Abstract

In this paper, we present a comprehensive simulation-based analysis of the two photonic effects of a Bragg stack - a modified local density of photon states (LDOS) and an enhanced local irradiance - on the upconversion (UC) luminescence and quantum yield of the upconverter β-NaYF4 doped with 25% Er3+. The investigated Bragg stack consists of alternating layers of TiO2 and Poly(methylmethacrylate), the latter containing upconverter nanoparticles. Using experimentally determined input parameters, the photonic effects are first simulated separately and subsequently coupled in a rate equation model, describing the dynamics of the UC processes within β-NaYF4:25% Er3+. With this integrated simulation model, the Bragg stack design is optimized to maximize either the UC quantum yield (UCQY) or UC luminescence. We find that in an optimized Bragg stack, due to the modified LDOS, the maximum UCQY is enhanced from 14% to 16%, compared to an unstructured layer of upconverter material. Additionally, this maximum UCQY can already be reached at an incident irradiance as low as 100 W/m2. With a Bragg stack design that maximizes UC luminescence, enhancement factors of up to 480 of the UC luminescence can be reached.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced upconversion quantum yield near spherical gold nanoparticles – a comprehensive simulation based analysis

Stefan Fischer, Deepu Kumar, Florian Hallermann, Gero von Plessen, and Jan Christoph Goldschmidt
Opt. Express 24(6) A460-A475 (2016)

Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states – a simulation-based analysis

Barbara Herter, Sebastian Wolf, Stefan Fischer, Johannes Gutmann, Benedikt Bläsi, and Jan Christoph Goldschmidt
Opt. Express 21(S5) A883-A900 (2013)

Enhanced upconversion in one-dimensional photonic crystals: a simulation-based assessment within realistic material and fabrication constraints

