Abstract

It is important to economically and non-destructively analyze three-dimensional (3-D) shapes of nanometer to micrometer scale objects with sub-nanometer measurement resolution for emerging high-volume nanomanufacturing, especially for process control. High-throughput through-focus scanning optical microscopy (TSOM) demonstrates promise for such applications. TSOM uses a conventional optical microscope for 3-D shape metrology by making use of the complete set of through-focus, four-dimensional optical data. However, a systematic study showing the effect of various parameters on the TSOM method is lacking. Here we present the optimization of the basic parameters such as illumination numerical aperture (NA), collection NA, focus step height, digital camera pixel size, illumination polarization, and illumination wavelength to achieve peak performance of the TSOM method.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Through-focus scanning optical microscopy with the Fourier modal method

Shin-woong Park, Gyunam Park, Youngbaek Kim, Joong Hwee Cho, Junho Lee, and Hwi Kim
Opt. Express 26(9) 11649-11657 (2018)

Noise analysis for through-focus scanning optical microscopy

Ravikiran Attota
Opt. Lett. 41(4) 745-748 (2016)

Fidelity test for through-focus or volumetric type of optical imaging methods

Ravi Kiran Attota
Opt. Express 26(15) 19100-19114 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. X. Zhang, H. Zhou, Z. H. Ge, A. Vaid, D. Konduparthi, C. Osorio, S. Ventola, R. Meir, O. Shoval, R. Kris, O. Adan, and M. Bar-Zvi, “Addressing FinFET metrology challenges in 1x node using tilt-beam critical dimension scanning electron microscope,” J. Micro-Nanolith Mem. 13(4), 041407 (2014).
    [Crossref]
  2. X. X. Zhang, P. Snow, A. Vaid, E. Solecky, H. Zhou, Z. H. Ge, S. Yasharzade, O. Shoval, O. Adan, I. Schwarzband, and M. Bar-Zvi, “Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging,” Proc. SPIE 9424, 94240G (2015).
    [Crossref]
  3. H. Schroettner, M. Schmied, and S. Scherer, “Comparison of 3D surface reconstruction data from certified depth standards obtained by SEM and an infinite focus measurement machine (IFM),” Mikrochim. Acta 155(1-2), 279–284 (2006).
    [Crossref]
  4. C. Wang, R. L. Jones, E. K. Lin, W.-L. Wu, and J. Leu, “Small angle x-ray scattering measurements of lithographic patterns with sidewall roughness from vertical standing waves,” Appl. Phys. Lett. 90(19), 193122 (2007).
    [Crossref]
  5. T. M. Bao, L. Mininni, and D. Dawson, “Improving sidewall profile metrology with enhanced 3D-AFM,” Lithography Asia 2008, 7140 (2008).
  6. A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008).
    [Crossref] [PubMed]
  7. D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236(1), 35–43 (2009).
    [Crossref] [PubMed]
  8. V. M. J. I. Cuijpers, X. F. Walboomers, and J. A. Jansen, “Scanning electron microscopy stereoimaging for three-dimensional visualization and analysis of cells in tissue-engineered constructs: technical note,” Tissue Eng. Part C Methods 17(6), 663–668 (2011).
    [Crossref] [PubMed]
  9. W. Häßler-Grohne, D. Huser, K. P. Johnsen, C. G. Frase, and H. Bosse, “Current limitations of SEM and AFM metrology for the characterization of 3D nanostructures,” Meas. Sci. Technol. 22(9), 094003 (2011).
    [Crossref]
  10. J. A. Kramar, R. Dixson, and N. G. Orji, “Scanning probe microscope dimensional metrology at NIST,” Meas. Sci. Technol. 22(2), 024001 (2011).
    [Crossref]
  11. N. G. Orji, R. G. Dixson, A. E. Vladar, and M. T. Postek, “Strategies for nanoscale contour metrology using critical dimension atomic force microscopy,” Proc. SPIE 8105, 810505 (2011).
    [Crossref]
  12. J. Carrero and G. Percin, “Accurate optical CD profiler based on specialized finite element method,” Proc. SPIE 8324, 83240P (2012).
    [Crossref]
  13. G. L. Dai, W. Hassler-Grohne, D. Huser, H. Wolff, J. Fluegge, and H. Bosse, “New developments at Physikalisch Technische Bundesanstalt in three-dimensional atomic force microscopy with tapping and torsion atomic force microscopy mode and vector approach probing strategy,” J. Micro-Nanolith Mem. 11(1), 011004 (2012).
    [Crossref]
  14. J. L. Di, J. L. Zhao, and A. Asundi, “Compact digital holoscope with dual wavelength,” Information Optics and Optical Data Storage Ii 8559, 855908 (2012).
    [Crossref]
  15. Y. Huang, Q. H. Han, Y. Q. Sui, C. J. Xu, X. Y. Meng, C. W. Li, and S. Ni, “OCD Metrology Evaluation of p-MOS silicon recess with three dimensional design pattern,” ECS Trans. 44, 1111–1116 (2012).
  16. B. G. Kopek, G. Shtengel, C. S. Xu, D. A. Clayton, and H. F. Hess, “Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes,” Proc. Natl. Acad. Sci. U.S.A. 109(16), 6136–6141 (2012).
    [Crossref] [PubMed]
  17. N. G. Orji, R. G. Dixson, A. E. Vladar, B. Ming, and M. T. Postek, “Contour metrology using critical dimension atomic force microscopy,” Proc. SPIE 8324, 83240U (2012).
    [Crossref]
  18. A. E. Vladar, P. Cizmar, J. S. Villarrubia, and M. T. Postek, “Can we get 3D CD metrology right?” Proc. SPIE 8324, 832402 (2012).
    [Crossref]
  19. H. Chouaib and Q. Zhao, “Nanoscale optical critical dimension measurement of a contact hole using deep ultraviolet spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 31(1), 011803 (2013).
    [Crossref]
  20. J. Li, O. Kritsun, P. Dasari, C. Volkman, T. Wallow, and J. T. Hu, “Evaluating scatterometry 3D capabilities for EUV,” Proc. SPIE 8681, 86810S (2013).
    [Crossref]
  21. J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, and F. Goasmat, “Fourier domain optical tool normalization for quantitative parametric image reconstruction,” Appl. Opt. 52(26), 6512–6522 (2013).
    [Crossref] [PubMed]
  22. D. F. Sunday, M. R. Hammond, C. Q. Wang, W. L. Wu, R. J. Kline, and G. E. Stein, “Three-dimensional x-ray metrology for block copolymer lithography line-space patterns,” J. Micro-Nanolith Mem. 12(3), 031103 (2013).
    [Crossref]
  23. A. Yamaguchi, T. Ohashi, T. Kawasaki, O. Inoue, and H. Kawada, “Three-dimensional profile extraction from CD-SEM image and top/bottom CD measurement by line-edge roughness analysis,” Proc. SPIE 8681, 86812Z (2013).
    [Crossref]
  24. R. Chao, K. K. Kohli, Y. L. Zhang, A. Madan, G. R. Muthinti, A. J. Hong, D. Conklin, J. Holt, and T. C. Bailey, “Multitechnique metrology methods for evaluating pitch walking in 14 nm and beyond FinFETs,” J. Micro-Nanolith. Mem. 13, 041411 (2014).
  25. H. X. Guo, H. Itoh, C. M. Wang, H. Zhang, and D. Fujita, “Focal depth measurement of scanning helium ion microscope,” Appl. Phys. Lett. 105(2), 023105 (2014).
    [Crossref]
  26. Y. S. Ku, “Spectral reflectometry for metrology of three-dimensional through-silicon vias,” J. Micro-Nanolith. Mem. 13, 011209 (2014).
  27. R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladar, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
    [Crossref]
  28. A. Vaid, C. Osorio, J. Tsai, C. Bozdog, M. Sendelbach, E. Grubner, R. Koret, and S. Wolfling, “Hybrid metrology universal engine: co-optimization,” Proc. SPIE 9050, 905009 (2014).
    [Crossref]
  29. A. E. Vladar, J. S. Villarrubia, J. Chawla, B. Ming, J. R. Kline, S. List, and M. T. Postek, “10 nm three-dimensional CD-SEM metrology,” Proc. SPIE 9050, 90500A (2014).
    [Crossref]
  30. R. Attota, R. M. Silver, M. R. Bishop, and R. G. Dixson, “Optical critical dimension measurement and illumination analysis using the through-focus focus metric - art. no. 61520K,” P. Soc. Photo-Opt. Ins. 6152, K1520 (2006).
  31. R. Attota, R. M. Silver, M. Stocker, E. Marx, J. Jun, M. Davidson, and R. Larrabee, “A new method to enhance overlay tool performance,” Metrology, Inspection, and Process Control for Microlithography Xvii, Pts 1 and 2 5038, 428–436 (2003).
  32. R. Attota, R. Silver, and B. M. Barnes, “Optical through-focus technique that differentiates small changes in line width, line height and sidewall angle for CD, overlay, and defect metrology applications,” Metrology, Inspection, and Process Control for Microlithography Xxii, Pts 1 and 2 6922(2008).
    [Crossref]
  33. S. I. Association, The International Technology Roadmap for Semiconductors (ITRS) (Semiconductor Industry Association, 2011).
  34. R. Attota, T. A. Germer, and R. M. Silver, “Through-focus scanning-optical-microscope imaging method for nanoscale dimensional analysis,” Opt. Lett. 33(17), 1990–1992 (2008).
    [Crossref] [PubMed]
  35. R. Attota, R. Silver, and R. Dixson, “Linewidth measurement technique using through-focus optical images,” Appl. Opt. 47(4), 495–503 (2008).
    [Crossref] [PubMed]
  36. R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
    [Crossref]
  37. R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladar, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
    [Crossref]
  38. R. Attota and R. Silver, “Nanometrology using a through-focus scanning optical microscopy method,” Meas. Sci. Technol. 22(2), 024002 (2011).
    [Crossref]
  39. A. Arceo, B. Bunday, V. Vartanian, and R. Attota, “Patterned defect & CD metrology by TSOM beyond the 22 nm node,” Proc. SPIE 8324, 83240E (2012).
    [Crossref]
  40. A. Arceo, B. Bunday, and R. Attota, “Use of TSOM for sub-11 nm node pattern defect detection and HAR features,” Proc. SPIE 8681, 86812G (2013).
    [Crossref]
  41. R. Attota and V. Jindal, “Inspecting mask defects with through-focus scanning optical microscopy,” SPIE Newsroom, 4964 (2013).
  42. R. Attota, B. Bunday, and V. Vartanian, “Critical dimension metrology by through-focus scanning optical microscopy beyond the 22 nm node,” Appl. Phys. Lett. 102(22), 222107 (2013).
    [Crossref]
  43. M. Ryabko, S. Koptyev, A. Shchekin, and A. Medvedev, “Improved critical dimension inspection for the semiconductor industry,” SPIE Newsroom, 5515 (2014).
  44. M. Ryabko, S. Koptyaev, A. Shcherbakov, A. Lantsov, and S. Y. Oh, “Motion-free all optical inspection system for nanoscale topology control,” Opt. Express 22(12), 14958–14963 (2014).
    [Crossref] [PubMed]
  45. M. Ryabko, A. Shchekin, S. Koptyaev, A. Lantsov, A. Medvedev, A. Shcherbakov, and S. Y. Oh, “Through-focus scanning optical microscopy (TSOM) considering optical aberrations: practical implementation,” Opt. Express 23(25), 32215–32221 (2015).
    [Crossref] [PubMed]
  46. S. E. M. I. document, Guide for metrology techniques to be used in measurement of geometrical parameters of through- silicon vias (TSVs) in 3DS-IC structures (SEMI, 2013).
  47. V. Vartanian, R. Attota, H. Park, G. Orji, and R. A. Allen, “TSV reveal height and dimension metrology by the TSOM method,” Proc. SPIE 8681, 86812F (2013).
    [Crossref]
  48. R. Attota and R. G. Dixson, “Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes,” Appl. Phys. Lett. 105(4), 043101 (2014).
    [Crossref]
  49. B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22 nm node,” Metrology, Inspection, and Process Control for Microlithography XXVII 8681, 86813B (2013).
    [Crossref]
  50. S. N. Koptyaev, M. V. Ryabko, and M. N. Rychagov, “Optical measurement system and method for measuring critical dimension of nanostructure ” US patent (2013).
  51. S. N. Koptyaev, M. V. Ryabko, A. V. Hcherbakov, and A. D. Lantsov, “Optical measuring system and method of measuring critical size,” US patent (2014).
  52. R. Attota, “Noise analysis for through-focus scanning optical microscopy,” Opt. Lett. 41(4), 745–748 (2016).
    [Crossref] [PubMed]
  53. J. M. Gineste, P. Macko, E. A. Patterson, and M. P. Whelan, “Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope,” J. Microsc. 243(2), 172–178 (2011).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

