photonics Technol. Lett. 25(10), 955–957 (2013).
[Crossref]

Yu, X.

Yue, F.

Zeng, H.

Zhang, C.

Zhang, H. N.

Zhang, J.

Zhang, L.

H. Yang, L. Zhang, D. W. Luo, X. B. Qiao, J. Zhang, T. Zhao, D. Y. Shen, and D. Y. Tang, “Optical properties of Ho:YAG and Ho:LuAG polycrystalline transparent ceramics,” Opt. Express 5(1), 142–146 (2015).
[Crossref]

Zhang, X.

Zhang, X. Y.

Zhang, Y.

Zhao, T.

Zheng, Y.

Zhong, L. X.

Zhu, H.

Zhu, L.

Zhu, L. N.

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674–677 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

L. Harris, D. Ottaway, and P. J. Veitch, “The Verdet constant of Er-doped crystalline YAG and tellurite glass at 1645 nm,” Appl. Phys. B 106(2), 429–433 (2012).
[Crossref]

Atmos. Meas. Tech. (1)

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. Wang, C. Q. Gao, Y. Zheng, M. W. Gao, and Q. Ye, “A resonantly pumped 1645 nm Er:YAG nonplanar ring oscillator with 10.5 W single frequency output,” IEEE Photonics Technol. Lett. 25(10), 955–957 (2013).
[Crossref]

J. Korean Phys. Soc. (1)

S. Lee, J. T. Jin, D. S. Jang, B. H. Cha, S. Kwon, C. J. Kim, and H. S. Kim, “A diode-pumped Nd:YAG ceramic laser with a 540-W output power,” J. Korean Phys. Soc. 51(91), 372–376 (2007).
[Crossref]

Laser Phys. Lett. (2)

A. Aubourg, F. Balembois, and P. Georges, “Comment on ‘Dual-wavelength Q-switched Er:YAG laser around 1.6 μm for methane differential absorption lidar’,” Laser Phys. Lett. 11(4), 048001 (2014).
[Crossref]

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674–677 (2012).
[Crossref]

Opt. Commun. (1)

I. Freitag, A. Tiinnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115(5-6), 511–515 (1995).
[Crossref]

Opt. Express (9)

P. Burdack, T. Fox, M. Bode, and I. Freitag, “1 W of stable single-frequency output at 1.03 mum from a novel, monolithic, non-planar Yb:YAG ring laser operating at room temperature,” Opt. Express 14(10), 4363–4367 (2006).
[Crossref] [PubMed]

J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, “Influence of energy-transfer-upconversion on threshold pump power in quasi-three-level solid-state lasers,” Opt. Express 17(14), 11935–11943 (2009).
[Crossref] [PubMed]

Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
[Crossref] [PubMed]

A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
[Crossref] [PubMed]

B. Q. Yao, X. Yu, X. L. Liu, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Room temperature single longitudinal mode laser output at 1645 nm from a laser-diode pumped Er:YAG nonplanar ring oscillator,” Opt. Express 21(7), 8916–8921 (2013).
[Crossref] [PubMed]

L. Wang, C. Gao, M. Gao, and Y. Li, “Resonantly pumped monolithic nonplanar Ho:YAG ring laser with high-power single-frequency laser output at 2122 nm,” Opt. Express 21(8), 9541–9546 (2013).
[Crossref] [PubMed]

L. Wang, C. Gao, M. Gao, Y. Li, F. Yue, J. Zhang, and D. Tang, “A resonantly-pumped tunable Q-switched Ho:YAG ceramic laser with diffraction-limit beam quality,” Opt. Express 22(1), 254–261 (2014).
[Crossref] [PubMed]

Y. Wang, T. Zhao, D. Shen, H. Zhu, J. Zhang, and D. Tang, “Resonantly pumped Q-switched Er:YAG ceramic laser at 1645 nm,” Opt. Express 22(20), 24004–24009 (2014).
[Crossref] [PubMed]

H. Yang, L. Zhang, D. W. Luo, X. B. Qiao, J. Zhang, T. Zhao, D. Y. Shen, and D. Y. Tang, “Optical properties of Ho:YAG and Ho:LuAG polycrystalline transparent ceramics,” Opt. Express 5(1), 142–146 (2015).
[Crossref]

Opt. Lett. (10)

H. N. Zhang, X. H. Chen, Q. P. Wang, X. Y. Zhang, J. Chang, L. Gao, H. B. Shen, Z. H. Cong, Z. J. Liu, X. T. Tao, and P. Li, “High efficiency Nd:YAG ceramic eye-safe laser operating at 1442.8 nm,” Opt. Lett. 38(16), 3075–3077 (2013).
[Crossref] [PubMed]

C. Gao, L. Zhu, R. Wang, M. Gao, Y. Zheng, and L. Wang, “6.1 W single frequency laser output at 1645 nm from a resonantly pumped Er:YAG nonplanar ring oscillator,” Opt. Lett. 37(11), 1859–1861 (2012).
[Crossref] [PubMed]

Y. Zheng, C. Gao, R. Wang, M. Gao, and Q. Ye, “Single frequency 1645 nm Er:YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode,” Opt. Lett. 38(5), 784–786 (2013).
[Crossref] [PubMed]

N. Ter-Gabrielyan, L. D. Merkle, E. R. Kupp, G. L. Messing, and M. Dubinskii, “Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm,” Opt. Lett. 35(7), 922–924 (2010).
[Crossref] [PubMed]

D. W. Chen, P. M. Belden, T. S. Rose, and S. M. Beck, “Narrowband Er:YAG nonplanar ring oscillator at 1645 nm,” Opt. Lett. 36(7), 1197–1199 (2011).
[PubMed]

Y. Wang, D. Shen, H. Chen, J. Zhang, X. Qin, D. Tang, X. Yang, and T. Zhao, “Highly efficient Tm:YAG ceramic laser resonantly pumped at 1617 nm,” Opt. Lett. 36(23), 4485–4487 (2011).
[Crossref] [PubMed]

C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
[Crossref] [PubMed]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 microm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34(19), 3029–3031 (2009).
[Crossref] [PubMed]

J. L. Li, K. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33(22), 2686–2688 (2008).
[Crossref] [PubMed]

T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10(2), 65–67 (1985).
[Crossref] [PubMed]

Proc. SPIE (1)

R. C. Stoneman, R. Hartman, E. A. Schneider, C. G. Garvin, and S. W. Henderson, “Eyesafe diffraction-limited single-frequency 1 ns pulsewidth Er:YAG laser transmitter,” Proc. SPIE 6552, 65520H (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of Er:YAG ceramic NPRO laser.
Fig. 2
Fig. 2 The output power and power stability of single-frequency Er:YAG ceramic NPRO laser. The solid squares denote output powers and the dash line is the linear fit of the output power as a function of the incident pump power. The solid line is the maximum single-frequency output power measured in 40 min. The inset is the FPI spectrum of Er:YAG ceramic NPRO laser.
Fig. 3
Fig. 3 The wavelength and the wavelength stability of the single-frequency Er:YAG ceramic NPRO laser.
Fig. 4
Fig. 4 The wavelengths at different set temperatures of Er:YAG ceramic NPRO .
Fig. 5
Fig. 5 Experimental setup for Er:YAG ceramic NPRO laser delayed self-heterodyne linewidth measurement.
Fig. 6
Fig. 6 Delayed self-heterodyne signal recorded by an RF spectral analyzer at maximum power.
Fig. 7
Fig. 7 Beam propagation factor of the single-frequency Er:YAG ceramic NPRO laser. The inserted picture is the two-dimensional beam profiles of the laser beam.

Metrics