M. Ryabko, A. Shchekin, S. Koptyaev, A. Lantsov, A. Medvedev, A. Shcherbakov, and S. Y. Oh, “Through-focus scanning optical microscopy (TSOM) considering optical aberrations: practical implementation,” Opt. Express 23(25), 32215–32221 (2015).
[Crossref] [PubMed]

X. X. Zhang, P. Snow, A. Vaid, E. Solecky, H. Zhou, Z. H. Ge, S. Yasharzade, O. Shoval, O. Adan, I. Schwarzband, and M. Bar-Zvi, “Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging,” Proc. SPIE 9424, 94240G (2015).
[Crossref]

2014 (9)

X. X. Zhang, H. Zhou, Z. H. Ge, A. Vaid, D. Konduparthi, C. Osorio, S. Ventola, R. Meir, O. Shoval, R. Kris, O. Adan, and M. Bar-Zvi, “Addressing FinFET metrology challenges in 1x node using tilt-beam critical dimension scanning electron microscope,” J. Micro-Nanolith Mem. 13(4), 041407 (2014).
[Crossref]

R. Chao, K. K. Kohli, Y. L. Zhang, A. Madan, G. R. Muthinti, A. J. Hong, D. Conklin, J. Holt, and T. C. Bailey, “Multitechnique metrology methods for evaluating pitch walking in 14 nm and beyond FinFETs,” J. Micro-Nanolith. Mem. 13, 041411 (2014).

H. X. Guo, H. Itoh, C. M. Wang, H. Zhang, and D. Fujita, “Focal depth measurement of scanning helium ion microscope,” Appl. Phys. Lett. 105(2), 023105 (2014).
[Crossref]

Y. S. Ku, “Spectral reflectometry for metrology of three-dimensional through-silicon vias,” J. Micro-Nanolith. Mem. 13, 011209 (2014).

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladar, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

A. Vaid, C. Osorio, J. Tsai, C. Bozdog, M. Sendelbach, E. Grubner, R. Koret, and S. Wolfling, “Hybrid metrology universal engine: co-optimization,” Proc. SPIE 9050, 905009 (2014).
[Crossref]

A. E. Vladar, J. S. Villarrubia, J. Chawla, B. Ming, J. R. Kline, S. List, and M. T. Postek, “10 nm three-dimensional CD-SEM metrology,” Proc. SPIE 9050, 90500A (2014).
[Crossref]

R. Attota and R. G. Dixson, “Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes,” Appl. Phys. Lett. 105(4), 043101 (2014).
[Crossref]

M. Ryabko, S. Koptyaev, A. Shcherbakov, A. Lantsov, and S. Y. Oh, “Motion-free all optical inspection system for nanoscale topology control,” Opt. Express 22(12), 14958–14963 (2014).
[Crossref] [PubMed]

2013 (9)

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, and F. Goasmat, “Fourier domain optical tool normalization for quantitative parametric image reconstruction,” Appl. Opt. 52(26), 6512–6522 (2013).
[Crossref] [PubMed]

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22 nm node,” Metrology, Inspection, and Process Control for Microlithography XXVII 8681, 86813B (2013).
[Crossref]

A. Arceo, B. Bunday, and R. Attota, “Use of TSOM for sub-11 nm node pattern defect detection and HAR features,” Proc. SPIE 8681, 86812G (2013).
[Crossref]

R. Attota, B. Bunday, and V. Vartanian, “Critical dimension metrology by through-focus scanning optical microscopy beyond the 22 nm node,” Appl. Phys. Lett. 102(22), 222107 (2013).
[Crossref]

V. Vartanian, R. Attota, H. Park, G. Orji, and R. A. Allen, “TSV reveal height and dimension metrology by the TSOM method,” Proc. SPIE 8681, 86812F (2013).
[Crossref]

H. Chouaib and Q. Zhao, “Nanoscale optical critical dimension measurement of a contact hole using deep ultraviolet spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 31(1), 011803 (2013).
[Crossref]

J. Li, O. Kritsun, P. Dasari, C. Volkman, T. Wallow, and J. T. Hu, “Evaluating scatterometry 3D capabilities for EUV,” Proc. SPIE 8681, 86810S (2013).
[Crossref]

D. F. Sunday, M. R. Hammond, C. Q. Wang, W. L. Wu, R. J. Kline, and G. E. Stein, “Three-dimensional x-ray metrology for block copolymer lithography line-space patterns,” J. Micro-Nanolith Mem. 12(3), 031103 (2013).
[Crossref]

A. Yamaguchi, T. Ohashi, T. Kawasaki, O. Inoue, and H. Kawada, “Three-dimensional profile extraction from CD-SEM image and top/bottom CD measurement by line-edge roughness analysis,” Proc. SPIE 8681, 86812Z (2013).
[Crossref]

2012 (8)

J. Carrero and G. Percin, “Accurate optical CD profiler based on specialized finite element method,” Proc. SPIE 8324, 83240P (2012).
[Crossref]

G. L. Dai, W. Hassler-Grohne, D. Huser, H. Wolff, J. Fluegge, and H. Bosse, “New developments at Physikalisch Technische Bundesanstalt in three-dimensional atomic force microscopy with tapping and torsion atomic force microscopy mode and vector approach probing strategy,” J. Micro-Nanolith Mem. 11(1), 011004 (2012).
[Crossref]

J. L. Di, J. L. Zhao, and A. Asundi, “Compact digital holoscope with dual wavelength,” Information Optics and Optical Data Storage Ii 8559, 855908 (2012).
[Crossref]

Y. Huang, Q. H. Han, Y. Q. Sui, C. J. Xu, X. Y. Meng, C. W. Li, and S. Ni, “OCD Metrology Evaluation of p-MOS silicon recess with three dimensional design pattern,” ECS Trans. 44, 1111–1116 (2012).

B. G. Kopek, G. Shtengel, C. S. Xu, D. A. Clayton, and H. F. Hess, “Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes,” Proc. Natl. Acad. Sci. U.S.A. 109(16), 6136–6141 (2012).
[Crossref] [PubMed]

N. G. Orji, R. G. Dixson, A. E. Vladar, B. Ming, and M. T. Postek, “Contour metrology using critical dimension atomic force microscopy,” Proc. SPIE 8324, 83240U (2012).
[Crossref]

A. E. Vladar, P. Cizmar, J. S. Villarrubia, and M. T. Postek, “Can we get 3D CD metrology right?” Proc. SPIE 8324, 832402 (2012).
[Crossref]

A. Arceo, B. Bunday, V. Vartanian, and R. Attota, “Patterned defect & CD metrology by TSOM beyond the 22 nm node,” Proc. SPIE 8324, 83240E (2012).
[Crossref]

2011 (8)

J. M. Gineste, P. Macko, E. A. Patterson, and M. P. Whelan, “Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope,” J. Microsc. 243(2), 172–178 (2011).
[Crossref] [PubMed]

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladar, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

R. Attota and R. Silver, “Nanometrology using a through-focus scanning optical microscopy method,” Meas. Sci. Technol. 22(2), 024002 (2011).
[Crossref]

V. M. J. I. Cuijpers, X. F. Walboomers, and J. A. Jansen, “Scanning electron microscopy stereoimaging for three-dimensional visualization and analysis of cells in tissue-engineered constructs: technical note,” Tissue Eng. Part C Methods 17(6), 663–668 (2011).
[Crossref] [PubMed]

W. Häßler-Grohne, D. Huser, K. P. Johnsen, C. G. Frase, and H. Bosse, “Current limitations of SEM and AFM metrology for the characterization of 3D nanostructures,” Meas. Sci. Technol. 22(9), 094003 (2011).
[Crossref]

J. A. Kramar, R. Dixson, and N. G. Orji, “Scanning probe microscope dimensional metrology at NIST,” Meas. Sci. Technol. 22(2), 024001 (2011).
[Crossref]

N. G. Orji, R. G. Dixson, A. E. Vladar, and M. T. Postek, “Strategies for nanoscale contour metrology using critical dimension atomic force microscopy,” Proc. SPIE 8105, 810505 (2011).
[Crossref]

2009 (1)

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236(1), 35–43 (2009).
[Crossref] [PubMed]

2008 (4)

R. Attota, R. Silver, and R. Dixson, “Linewidth measurement technique using through-focus optical images,” Appl. Opt. 47(4), 495–503 (2008).
[Crossref] [PubMed]

R. Attota, T. A. Germer, and R. M. Silver, “Through-focus scanning-optical-microscope imaging method for nanoscale dimensional analysis,” Opt. Lett. 33(17), 1990–1992 (2008).
[Crossref] [PubMed]

T. M. Bao, L. Mininni, and D. Dawson, “Improving sidewall profile metrology with enhanced 3D-AFM,” Lithography Asia 2008, 7140 (2008).

A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008).
[Crossref] [PubMed]

2007 (1)

C. Wang, R. L. Jones, E. K. Lin, W.-L. Wu, and J. Leu, “Small angle x-ray scattering measurements of lithographic patterns with sidewall roughness from vertical standing waves,” Appl. Phys. Lett. 90(19), 193122 (2007).
[Crossref]

2006 (2)

H. Schroettner, M. Schmied, and S. Scherer, “Comparison of 3D surface reconstruction data from certified depth standards obtained by SEM and an infinite focus measurement machine (IFM),” Mikrochim. Acta 155(1-2), 279–284 (2006).
[Crossref]

R. Attota, R. M. Silver, M. R. Bishop, and R. G. Dixson, “Optical critical dimension measurement and illumination analysis using the through-focus focus metric - art. no. 61520K,” P. Soc. Photo-Opt. Ins. 6152, K1520 (2006).

Adan, O.

X. X. Zhang, P. Snow, A. Vaid, E. Solecky, H. Zhou, Z. H. Ge, S. Yasharzade, O. Shoval, O. Adan, I. Schwarzband, and M. Bar-Zvi, “Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging,” Proc. SPIE 9424, 94240G (2015).
[Crossref]

X. X. Zhang, H. Zhou, Z. H. Ge, A. Vaid, D. Konduparthi, C. Osorio, S. Ventola, R. Meir, O. Shoval, R. Kris, O. Adan, and M. Bar-Zvi, “Addressing FinFET metrology challenges in 1x node using tilt-beam critical dimension scanning electron microscope,” J. Micro-Nanolith Mem. 13(4), 041407 (2014).
[Crossref]

Allen, R. A.

V. Vartanian, R. Attota, H. Park, G. Orji, and R. A. Allen, “TSV reveal height and dimension metrology by the TSOM method,” Proc. SPIE 8681, 86812F (2013).
[Crossref]

Arceo, A.

A. Arceo, B. Bunday, and R. Attota, “Use of TSOM for sub-11 nm node pattern defect detection and HAR features,” Proc. SPIE 8681, 86812G (2013).
[Crossref]

A. Arceo, B. Bunday, V. Vartanian, and R. Attota, “Patterned defect & CD metrology by TSOM beyond the 22 nm node,” Proc. SPIE 8324, 83240E (2012).
[Crossref]

Asundi, A.

J. L. Di, J. L. Zhao, and A. Asundi, “Compact digital holoscope with dual wavelength,” Information Optics and Optical Data Storage Ii 8559, 855908 (2012).
[Crossref]

Attota, R.

R. Attota, “Noise analysis for through-focus scanning optical microscopy,” Opt. Lett. 41(4), 745–748 (2016).
[Crossref] [PubMed]

R. Attota and R. G. Dixson, “Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes,” Appl. Phys. Lett. 105(4), 043101 (2014).
[Crossref]

V. Vartanian, R. Attota, H. Park, G. Orji, and R. A. Allen, “TSV reveal height and dimension metrology by the TSOM method,” Proc. SPIE 8681, 86812F (2013).
[Crossref]

A. Arceo, B. Bunday, and R. Attota, “Use of TSOM for sub-11 nm node pattern defect detection and HAR features,” Proc. SPIE 8681, 86812G (2013).
[Crossref]

R. Attota, B. Bunday, and V. Vartanian, “Critical dimension metrology by through-focus scanning optical microscopy beyond the 22 nm node,” Appl. Phys. Lett. 102(22), 222107 (2013).
[Crossref]

A. Arceo, B. Bunday, V. Vartanian, and R. Attota, “Patterned defect & CD metrology by TSOM beyond the 22 nm node,” Proc. SPIE 8324, 83240E (2012).
[Crossref]

R. Attota and R. Silver, “Nanometrology using a through-focus scanning optical microscopy method,” Meas. Sci. Technol. 22(2), 024002 (2011).
[Crossref]

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladar, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

R. Attota, R. Silver, and R. Dixson, “Linewidth measurement technique using through-focus optical images,” Appl. Opt. 47(4), 495–503 (2008).
[Crossref] [PubMed]

R. Attota, T. A. Germer, and R. M. Silver, “Through-focus scanning-optical-microscope imaging method for nanoscale dimensional analysis,” Opt. Lett. 33(17), 1990–1992 (2008).
[Crossref] [PubMed]

R. Attota, R. M. Silver, M. R. Bishop, and R. G. Dixson, “Optical critical dimension measurement and illumination analysis using the through-focus focus metric - art. no. 61520K,” P. Soc. Photo-Opt. Ins. 6152, K1520 (2006).

R. Attota and V. Jindal, “Inspecting mask defects with through-focus scanning optical microscopy,” SPIE Newsroom, 4964 (2013).

Bailey, T. C.

R. Chao, K. K. Kohli, Y. L. Zhang, A. Madan, G. R. Muthinti, A. J. Hong, D. Conklin, J. Holt, and T. C. Bailey, “Multitechnique metrology methods for evaluating pitch walking in 14 nm and beyond FinFETs,” J. Micro-Nanolith. Mem. 13, 041411 (2014).

Bao, T. M.

T. M. Bao, L. Mininni, and D. Dawson, “Improving sidewall profile metrology with enhanced 3D-AFM,” Lithography Asia 2008, 7140 (2008).

Barnes, B. M.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladar, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, and F. Goasmat, “Fourier domain optical tool normalization for quantitative parametric image reconstruction,” Appl. Opt. 52(26), 6512–6522 (2013).
[Crossref] [PubMed]

Bar-Zvi, M.

X. X. Zhang, P. Snow, A. Vaid, E. Solecky, H. Zhou, Z. H. Ge, S. Yasharzade, O. Shoval, O. Adan, I. Schwarzband, and M. Bar-Zvi, “Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging,” Proc. SPIE 9424, 94240G (2015).
[Crossref]

X. X. Zhang, H. Zhou, Z. H. Ge, A. Vaid, D. Konduparthi, C. Osorio, S. Ventola, R. Meir, O. Shoval, R. Kris, O. Adan, and M. Bar-Zvi, “Addressing FinFET metrology challenges in 1x node using tilt-beam critical dimension scanning electron microscope,” J. Micro-Nanolith Mem. 13(4), 041407 (2014).
[Crossref]

Bishop, M. R.

R. Attota, R. M. Silver, M. R. Bishop, and R. G. Dixson, “Optical critical dimension measurement and illumination analysis using the through-focus focus metric - art. no. 61520K,” P. Soc. Photo-Opt. Ins. 6152, K1520 (2006).

Bosse, H.

G. L. Dai, W. Hassler-Grohne, D. Huser, H. Wolff, J. Fluegge, and H. Bosse, “New developments at Physikalisch Technische Bundesanstalt in three-dimensional atomic force microscopy with tapping and torsion atomic force microscopy mode and vector approach probing strategy,” J. Micro-Nanolith Mem. 11(1), 011004 (2012).
[Crossref]

W. Häßler-Grohne, D. Huser, K. P. Johnsen, C. G. Frase, and H. Bosse, “Current limitations of SEM and AFM metrology for the characterization of 3D nanostructures,” Meas. Sci. Technol. 22(9), 094003 (2011).
[Crossref]

Bozdog, C.

A. Vaid, C. Osorio, J. Tsai, C. Bozdog, M. Sendelbach, E. Grubner, R. Koret, and S. Wolfling, “Hybrid metrology universal engine: co-optimization,” Proc. SPIE 9050, 905009 (2014).
[Crossref]

Bunday, B.

A. Arceo, B. Bunday, and R. Attota, “Use of TSOM for sub-11 nm node pattern defect detection and HAR features,” Proc. SPIE 8681, 86812G (2013).
[Crossref]

R. Attota, B. Bunday, and V. Vartanian, “Critical dimension metrology by through-focus scanning optical microscopy beyond the 22 nm node,” Appl. Phys. Lett. 102(22), 222107 (2013).
[Crossref]

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22 nm node,” Metrology, Inspection, and Process Control for Microlithography XXVII 8681, 86813B (2013).
[Crossref]

A. Arceo, B. Bunday, V. Vartanian, and R. Attota, “Patterned defect & CD metrology by TSOM beyond the 22 nm node,” Proc. SPIE 8324, 83240E (2012).
[Crossref]

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladar, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Carrero, J.

J. Carrero and G. Percin, “Accurate optical CD profiler based on specialized finite element method,” Proc. SPIE 8324, 83240P (2012).
[Crossref]

Cepler, A.

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22 nm node,” Metrology, Inspection, and Process Control for Microlithography XXVII 8681, 86813B (2013).
[Crossref]

Chabli, A.

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

Chao, R.

R. Chao, K. K. Kohli, Y. L. Zhang, A. Madan, G. R. Muthinti, A. J. Hong, D. Conklin, J. Holt, and T. C. Bailey, “Multitechnique metrology methods for evaluating pitch walking in 14 nm and beyond FinFETs,” J. Micro-Nanolith. Mem. 13, 041411 (2014).

Chawla, J.

A. E. Vladar, J. S. Villarrubia, J. Chawla, B. Ming, J. R. Kline, S. List, and M. T. Postek, “10 nm three-dimensional CD-SEM metrology,” Proc. SPIE 9050, 90500A (2014).
[Crossref]

Chouaib, H.

H. Chouaib and Q. Zhao, “Nanoscale optical critical dimension measurement of a contact hole using deep ultraviolet spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 31(1), 011803 (2013).
[Crossref]

Cizmar, P.

A. E. Vladar, P. Cizmar, J. S. Villarrubia, and M. T. Postek, “Can we get 3D CD metrology right?” Proc. SPIE 8324, 832402 (2012).
[Crossref]

Clayton, D. A.

B. G. Kopek, G. Shtengel, C. S. Xu, D. A. Clayton, and H. F. Hess, “Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes,” Proc. Natl. Acad. Sci. U.S.A. 109(16), 6136–6141 (2012).
[Crossref] [PubMed]

Conklin, D.

R. Chao, K. K. Kohli, Y. L. Zhang, A. Madan, G. R. Muthinti, A. J. Hong, D. Conklin, J. Holt, and T. C. Bailey, “Multitechnique metrology methods for evaluating pitch walking in 14 nm and beyond FinFETs,” J. Micro-Nanolith. Mem. 13, 041411 (2014).

Cordes, A.

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22 nm node,” Metrology, Inspection, and Process Control for Microlithography XXVII 8681, 86813B (2013).
[Crossref]

Cuijpers, V. M. J. I.

V. M. J. I. Cuijpers, X. F. Walboomers, and J. A. Jansen, “Scanning electron microscopy stereoimaging for three-dimensional visualization and analysis of cells in tissue-engineered constructs: technical note,” Tissue Eng. Part C Methods 17(6), 663–668 (2011).
[Crossref] [PubMed]

Dai, G. L.

G. L. Dai, W. Hassler-Grohne, D. Huser, H. Wolff, J. Fluegge, and H. Bosse, “New developments at Physikalisch Technische Bundesanstalt in three-dimensional atomic force microscopy with tapping and torsion atomic force microscopy mode and vector approach probing strategy,” J. Micro-Nanolith Mem. 11(1), 011004 (2012).
[Crossref]

Dasari, P.

J. Li, O. Kritsun, P. Dasari, C. Volkman, T. Wallow, and J. T. Hu, “Evaluating scatterometry 3D capabilities for EUV,” Proc. SPIE 8681, 86810S (2013).
[Crossref]

Dawson, D.

T. M. Bao, L. Mininni, and D. Dawson, “Improving sidewall profile metrology with enhanced 3D-AFM,” Lithography Asia 2008, 7140 (2008).

Di, J. L.

J. L. Di, J. L. Zhao, and A. Asundi, “Compact digital holoscope with dual wavelength,” Information Optics and Optical Data Storage Ii 8559, 855908 (2012).
[Crossref]

Diebold, A. C.

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

Dixson, R.

J. A. Kramar, R. Dixson, and N. G. Orji, “Scanning probe microscope dimensional metrology at NIST,” Meas. Sci. Technol. 22(2), 024001 (2011).
[Crossref]

R. Attota, R. Silver, and R. Dixson, “Linewidth measurement technique using through-focus optical images,” Appl. Opt. 47(4), 495–503 (2008).
[Crossref] [PubMed]

Dixson, R. G.

R. Attota and R. G. Dixson, “Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes,” Appl. Phys. Lett. 105(4), 043101 (2014).
[Crossref]

N. G. Orji, R. G. Dixson, A. E. Vladar, B. Ming, and M. T. Postek, “Contour metrology using critical dimension atomic force microscopy,” Proc. SPIE 8324, 83240U (2012).
[Crossref]

N. G. Orji, R. G. Dixson, A. E. Vladar, and M. T. Postek, “Strategies for nanoscale contour metrology using critical dimension atomic force microscopy,” Proc. SPIE 8105, 810505 (2011).
[Crossref]

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladar, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

R. Attota, R. M. Silver, M. R. Bishop, and R. G. Dixson, “Optical critical dimension measurement and illumination analysis using the through-focus focus metric - art. no. 61520K,” P. Soc. Photo-Opt. Ins. 6152, K1520 (2006).

Fluegge, J.

G. L. Dai, W. Hassler-Grohne, D. Huser, H. Wolff, J. Fluegge, and H. Bosse, “New developments at Physikalisch Technische Bundesanstalt in three-dimensional atomic force microscopy with tapping and torsion atomic force microscopy mode and vector approach probing strategy,” J. Micro-Nanolith Mem. 11(1), 011004 (2012).
[Crossref]

Frase, C. G.

W. Häßler-Grohne, D. Huser, K. P. Johnsen, C. G. Frase, and H. Bosse, “Current limitations of SEM and AFM metrology for the characterization of 3D nanostructures,” Meas. Sci. Technol. 22(9), 094003 (2011).
[Crossref]

Fujita, D.

H. X. Guo, H. Itoh, C. M. Wang, H. Zhang, and D. Fujita, “Focal depth measurement of scanning helium ion microscope,” Appl. Phys. Lett. 105(2), 023105 (2014).
[Crossref]

Ge, Z. H.

X. X. Zhang, P. Snow, A. Vaid, E. Solecky, H. Zhou, Z. H. Ge, S. Yasharzade, O. Shoval, O. Adan, I. Schwarzband, and M. Bar-Zvi, “Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging,” Proc. SPIE 9424, 94240G (2015).
[Crossref]

X. X. Zhang, H. Zhou, Z. H. Ge, A. Vaid, D. Konduparthi, C. Osorio, S. Ventola, R. Meir, O. Shoval, R. Kris, O. Adan, and M. Bar-Zvi, “Addressing FinFET metrology challenges in 1x node using tilt-beam critical dimension scanning electron microscope,” J. Micro-Nanolith Mem. 13(4), 041407 (2014).
[Crossref]

Germer, T. A.

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22 nm node,” Metrology, Inspection, and Process Control for Microlithography XXVII 8681, 86813B (2013).
[Crossref]

R. Attota, T. A. Germer, and R. M. Silver, “Through-focus scanning-optical-microscope imaging method for nanoscale dimensional analysis,” Opt. Lett. 33(17), 1990–1992 (2008).
[Crossref] [PubMed]

Gineste, J. M.

J. M. Gineste, P. Macko, E. A. Patterson, and M. P. Whelan, “Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope,” J. Microsc. 243(2), 172–178 (2011).
[Crossref] [PubMed]

Goasmat, F.

Grubner, E.

A. Vaid, C. Osorio, J. Tsai, C. Bozdog, M. Sendelbach, E. Grubner, R. Koret, and S. Wolfling, “Hybrid metrology universal engine: co-optimization,” Proc. SPIE 9050, 905009 (2014).
[Crossref]

Guo, H. X.

H. X. Guo, H. Itoh, C. M. Wang, H. Zhang, and D. Fujita, “Focal depth measurement of scanning helium ion microscope,” Appl. Phys. Lett. 105(2), 023105 (2014).
[Crossref]

Hammond, M. R.

D. F. Sunday, M. R. Hammond, C. Q. Wang, W. L. Wu, R. J. Kline, and G. E. Stein, “Three-dimensional x-ray metrology for block copolymer lithography line-space patterns,” J. Micro-Nanolith Mem. 12(3), 031103 (2013).
[Crossref]

Han, Q. H.

Y. Huang, Q. H. Han, Y. Q. Sui, C. J. Xu, X. Y. Meng, C. W. Li, and S. Ni, “OCD Metrology Evaluation of p-MOS silicon recess with three dimensional design pattern,” ECS Trans. 44, 1111–1116 (2012).

Hassler-Grohne, W.

G. L. Dai, W. Hassler-Grohne, D. Huser, H. Wolff, J. Fluegge, and H. Bosse, “New developments at Physikalisch Technische Bundesanstalt in three-dimensional atomic force microscopy with tapping and torsion atomic force microscopy mode and vector approach probing strategy,” J. Micro-Nanolith Mem. 11(1), 011004 (2012).
[Crossref]

Häßler-Grohne, W.

W. Häßler-Grohne, D. Huser, K. P. Johnsen, C. G. Frase, and H. Bosse, “Current limitations of SEM and AFM metrology for the characterization of 3D nanostructures,” Meas. Sci. Technol. 22(9), 094003 (2011).
[Crossref]

Hell, S. W.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236(1), 35–43 (2009).
[Crossref] [PubMed]

A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008).
[Crossref] [PubMed]

Hess, H. F.

B. G. Kopek, G. Shtengel, C. S. Xu, D. A. Clayton, and H. F. Hess, “Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes,” Proc. Natl. Acad. Sci. U.S.A. 109(16), 6136–6141 (2012).
[Crossref] [PubMed]

Holt, J.

R. Chao, K. K. Kohli, Y. L. Zhang, A. Madan, G. R. Muthinti, A. J. Hong, D. Conklin, J. Holt, and T. C. Bailey, “Multitechnique metrology methods for evaluating pitch walking in 14 nm and beyond FinFETs,” J. Micro-Nanolith. Mem. 13, 041411 (2014).

Hong, A. J.

R. Chao, K. K. Kohli, Y. L. Zhang, A. Madan, G. R. Muthinti, A. J. Hong, D. Conklin, J. Holt, and T. C. Bailey, “Multitechnique metrology methods for evaluating pitch walking in 14 nm and beyond FinFETs,” J. Micro-Nanolith. Mem. 13, 041411 (2014).

Hu, J. T.

J. Li, O. Kritsun, P. Dasari, C. Volkman, T. Wallow, and J. T. Hu, “Evaluating scatterometry 3D capabilities for EUV,” Proc. SPIE 8681, 86810S (2013).
[Crossref]

Huang, Y.

Y. Huang, Q. H. Han, Y. Q. Sui, C. J. Xu, X. Y. Meng, C. W. Li, and S. Ni, “OCD Metrology Evaluation of p-MOS silicon recess with three dimensional design pattern,” ECS Trans. 44, 1111–1116 (2012).

Huser, D.

G. L. Dai, W. Hassler-Grohne, D. Huser, H. Wolff, J. Fluegge, and H. Bosse, “New developments at Physikalisch Technische Bundesanstalt in three-dimensional atomic force microscopy with tapping and torsion atomic force microscopy mode and vector approach probing strategy,” J. Micro-Nanolith Mem. 11(1), 011004 (2012).
[Crossref]

W. Häßler-Grohne, D. Huser, K. P. Johnsen, C. G. Frase, and H. Bosse, “Current limitations of SEM and AFM metrology for the characterization of 3D nanostructures,” Meas. Sci. Technol. 22(9), 094003 (2011).
[Crossref]

Inoue, O.

A. Yamaguchi, T. Ohashi, T. Kawasaki, O. Inoue, and H. Kawada, “Three-dimensional profile extraction from CD-SEM image and top/bottom CD measurement by line-edge roughness analysis,” Proc. SPIE 8681, 86812Z (2013).
[Crossref]

Itoh, H.

H. X. Guo, H. Itoh, C. M. Wang, H. Zhang, and D. Fujita, “Focal depth measurement of scanning helium ion microscope,” Appl. Phys. Lett. 105(2), 023105 (2014).
[Crossref]

Jahn, R.

A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008).
[Crossref] [PubMed]

Jansen, J. A.

V. M. J. I. Cuijpers, X. F. Walboomers, and J. A. Jansen, “Scanning electron microscopy stereoimaging for three-dimensional visualization and analysis of cells in tissue-engineered constructs: technical note,” Tissue Eng. Part C Methods 17(6), 663–668 (2011).
[Crossref] [PubMed]

Jindal, V.

R. Attota and V. Jindal, “Inspecting mask defects with through-focus scanning optical microscopy,” SPIE Newsroom, 4964 (2013).

Johnsen, K. P.

W. Häßler-Grohne, D. Huser, K. P. Johnsen, C. G. Frase, and H. Bosse, “Current limitations of SEM and AFM metrology for the characterization of 3D nanostructures,” Meas. Sci. Technol. 22(9), 094003 (2011).
[Crossref]

Jones, R. L.

C. Wang, R. L. Jones, E. K. Lin, W.-L. Wu, and J. Leu, “Small angle x-ray scattering measurements of lithographic patterns with sidewall roughness from vertical standing waves,” Appl. Phys. Lett. 90(19), 193122 (2007).
[Crossref]

Kastrup, L.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236(1), 35–43 (2009).
[Crossref] [PubMed]

A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008).
[Crossref] [PubMed]

Kawada, H.

A. Yamaguchi, T. Ohashi, T. Kawasaki, O. Inoue, and H. Kawada, “Three-dimensional profile extraction from CD-SEM image and top/bottom CD measurement by line-edge roughness analysis,” Proc. SPIE 8681, 86812Z (2013).
[Crossref]

Kawasaki, T.

A. Yamaguchi, T. Ohashi, T. Kawasaki, O. Inoue, and H. Kawada, “Three-dimensional profile extraction from CD-SEM image and top/bottom CD measurement by line-edge roughness analysis,” Proc. SPIE 8681, 86812Z (2013).
[Crossref]

Kline, J.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladar, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

Kline, J. R.

A. E. Vladar, J. S. Villarrubia, J. Chawla, B. Ming, J. R. Kline, S. List, and M. T. Postek, “10 nm three-dimensional CD-SEM metrology,” Proc. SPIE 9050, 90500A (2014).
[Crossref]

Kline, R. J.

D. F. Sunday, M. R. Hammond, C. Q. Wang, W. L. Wu, R. J. Kline, and G. E. Stein, “Three-dimensional x-ray metrology for block copolymer lithography line-space patterns,” J. Micro-Nanolith Mem. 12(3), 031103 (2013).
[Crossref]

Kohli, K. K.

R. Chao, K. K. Kohli, Y. L. Zhang, A. Madan, G. R. Muthinti, A. J. Hong, D. Conklin, J. Holt, and T. C. Bailey, “Multitechnique metrology methods for evaluating pitch walking in 14 nm and beyond FinFETs,” J. Micro-Nanolith. Mem. 13, 041411 (2014).

Konduparthi, D.

X. X. Zhang, H. Zhou, Z. H. Ge, A. Vaid, D. Konduparthi, C. Osorio, S. Ventola, R. Meir, O. Shoval, R. Kris, O. Adan, and M. Bar-Zvi, “Addressing FinFET metrology challenges in 1x node using tilt-beam critical dimension scanning electron microscope,” J. Micro-Nanolith Mem. 13(4), 041407 (2014).
[Crossref]

Kopek, B. G.

B. G. Kopek, G. Shtengel, C. S. Xu, D. A. Clayton, and H. F. Hess, “Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes,” Proc. Natl. Acad. Sci. U.S.A. 109(16), 6136–6141 (2012).
[Crossref] [PubMed]

Koptyaev, S.

Koptyev, S.

M. Ryabko, S. Koptyev, A. Shchekin, and A. Medvedev, “Improved critical dimension inspection for the semiconductor industry,” SPIE Newsroom, 5515 (2014).

Koret, R.

A. Vaid, C. Osorio, J. Tsai, C. Bozdog, M. Sendelbach, E. Grubner, R. Koret, and S. Wolfling, “Hybrid metrology universal engine: co-optimization,” Proc. SPIE 9050, 905009 (2014).
[Crossref]

Kramar, J. A.

J. A. Kramar, R. Dixson, and N. G. Orji, “Scanning probe microscope dimensional metrology at NIST,” Meas. Sci. Technol. 22(2), 024001 (2011).
[Crossref]

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladar, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Kris, R.

X. X. Zhang, H. Zhou, Z. H. Ge, A. Vaid, D. Konduparthi, C. Osorio, S. Ventola, R. Meir, O. Shoval, R. Kris, O. Adan, and M. Bar-Zvi, “Addressing FinFET metrology challenges in 1x node using tilt-beam critical dimension scanning electron microscope,” J. Micro-Nanolith Mem. 13(4), 041407 (2014).
[Crossref]

Kritsun, O.

J. Li, O. Kritsun, P. Dasari, C. Volkman, T. Wallow, and J. T. Hu, “Evaluating scatterometry 3D capabilities for EUV,” Proc. SPIE 8681, 86810S (2013).
[Crossref]

Ku, Y. S.

Y. S. Ku, “Spectral reflectometry for metrology of three-dimensional through-silicon vias,” J. Micro-Nanolith. Mem. 13, 011209 (2014).

Lantsov, A.

Leu, J.

C. Wang, R. L. Jones, E. K. Lin, W.-L. Wu, and J. Leu, “Small angle x-ray scattering measurements of lithographic patterns with sidewall roughness from vertical standing waves,” Appl. Phys. Lett. 90(19), 193122 (2007).
[Crossref]

Li, C. W.

Y. Huang, Q. H. Han, Y. Q. Sui, C. J. Xu, X. Y. Meng, C. W. Li, and S. Ni, “OCD Metrology Evaluation of p-MOS silicon recess with three dimensional design pattern,” ECS Trans. 44, 1111–1116 (2012).

Li, J.

J. Li, O. Kritsun, P. Dasari, C. Volkman, T. Wallow, and J. T. Hu, “Evaluating scatterometry 3D capabilities for EUV,” Proc. SPIE 8681, 86810S (2013).
[Crossref]

Lin, E. K.

C. Wang, R. L. Jones, E. K. Lin, W.-L. Wu, and J. Leu, “Small angle x-ray scattering measurements of lithographic patterns with sidewall roughness from vertical standing waves,” Appl. Phys. Lett. 90(19), 193122 (2007).
[Crossref]

List, S.

A. E. Vladar, J. S. Villarrubia, J. Chawla, B. Ming, J. R. Kline, S. List, and M. T. Postek, “10 nm three-dimensional CD-SEM metrology,” Proc. SPIE 9050, 90500A (2014).
[Crossref]

Macko, P.

J. M. Gineste, P. Macko, E. A. Patterson, and M. P. Whelan, “Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope,” J. Microsc. 243(2), 172–178 (2011).
[Crossref] [PubMed]

Madan, A.

R. Chao, K. K. Kohli, Y. L. Zhang, A. Madan, G. R. Muthinti, A. J. Hong, D. Conklin, J. Holt, and T. C. Bailey, “Multitechnique metrology methods for evaluating pitch walking in 14 nm and beyond FinFETs,” J. Micro-Nanolith. Mem. 13, 041411 (2014).

McDonald, R.

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

Medda, R.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236(1), 35–43 (2009).
[Crossref] [PubMed]

Medvedev, A.

Meir, R.

X. X. Zhang, H. Zhou, Z. H. Ge, A. Vaid, D. Konduparthi, C. Osorio, S. Ventola, R. Meir, O. Shoval, R. Kris, O. Adan, and M. Bar-Zvi, “Addressing FinFET metrology challenges in 1x node using tilt-beam critical dimension scanning electron microscope,” J. Micro-Nanolith Mem. 13(4), 041407 (2014).
[Crossref]

Meng, X. Y.

Y. Huang, Q. H. Han, Y. Q. Sui, C. J. Xu, X. Y. Meng, C. W. Li, and S. Ni, “OCD Metrology Evaluation of p-MOS silicon recess with three dimensional design pattern,” ECS Trans. 44, 1111–1116 (2012).

Meyer, L.

A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008).
[Crossref] [PubMed]

Ming, B.

A. E. Vladar, J. S. Villarrubia, J. Chawla, B. Ming, J. R. Kline, S. List, and M. T. Postek, “10 nm three-dimensional CD-SEM metrology,” Proc. SPIE 9050, 90500A (2014).
[Crossref]

N. G. Orji, R. G. Dixson, A. E. Vladar, B. Ming, and M. T. Postek, “Contour metrology using critical dimension atomic force microscopy,” Proc. SPIE 8324, 83240U (2012).
[Crossref]

Mininni, L.

T. M. Bao, L. Mininni, and D. Dawson, “Improving sidewall profile metrology with enhanced 3D-AFM,” Lithography Asia 2008, 7140 (2008).

Muthinti, G. R.

R. Chao, K. K. Kohli, Y. L. Zhang, A. Madan, G. R. Muthinti, A. J. Hong, D. Conklin, J. Holt, and T. C. Bailey, “Multitechnique metrology methods for evaluating pitch walking in 14 nm and beyond FinFETs,” J. Micro-Nanolith. Mem. 13, 041411 (2014).

Ni, S.

Y. Huang, Q. H. Han, Y. Q. Sui, C. J. Xu, X. Y. Meng, C. W. Li, and S. Ni, “OCD Metrology Evaluation of p-MOS silicon recess with three dimensional design pattern,” ECS Trans. 44, 1111–1116 (2012).

Novak, E.

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladar, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Oh, S. Y.

Ohashi, T.

A. Yamaguchi, T. Ohashi, T. Kawasaki, O. Inoue, and H. Kawada, “Three-dimensional profile extraction from CD-SEM image and top/bottom CD measurement by line-edge roughness analysis,” Proc. SPIE 8681, 86812Z (2013).
[Crossref]

Orji, G.

V. Vartanian, R. Attota, H. Park, G. Orji, and R. A. Allen, “TSV reveal height and dimension metrology by the TSOM method,” Proc. SPIE 8681, 86812F (2013).
[Crossref]

Orji, N. G.

N. G. Orji, R. G. Dixson, A. E. Vladar, B. Ming, and M. T. Postek, “Contour metrology using critical dimension atomic force microscopy,” Proc. SPIE 8324, 83240U (2012).
[Crossref]

J. A. Kramar, R. Dixson, and N. G. Orji, “Scanning probe microscope dimensional metrology at NIST,” Meas. Sci. Technol. 22(2), 024001 (2011).
[Crossref]

N. G. Orji, R. G. Dixson, A. E. Vladar, and M. T. Postek, “Strategies for nanoscale contour metrology using critical dimension atomic force microscopy,” Proc. SPIE 8105, 810505 (2011).
[Crossref]

Osorio, C.

X. X. Zhang, H. Zhou, Z. H. Ge, A. Vaid, D. Konduparthi, C. Osorio, S. Ventola, R. Meir, O. Shoval, R. Kris, O. Adan, and M. Bar-Zvi, “Addressing FinFET metrology challenges in 1x node using tilt-beam critical dimension scanning electron microscope,” J. Micro-Nanolith Mem. 13(4), 041407 (2014).
[Crossref]

A. Vaid, C. Osorio, J. Tsai, C. Bozdog, M. Sendelbach, E. Grubner, R. Koret, and S. Wolfling, “Hybrid metrology universal engine: co-optimization,” Proc. SPIE 9050, 905009 (2014).
[Crossref]

Park, H.

V. Vartanian, R. Attota, H. Park, G. Orji, and R. A. Allen, “TSV reveal height and dimension metrology by the TSOM method,” Proc. SPIE 8681, 86812F (2013).
[Crossref]

Patterson, E. A.

J. M. Gineste, P. Macko, E. A. Patterson, and M. P. Whelan, “Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope,” J. Microsc. 243(2), 172–178 (2011).
[Crossref] [PubMed]

Percin, G.

J. Carrero and G. Percin, “Accurate optical CD profiler based on specialized finite element method,” Proc. SPIE 8324, 83240P (2012).
[Crossref]

Postek, M. T.

A. E. Vladar, J. S. Villarrubia, J. Chawla, B. Ming, J. R. Kline, S. List, and M. T. Postek, “10 nm three-dimensional CD-SEM metrology,” Proc. SPIE 9050, 90500A (2014).
[Crossref]

N. G. Orji, R. G. Dixson, A. E. Vladar, B. Ming, and M. T. Postek, “Contour metrology using critical dimension atomic force microscopy,” Proc. SPIE 8324, 83240U (2012).
[Crossref]

A. E. Vladar, P. Cizmar, J. S. Villarrubia, and M. T. Postek, “Can we get 3D CD metrology right?” Proc. SPIE 8324, 832402 (2012).
[Crossref]

N. G. Orji, R. G. Dixson, A. E. Vladar, and M. T. Postek, “Strategies for nanoscale contour metrology using critical dimension atomic force microscopy,” Proc. SPIE 8105, 810505 (2011).
[Crossref]

Potzick, J. E.

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladar, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Punge, A.

A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008).
[Crossref] [PubMed]

Qin, J.

Rizzoli, S. O.

A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008).
[Crossref] [PubMed]

Rudack, A.

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladar, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Ryabko, M.

Scherer, S.

H. Schroettner, M. Schmied, and S. Scherer, “Comparison of 3D surface reconstruction data from certified depth standards obtained by SEM and an infinite focus measurement machine (IFM),” Mikrochim. Acta 155(1-2), 279–284 (2006).
[Crossref]

Schmied, M.

H. Schroettner, M. Schmied, and S. Scherer, “Comparison of 3D surface reconstruction data from certified depth standards obtained by SEM and an infinite focus measurement machine (IFM),” Mikrochim. Acta 155(1-2), 279–284 (2006).
[Crossref]

Schönle, A.

A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008).
[Crossref] [PubMed]

Schroettner, H.

H. Schroettner, M. Schmied, and S. Scherer, “Comparison of 3D surface reconstruction data from certified depth standards obtained by SEM and an infinite focus measurement machine (IFM),” Mikrochim. Acta 155(1-2), 279–284 (2006).
[Crossref]

Schwarzband, I.

X. X. Zhang, P. Snow, A. Vaid, E. Solecky, H. Zhou, Z. H. Ge, S. Yasharzade, O. Shoval, O. Adan, I. Schwarzband, and M. Bar-Zvi, “Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging,” Proc. SPIE 9424, 94240G (2015).
[Crossref]

Secula, E. M.

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

Seiler, D. G.

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

Sendelbach, M.

A. Vaid, C. Osorio, J. Tsai, C. Bozdog, M. Sendelbach, E. Grubner, R. Koret, and S. Wolfling, “Hybrid metrology universal engine: co-optimization,” Proc. SPIE 9050, 905009 (2014).
[Crossref]

Settens, C.

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22 nm node,” Metrology, Inspection, and Process Control for Microlithography XXVII 8681, 86813B (2013).
[Crossref]

Shchekin, A.

Shcherbakov, A.

Shoval, O.

X. X. Zhang, P. Snow, A. Vaid, E. Solecky, H. Zhou, Z. H. Ge, S. Yasharzade, O. Shoval, O. Adan, I. Schwarzband, and M. Bar-Zvi, “Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging,” Proc. SPIE 9424, 94240G (2015).
[Crossref]

X. X. Zhang, H. Zhou, Z. H. Ge, A. Vaid, D. Konduparthi, C. Osorio, S. Ventola, R. Meir, O. Shoval, R. Kris, O. Adan, and M. Bar-Zvi, “Addressing FinFET metrology challenges in 1x node using tilt-beam critical dimension scanning electron microscope,” J. Micro-Nanolith Mem. 13(4), 041407 (2014).
[Crossref]

Shtengel, G.

B. G. Kopek, G. Shtengel, C. S. Xu, D. A. Clayton, and H. F. Hess, “Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes,” Proc. Natl. Acad. Sci. U.S.A. 109(16), 6136–6141 (2012).
[Crossref] [PubMed]

Silver, R.

R. Attota and R. Silver, “Nanometrology using a through-focus scanning optical microscopy method,” Meas. Sci. Technol. 22(2), 024002 (2011).
[Crossref]

R. Attota, R. Silver, and R. Dixson, “Linewidth measurement technique using through-focus optical images,” Appl. Opt. 47(4), 495–503 (2008).
[Crossref] [PubMed]

Silver, R. M.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladar, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, and F. Goasmat, “Fourier domain optical tool normalization for quantitative parametric image reconstruction,” Appl. Opt. 52(26), 6512–6522 (2013).
[Crossref] [PubMed]

R. Attota, T. A. Germer, and R. M. Silver, “Through-focus scanning-optical-microscope imaging method for nanoscale dimensional analysis,” Opt. Lett. 33(17), 1990–1992 (2008).
[Crossref] [PubMed]

R. Attota, R. M. Silver, M. R. Bishop, and R. G. Dixson, “Optical critical dimension measurement and illumination analysis using the through-focus focus metric - art. no. 61520K,” P. Soc. Photo-Opt. Ins. 6152, K1520 (2006).

Snow, P.

X. X. Zhang, P. Snow, A. Vaid, E. Solecky, H. Zhou, Z. H. Ge, S. Yasharzade, O. Shoval, O. Adan, I. Schwarzband, and M. Bar-Zvi, “Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging,” Proc. SPIE 9424, 94240G (2015).
[Crossref]

Solecky, E.

X. X. Zhang, P. Snow, A. Vaid, E. Solecky, H. Zhou, Z. H. Ge, S. Yasharzade, O. Shoval, O. Adan, I. Schwarzband, and M. Bar-Zvi, “Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging,” Proc. SPIE 9424, 94240G (2015).
[Crossref]

Stein, G. E.

D. F. Sunday, M. R. Hammond, C. Q. Wang, W. L. Wu, R. J. Kline, and G. E. Stein, “Three-dimensional x-ray metrology for block copolymer lithography line-space patterns,” J. Micro-Nanolith Mem. 12(3), 031103 (2013).
[Crossref]

Sui, Y. Q.

Y. Huang, Q. H. Han, Y. Q. Sui, C. J. Xu, X. Y. Meng, C. W. Li, and S. Ni, “OCD Metrology Evaluation of p-MOS silicon recess with three dimensional design pattern,” ECS Trans. 44, 1111–1116 (2012).

Sunday, D.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladar, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

Sunday, D. F.

D. F. Sunday, M. R. Hammond, C. Q. Wang, W. L. Wu, R. J. Kline, and G. E. Stein, “Three-dimensional x-ray metrology for block copolymer lithography line-space patterns,” J. Micro-Nanolith Mem. 12(3), 031103 (2013).
[Crossref]

Tsai, J.

A. Vaid, C. Osorio, J. Tsai, C. Bozdog, M. Sendelbach, E. Grubner, R. Koret, and S. Wolfling, “Hybrid metrology universal engine: co-optimization,” Proc. SPIE 9050, 905009 (2014).
[Crossref]

Vaid, A.

X. X. Zhang, P. Snow, A. Vaid, E. Solecky, H. Zhou, Z. H. Ge, S. Yasharzade, O. Shoval, O. Adan, I. Schwarzband, and M. Bar-Zvi, “Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging,” Proc. SPIE 9424, 94240G (2015).
[Crossref]

X. X. Zhang, H. Zhou, Z. H. Ge, A. Vaid, D. Konduparthi, C. Osorio, S. Ventola, R. Meir, O. Shoval, R. Kris, O. Adan, and M. Bar-Zvi, “Addressing FinFET metrology challenges in 1x node using tilt-beam critical dimension scanning electron microscope,” J. Micro-Nanolith Mem. 13(4), 041407 (2014).
[Crossref]

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladar, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

A. Vaid, C. Osorio, J. Tsai, C. Bozdog, M. Sendelbach, E. Grubner, R. Koret, and S. Wolfling, “Hybrid metrology universal engine: co-optimization,” Proc. SPIE 9050, 905009 (2014).
[Crossref]

Vartanian, V.

R. Attota, B. Bunday, and V. Vartanian, “Critical dimension metrology by through-focus scanning optical microscopy beyond the 22 nm node,” Appl. Phys. Lett. 102(22), 222107 (2013).
[Crossref]

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22 nm node,” Metrology, Inspection, and Process Control for Microlithography XXVII 8681, 86813B (2013).
[Crossref]

V. Vartanian, R. Attota, H. Park, G. Orji, and R. A. Allen, “TSV reveal height and dimension metrology by the TSOM method,” Proc. SPIE 8681, 86812F (2013).
[Crossref]

A. Arceo, B. Bunday, V. Vartanian, and R. Attota, “Patterned defect & CD metrology by TSOM beyond the 22 nm node,” Proc. SPIE 8324, 83240E (2012).
[Crossref]

Ventola, S.

X. X. Zhang, H. Zhou, Z. H. Ge, A. Vaid, D. Konduparthi, C. Osorio, S. Ventola, R. Meir, O. Shoval, R. Kris, O. Adan, and M. Bar-Zvi, “Addressing FinFET metrology challenges in 1x node using tilt-beam critical dimension scanning electron microscope,” J. Micro-Nanolith Mem. 13(4), 041407 (2014).
[Crossref]

Villarrubia, J.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladar, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

Villarrubia, J. S.

A. E. Vladar, J. S. Villarrubia, J. Chawla, B. Ming, J. R. Kline, S. List, and M. T. Postek, “10 nm three-dimensional CD-SEM metrology,” Proc. SPIE 9050, 90500A (2014).
[Crossref]

A. E. Vladar, P. Cizmar, J. S. Villarrubia, and M. T. Postek, “Can we get 3D CD metrology right?” Proc. SPIE 8324, 832402 (2012).
[Crossref]

Vladar, A.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladar, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

Vladar, A. E.

A. E. Vladar, J. S. Villarrubia, J. Chawla, B. Ming, J. R. Kline, S. List, and M. T. Postek, “10 nm three-dimensional CD-SEM metrology,” Proc. SPIE 9050, 90500A (2014).
[Crossref]

A. E. Vladar, P. Cizmar, J. S. Villarrubia, and M. T. Postek, “Can we get 3D CD metrology right?” Proc. SPIE 8324, 832402 (2012).
[Crossref]

N. G. Orji, R. G. Dixson, A. E. Vladar, B. Ming, and M. T. Postek, “Contour metrology using critical dimension atomic force microscopy,” Proc. SPIE 8324, 83240U (2012).
[Crossref]

N. G. Orji, R. G. Dixson, A. E. Vladar, and M. T. Postek, “Strategies for nanoscale contour metrology using critical dimension atomic force microscopy,” Proc. SPIE 8105, 810505 (2011).
[Crossref]

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladar, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Volkman, C.

J. Li, O. Kritsun, P. Dasari, C. Volkman, T. Wallow, and J. T. Hu, “Evaluating scatterometry 3D capabilities for EUV,” Proc. SPIE 8681, 86810S (2013).
[Crossref]

Walboomers, X. F.

V. M. J. I. Cuijpers, X. F. Walboomers, and J. A. Jansen, “Scanning electron microscopy stereoimaging for three-dimensional visualization and analysis of cells in tissue-engineered constructs: technical note,” Tissue Eng. Part C Methods 17(6), 663–668 (2011).
[Crossref] [PubMed]

Wallow, T.

J. Li, O. Kritsun, P. Dasari, C. Volkman, T. Wallow, and J. T. Hu, “Evaluating scatterometry 3D capabilities for EUV,” Proc. SPIE 8681, 86810S (2013).
[Crossref]

Wang, C.

C. Wang, R. L. Jones, E. K. Lin, W.-L. Wu, and J. Leu, “Small angle x-ray scattering measurements of lithographic patterns with sidewall roughness from vertical standing waves,” Appl. Phys. Lett. 90(19), 193122 (2007).
[Crossref]

Wang, C. M.

H. X. Guo, H. Itoh, C. M. Wang, H. Zhang, and D. Fujita, “Focal depth measurement of scanning helium ion microscope,” Appl. Phys. Lett. 105(2), 023105 (2014).
[Crossref]

Wang, C. Q.

D. F. Sunday, M. R. Hammond, C. Q. Wang, W. L. Wu, R. J. Kline, and G. E. Stein, “Three-dimensional x-ray metrology for block copolymer lithography line-space patterns,” J. Micro-Nanolith Mem. 12(3), 031103 (2013).
[Crossref]

Whelan, M. P.

J. M. Gineste, P. Macko, E. A. Patterson, and M. P. Whelan, “Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope,” J. Microsc. 243(2), 172–178 (2011).
[Crossref] [PubMed]

Wildanger, D.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236(1), 35–43 (2009).
[Crossref] [PubMed]

Wildanger, J. D.

A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008).
[Crossref] [PubMed]

Wolff, H.

G. L. Dai, W. Hassler-Grohne, D. Huser, H. Wolff, J. Fluegge, and H. Bosse, “New developments at Physikalisch Technische Bundesanstalt in three-dimensional atomic force microscopy with tapping and torsion atomic force microscopy mode and vector approach probing strategy,” J. Micro-Nanolith Mem. 11(1), 011004 (2012).
[Crossref]

Wolfling, S.

A. Vaid, C. Osorio, J. Tsai, C. Bozdog, M. Sendelbach, E. Grubner, R. Koret, and S. Wolfling, “Hybrid metrology universal engine: co-optimization,” Proc. SPIE 9050, 905009 (2014).
[Crossref]

Wu, W. L.

D. F. Sunday, M. R. Hammond, C. Q. Wang, W. L. Wu, R. J. Kline, and G. E. Stein, “Three-dimensional x-ray metrology for block copolymer lithography line-space patterns,” J. Micro-Nanolith Mem. 12(3), 031103 (2013).
[Crossref]

Wu, W.-L.

C. Wang, R. L. Jones, E. K. Lin, W.-L. Wu, and J. Leu, “Small angle x-ray scattering measurements of lithographic patterns with sidewall roughness from vertical standing waves,” Appl. Phys. Lett. 90(19), 193122 (2007).
[Crossref]

Xu, C. J.

Y. Huang, Q. H. Han, Y. Q. Sui, C. J. Xu, X. Y. Meng, C. W. Li, and S. Ni, “OCD Metrology Evaluation of p-MOS silicon recess with three dimensional design pattern,” ECS Trans. 44, 1111–1116 (2012).

Xu, C. S.

B. G. Kopek, G. Shtengel, C. S. Xu, D. A. Clayton, and H. F. Hess, “Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes,” Proc. Natl. Acad. Sci. U.S.A. 109(16), 6136–6141 (2012).
[Crossref] [PubMed]

Yamaguchi, A.

A. Yamaguchi, T. Ohashi, T. Kawasaki, O. Inoue, and H. Kawada, “Three-dimensional profile extraction from CD-SEM image and top/bottom CD measurement by line-edge roughness analysis,” Proc. SPIE 8681, 86812Z (2013).
[Crossref]

Yasharzade, S.

X. X. Zhang, P. Snow, A. Vaid, E. Solecky, H. Zhou, Z. H. Ge, S. Yasharzade, O. Shoval, O. Adan, I. Schwarzband, and M. Bar-Zvi, “Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging,” Proc. SPIE 9424, 94240G (2015).
[Crossref]

Zhang, H.

H. X. Guo, H. Itoh, C. M. Wang, H. Zhang, and D. Fujita, “Focal depth measurement of scanning helium ion microscope,” Appl. Phys. Lett. 105(2), 023105 (2014).
[Crossref]

Zhang, N. F.

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladar, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

Zhang, X. X.

X. X. Zhang, P. Snow, A. Vaid, E. Solecky, H. Zhou, Z. H. Ge, S. Yasharzade, O. Shoval, O. Adan, I. Schwarzband, and M. Bar-Zvi, “Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging,” Proc. SPIE 9424, 94240G (2015).
[Crossref]

X. X. Zhang, H. Zhou, Z. H. Ge, A. Vaid, D. Konduparthi, C. Osorio, S. Ventola, R. Meir, O. Shoval, R. Kris, O. Adan, and M. Bar-Zvi, “Addressing FinFET metrology challenges in 1x node using tilt-beam critical dimension scanning electron microscope,” J. Micro-Nanolith Mem. 13(4), 041407 (2014).
[Crossref]

Zhang, Y. L.

R. Chao, K. K. Kohli, Y. L. Zhang, A. Madan, G. R. Muthinti, A. J. Hong, D. Conklin, J. Holt, and T. C. Bailey, “Multitechnique metrology methods for evaluating pitch walking in 14 nm and beyond FinFETs,” J. Micro-Nanolith. Mem. 13, 041411 (2014).

Zhao, J. L.

J. L. Di, J. L. Zhao, and A. Asundi, “Compact digital holoscope with dual wavelength,” Information Optics and Optical Data Storage Ii 8559, 855908 (2012).
[Crossref]

Zhao, Q.

H. Chouaib and Q. Zhao, “Nanoscale optical critical dimension measurement of a contact hole using deep ultraviolet spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 31(1), 011803 (2013).
[Crossref]

Zhou, H.

X. X. Zhang, P. Snow, A. Vaid, E. Solecky, H. Zhou, Z. H. Ge, S. Yasharzade, O. Shoval, O. Adan, I. Schwarzband, and M. Bar-Zvi, “Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging,” Proc. SPIE 9424, 94240G (2015).
[Crossref]

X. X. Zhang, H. Zhou, Z. H. Ge, A. Vaid, D. Konduparthi, C. Osorio, S. Ventola, R. Meir, O. Shoval, R. Kris, O. Adan, and M. Bar-Zvi, “Addressing FinFET metrology challenges in 1x node using tilt-beam critical dimension scanning electron microscope,” J. Micro-Nanolith Mem. 13(4), 041407 (2014).
[Crossref]

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladar, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, and F. Goasmat, “Fourier domain optical tool normalization for quantitative parametric image reconstruction,” Appl. Opt. 52(26), 6512–6522 (2013).
[Crossref] [PubMed]

AIP Conf. Proc. (1)

R. Attota, D. G. Seiler, A. C. Diebold, R. McDonald, A. Chabli, and E. M. Secula, “TSOM method for nanoelectronics dimensional metrology,” AIP Conf. Proc. 1395, 57–63 (2011).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

H. X. Guo, H. Itoh, C. M. Wang, H. Zhang, and D. Fujita, “Focal depth measurement of scanning helium ion microscope,” Appl. Phys. Lett. 105(2), 023105 (2014).
[Crossref]

C. Wang, R. L. Jones, E. K. Lin, W.-L. Wu, and J. Leu, “Small angle x-ray scattering measurements of lithographic patterns with sidewall roughness from vertical standing waves,” Appl. Phys. Lett. 90(19), 193122 (2007).
[Crossref]

R. Attota, B. Bunday, and V. Vartanian, “Critical dimension metrology by through-focus scanning optical microscopy beyond the 22 nm node,” Appl. Phys. Lett. 102(22), 222107 (2013).
[Crossref]

R. Attota and R. G. Dixson, “Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes,” Appl. Phys. Lett. 105(4), 043101 (2014).
[Crossref]

ECS Trans. (1)

Y. Huang, Q. H. Han, Y. Q. Sui, C. J. Xu, X. Y. Meng, C. W. Li, and S. Ni, “OCD Metrology Evaluation of p-MOS silicon recess with three dimensional design pattern,” ECS Trans. 44, 1111–1116 (2012).

Information Optics and Optical Data Storage Ii (1)

J. L. Di, J. L. Zhao, and A. Asundi, “Compact digital holoscope with dual wavelength,” Information Optics and Optical Data Storage Ii 8559, 855908 (2012).
[Crossref]

J. Micro-Nanolith Mem. (3)

D. F. Sunday, M. R. Hammond, C. Q. Wang, W. L. Wu, R. J. Kline, and G. E. Stein, “Three-dimensional x-ray metrology for block copolymer lithography line-space patterns,” J. Micro-Nanolith Mem. 12(3), 031103 (2013).
[Crossref]

G. L. Dai, W. Hassler-Grohne, D. Huser, H. Wolff, J. Fluegge, and H. Bosse, “New developments at Physikalisch Technische Bundesanstalt in three-dimensional atomic force microscopy with tapping and torsion atomic force microscopy mode and vector approach probing strategy,” J. Micro-Nanolith Mem. 11(1), 011004 (2012).
[Crossref]

X. X. Zhang, H. Zhou, Z. H. Ge, A. Vaid, D. Konduparthi, C. Osorio, S. Ventola, R. Meir, O. Shoval, R. Kris, O. Adan, and M. Bar-Zvi, “Addressing FinFET metrology challenges in 1x node using tilt-beam critical dimension scanning electron microscope,” J. Micro-Nanolith Mem. 13(4), 041407 (2014).
[Crossref]

J. Micro-Nanolith. Mem. (2)

Y. S. Ku, “Spectral reflectometry for metrology of three-dimensional through-silicon vias,” J. Micro-Nanolith. Mem. 13, 011209 (2014).

R. Chao, K. K. Kohli, Y. L. Zhang, A. Madan, G. R. Muthinti, A. J. Hong, D. Conklin, J. Holt, and T. C. Bailey, “Multitechnique metrology methods for evaluating pitch walking in 14 nm and beyond FinFETs,” J. Micro-Nanolith. Mem. 13, 041411 (2014).

J. Microsc. (2)

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236(1), 35–43 (2009).
[Crossref] [PubMed]

J. M. Gineste, P. Macko, E. A. Patterson, and M. P. Whelan, “Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope,” J. Microsc. 243(2), 172–178 (2011).
[Crossref] [PubMed]

J. Vac. Sci. Technol. B (1)

H. Chouaib and Q. Zhao, “Nanoscale optical critical dimension measurement of a contact hole using deep ultraviolet spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 31(1), 011803 (2013).
[Crossref]

Lithography Asia (1)

T. M. Bao, L. Mininni, and D. Dawson, “Improving sidewall profile metrology with enhanced 3D-AFM,” Lithography Asia 2008, 7140 (2008).

Meas. Sci. Technol. (3)

W. Häßler-Grohne, D. Huser, K. P. Johnsen, C. G. Frase, and H. Bosse, “Current limitations of SEM and AFM metrology for the characterization of 3D nanostructures,” Meas. Sci. Technol. 22(9), 094003 (2011).
[Crossref]

J. A. Kramar, R. Dixson, and N. G. Orji, “Scanning probe microscope dimensional metrology at NIST,” Meas. Sci. Technol. 22(2), 024001 (2011).
[Crossref]

R. Attota and R. Silver, “Nanometrology using a through-focus scanning optical microscopy method,” Meas. Sci. Technol. 22(2), 024002 (2011).
[Crossref]

Metrology, Inspection, and Process Control for Microlithography XXVII (1)

B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22 nm node,” Metrology, Inspection, and Process Control for Microlithography XXVII 8681, 86813B (2013).
[Crossref]

Microsc. Res. Tech. (1)

A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008).
[Crossref] [PubMed]

Mikrochim. Acta (1)

H. Schroettner, M. Schmied, and S. Scherer, “Comparison of 3D surface reconstruction data from certified depth standards obtained by SEM and an infinite focus measurement machine (IFM),” Mikrochim. Acta 155(1-2), 279–284 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

P. Soc. Photo-Opt. Ins. (1)

R. Attota, R. M. Silver, M. R. Bishop, and R. G. Dixson, “Optical critical dimension measurement and illumination analysis using the through-focus focus metric - art. no. 61520K,” P. Soc. Photo-Opt. Ins. 6152, K1520 (2006).

Proc. Natl. Acad. Sci. U.S.A. (1)

B. G. Kopek, G. Shtengel, C. S. Xu, D. A. Clayton, and H. F. Hess, “Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes,” Proc. Natl. Acad. Sci. U.S.A. 109(16), 6136–6141 (2012).
[Crossref] [PubMed]

Proc. SPIE (14)

N. G. Orji, R. G. Dixson, A. E. Vladar, B. Ming, and M. T. Postek, “Contour metrology using critical dimension atomic force microscopy,” Proc. SPIE 8324, 83240U (2012).
[Crossref]

A. E. Vladar, P. Cizmar, J. S. Villarrubia, and M. T. Postek, “Can we get 3D CD metrology right?” Proc. SPIE 8324, 832402 (2012).
[Crossref]

X. X. Zhang, P. Snow, A. Vaid, E. Solecky, H. Zhou, Z. H. Ge, S. Yasharzade, O. Shoval, O. Adan, I. Schwarzband, and M. Bar-Zvi, “Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging,” Proc. SPIE 9424, 94240G (2015).
[Crossref]

N. G. Orji, R. G. Dixson, A. E. Vladar, and M. T. Postek, “Strategies for nanoscale contour metrology using critical dimension atomic force microscopy,” Proc. SPIE 8105, 810505 (2011).
[Crossref]

J. Carrero and G. Percin, “Accurate optical CD profiler based on specialized finite element method,” Proc. SPIE 8324, 83240P (2012).
[Crossref]

J. Li, O. Kritsun, P. Dasari, C. Volkman, T. Wallow, and J. T. Hu, “Evaluating scatterometry 3D capabilities for EUV,” Proc. SPIE 8681, 86810S (2013).
[Crossref]

A. Yamaguchi, T. Ohashi, T. Kawasaki, O. Inoue, and H. Kawada, “Three-dimensional profile extraction from CD-SEM image and top/bottom CD measurement by line-edge roughness analysis,” Proc. SPIE 8681, 86812Z (2013).
[Crossref]

R. M. Silver, B. M. Barnes, N. F. Zhang, H. Zhou, A. Vladar, J. Villarrubia, J. Kline, D. Sunday, and A. Vaid, “Optimizing hybrid metrology through a consistent multi-tool parameter set and uncertainty model,” Proc. SPIE 9050, 905004 (2014).
[Crossref]

A. Vaid, C. Osorio, J. Tsai, C. Bozdog, M. Sendelbach, E. Grubner, R. Koret, and S. Wolfling, “Hybrid metrology universal engine: co-optimization,” Proc. SPIE 9050, 905009 (2014).
[Crossref]

A. E. Vladar, J. S. Villarrubia, J. Chawla, B. Ming, J. R. Kline, S. List, and M. T. Postek, “10 nm three-dimensional CD-SEM metrology,” Proc. SPIE 9050, 90500A (2014).
[Crossref]

V. Vartanian, R. Attota, H. Park, G. Orji, and R. A. Allen, “TSV reveal height and dimension metrology by the TSOM method,” Proc. SPIE 8681, 86812F (2013).
[Crossref]

A. Arceo, B. Bunday, V. Vartanian, and R. Attota, “Patterned defect & CD metrology by TSOM beyond the 22 nm node,” Proc. SPIE 8324, 83240E (2012).
[Crossref]

A. Arceo, B. Bunday, and R. Attota, “Use of TSOM for sub-11 nm node pattern defect detection and HAR features,” Proc. SPIE 8681, 86812G (2013).
[Crossref]

R. Attota, R. G. Dixson, J. A. Kramar, J. E. Potzick, A. E. Vladar, B. Bunday, E. Novak, and A. Rudack, “TSOM method for semiconductor metrology,” Proc. SPIE 7971, 79710T (2011).
[Crossref]

Tissue Eng. Part C Methods (1)

V. M. J. I. Cuijpers, X. F. Walboomers, and J. A. Jansen, “Scanning electron microscopy stereoimaging for three-dimensional visualization and analysis of cells in tissue-engineered constructs: technical note,” Tissue Eng. Part C Methods 17(6), 663–668 (2011).
[Crossref] [PubMed]

Other (8)

R. Attota, R. M. Silver, M. Stocker, E. Marx, J. Jun, M. Davidson, and R. Larrabee, “A new method to enhance overlay tool performance,” Metrology, Inspection, and Process Control for Microlithography Xvii, Pts 1 and 2 5038, 428–436 (2003).

R. Attota, R. Silver, and B. M. Barnes, “Optical through-focus technique that differentiates small changes in line width, line height and sidewall angle for CD, overlay, and defect metrology applications,” Metrology, Inspection, and Process Control for Microlithography Xxii, Pts 1 and 2 6922(2008).
[Crossref]

S. I. Association, The International Technology Roadmap for Semiconductors (ITRS) (Semiconductor Industry Association, 2011).

M. Ryabko, S. Koptyev, A. Shchekin, and A. Medvedev, “Improved critical dimension inspection for the semiconductor industry,” SPIE Newsroom, 5515 (2014).

R. Attota and V. Jindal, “Inspecting mask defects with through-focus scanning optical microscopy,” SPIE Newsroom, 4964 (2013).

S. E. M. I. document, Guide for metrology techniques to be used in measurement of geometrical parameters of through- silicon vias (TSVs) in 3DS-IC structures (SEMI, 2013).

S. N. Koptyaev, M. V. Ryabko, and M. N. Rychagov, “Optical measurement system and method for measuring critical dimension of nanostructure ” US patent (2013).

S. N. Koptyaev, M. V. Ryabko, A. V. Hcherbakov, and A. D. Lantsov, “Optical measuring system and method of measuring critical size,” US patent (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Flow chart showing the steps taken to construct TSOM and D-TSOM images.
Fig. 2
Fig. 2 Schematic of an objective showing (a) illumination (red), and (b) collection (blue) cones. Collection cone (CNA) depends on the NA of the objective and is fixed. Illumination cone (or INA) can be varied by changing the aperture diaphragm. Schematic of an objective showing (c) large, and (d) small INAs for a fixed CNA; and (e) large, and (f) small CNAs for a fixed INA.
Fig. 3
Fig. 3 Figure showing the effect of the illumination NA (INA) on TSOM sensitivity. (a), (b) and (c) TSOM images for INAs of 0.15, 0.31 and 0.85, respectively. (a’), (b’) and (c’) D-TSOM images for INAs of 0.15, 0.31 and 0.85, respectively. CNA = 0.85, Focus step size = 300 nm, Camera pixel scale = 32 nm/pixel, Interpolated pixel scale = 16 nm/pixel, λ = 520 nm, 90° polarized light.
Fig. 4
Fig. 4 Figure showing the effect of the collection NA (CNA) on TSOM sensitivity. (a) and (b) TSOM images for CNAs of 0.55 and 0.85, respectively. (a’) and (b’) D-TSOM images for CNAs of 0.55 and 0.85, respectively. INA = 0.15, Focus step size = 300 nm, Camera pixel scale = 32 nm/pixel, Interpolated pixel scale = 16 nm/pixel, λ = 520 nm, 90° polarized light.
Fig. 5
Fig. 5 Figure showing the effect of the illumination wavelength (λ) on TSOM sensitivity. (a) and (b) Processed TSOM images for λ = 520 nm, and λ = 405 nm, respectively. (a’) and (b’) D-TSOM images for λ = 520 nm, and λ = 405 nm, respectively. INA = 0.15, CNA = 0.55, Focus step size = 300 nm, Camera pixel scale = 65 nm/pixel, Interpolated pixel scale = 20 nm/pixel, un-polarized light.
Fig. 6
Fig. 6 Figure showing the effect of the camera pixel scale on TSOM sensitivity. (a) and (b) Raw TSOM images for camera pixel scales of 16 nm/pixel (5.8 MP), and 161 nm/pixel (0.056 MP), respectively. (a’) and (b’) Processed TSOM images for camera pixel scales of 16 nm/pixel, and 161 nm/pixel, respectively. (a”) and (b”) D-TSOM images for camera pixel scales of 16 nm/pixel, and 161 nm/pixel, respectively. INA = 0.15, CNA = 0.55, Focus step size = 300 nm, Interpolated pixel scale ~20 nm/pixel, λ = 520 nm, un-polarized light.
Fig. 7
Fig. 7 Figure showing the effect of the focus step size on TSOM sensitivity. (a), (b) and (c) Raw TSOM images for focus steps of 100 nm (250 images), 500 nm (50 images) and 2000 nm (12 images), respectively. (a’), (b’) and (c’) Processed TSOM images for focus steps of 100 nm, 500 nm and 2000 nm, respectively (linewidth = 31 nm). (a”), (b”) and (c”) D-TSOM images for focus steps of 100 nm, 500 nm and 2000 nm, respectively. INA = 0.15, CNA = 0.55, Camera pixel scale = 65 nm/pixel, Interpolated pixel scale = 20 nm/pixel, λ = 520 nm, 90° polarized light.
Fig. 8
Fig. 8 Test to determine the minimum number of pixels in a TSOM image needed to get sufficient sensitivity. (a) Raw TSOM image constructed with 375 pixels. (b) Processed TSOM image. (d) D-TSOM image. INA = 0.15, CNA = 0.55, Focus step = 1500 nm, Camera pixel scale = 161 nm/pixel, Interpolated pixel scale = 20 nm/pixel, λ = 520 nm, un-polarized light.
Fig. 9
Fig. 9 Test to determine the minimum number of focus steps needed for the TSOM analysis. (a) Raw TSOM image with 6 focus steps. (b) Processed TSOM image. (d) D-TSOM image. INA = 0.15, CNA = 0.55, Focus step = 2000 nm, Camera pixel scale = 65 nm/pixel, Interpolated pixel scale = 20 nm/pixel, λ = 520 nm, 90° polarized light.

Metrics