Clarissa L. M. Hofmann, Emil H. Eriksen, Stefan Fischer, Bryce S. Richards, Peter Balling, and Jan Christoph Goldschmidt
Opt. Express 26(6) 7537-7554 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
    [Crossref] [PubMed]
  2. Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles. a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
    [PubMed]
  3. F. C. J. M. van Veggel, C. Dong, N. J. Johnson, and J. Pichaandi, “Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered,” Nanoscale 4(23), 7309–7321 (2012).
    [Crossref] [PubMed]
  4. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  5. T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
    [Crossref]
  6. B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE T. Electron Dev. 54(10), 2679–2684 (2007).
    [Crossref]
  7. S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
    [Crossref]
  8. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
    [Crossref]
  9. K. W. Krämer, H. U. Güdel, and R. N. Schwartz, “Infrared-to-visible upconversion in LaCl3 1% Er3+: Energy-level and line-strength calculations,” Phys. Rev. B 56(21), 13830–13840 (1997).
    [Crossref]
  10. S. Fischer, E. Favilla, M. Tonelli, and J. C. Goldschmidt, “Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8. 30% Er3+ upconverter,” Sol. Energy Mater. Sol. Cells 136, 127–134 (2015).
    [Crossref]
  11. J. C. Goldschmidt, S. Fischer, P. Löper, K. W. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95(7), 1960–1963 (2011).
    [Crossref]
  12. C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Theoretical and experimental evaluation of silicon photonic structures for enhanced erbium up-conversion luminescence,” Sol. Energy Mater. Sol. Cells 112, 168–181 (2013).
    [Crossref]
  13. Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.) 49(36), 3781–3783 (2013).
    [Crossref] [PubMed]
  14. S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
    [Crossref] [PubMed]
  15. W. Niu, L. T. Su, R. Chen, H. Chen, Y. Wang, A. Palaniappan, H. Sun, and A. I. Tok, “3-Dimensional photonic crystal surface enhanced upconversion emission for improved near-infrared photoresponse,” Nanoscale 6(2), 817–824 (2014).
    [Crossref] [PubMed]
  16. J. H. Lin, H. Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, and C. C. Hsu, “Giant Enhancement of Upconversion Fluorescence of NaYF4:Yb3+,Tm3+ Nanocrystals with Resonant Waveguide Grating Substrate,” ACS Photonics 2(4), 530–536 (2015).
    [Crossref]
  17. B. Herter, Photonic Structures for Systems with Silicon Solar Cells and Upconverters, Dissertation, Konstanz, Universität (2015).
  18. Z.-X. Li, L.-L. Li, H.-P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C.-H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.) 43, 6616–6618 (2009).
    [Crossref] [PubMed]
  19. Z. Fan, D. Yonghui, S. Yifeng, Z. Renyuan, and Z. Dongyuan, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
    [Crossref]
  20. L. Tao, W. Xu, Y. Zhu, L. Xu, H. Zhu, Y. Liu, S. Xu, P. Zhou, and H. Song, “Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4186–4195 (2014).
    [Crossref]
  21. B. Herter, S. Wolf, S. Fischer, J. Gutmann, B. Bläsi, and J. C. Goldschmidt, “Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis,” Opt. Express 21(S5), A883–A900 (2013).
    [Crossref] [PubMed]
  22. S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
    [Crossref] [PubMed]
  23. S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
    [Crossref] [PubMed]
  24. S. Fischer, D. Kumar, F. Hallermann, G. von Plessen, and J. C. Goldschmidt, “Enhanced upconversion quantum yield near spherical gold nanoparticles - a comprehensive simulation based analysis,” Opt. Express 24(6), A460–A475 (2016).
    [Crossref] [PubMed]
  25. E. Verhagen, L. Kuipers, and A. Polman, “Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence,” Opt. Express 17(17), 14586–14598 (2009).
    [Crossref] [PubMed]
  26. D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
    [Crossref] [PubMed]
  27. B. Herter, S. Wolf, S. Fischer, C. L. M. Hofmann, M. Zilk, H. Hauser, B. Bläsi, F. C. J. M. van Veggel, and J. C. Goldschmidt, “Photonic structures enhancing upconversion luminescence,” (in preparation).
  28. J. Gutmann, Photonic luminescent solar concentrators - How photonic crystals affect the emission and guiding of light, Dissertation, Freiburg, Albert-Ludwigs Universität (2014).
  29. S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 03109 (2012).
    [Crossref]
  30. F. Bödicker, Modellierung des strahlenden Emissionsverhaltens in einer photonischen Solarzelle, Bachelor's thesis, Darmstadt, Technical University, 2012.
  31. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
    [Crossref]
  32. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13(5), 1024–1035 (1996).
    [Crossref]
  33. H. A. Macleod, Thin Film Optical Filters, 3rd (Taylor & Francis, 2001).
  34. W. Nolting, Grundkurs Theoretische Physik 3, Elektrodynamik, 10th ed. (Springer Spektrum, 2013).
  35. “MIT Photonic-Bands,” http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands .
  36. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [Crossref] [PubMed]
  37. I. S. Nikolaev, W. L. Vos, and A. F. Koenderink, “Accurate calculation of the local density of optical states in inverse-opal photonic crystals,” J. Opt. Soc. Am. B 26(5), 987–997 (2009).
    [Crossref]
  38. J. Gutmann, H. Zappe, and J. C. Goldschmidt, “Quantitative modeling of fluorescence emission in photonic crystals,” Phys. Rev. B 88, 239901 (2013).
  39. OriginLab, “The Smooth Dialog Box,” http://www.originlab.de/doc/Origin-Help/Smooth-Dialog .
  40. J. Gutmann, M. Peters, B. Bläsi, M. Hermle, A. Gombert, H. Zappe, and J. C. Goldschmidt, “Electromagnetic simulations of a photonic luminescent solar concentrator,” Opt. Express 20(S2), A157–A167 (2012).
    [Crossref] [PubMed]
  41. S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Insights in the upconversion efficiency and dynamics of β-NaYF4: Er3+ by advanced modeling using rate equations,” submitted (2015).
  42. M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
    [Crossref] [PubMed]
  43. S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
    [Crossref]
  44. R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
    [Crossref]
  45. J. P. Dowling and C. M. Bowden, “Atomic emission rates in inhomogeneous media with applications to photonic band structures,” Phys. Rev. A 46(1), 612–622 (1992).
    [Crossref] [PubMed]
  46. M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71(11), 115102 (2005).
    [Crossref]
  47. C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
    [Crossref] [PubMed]
  48. P. Andrew and W. L. Barnes, “Förster Energy Transfer in an Optical Microcavity,” Science 290(5492), 785–788 (2000).
    [Crossref] [PubMed]
  49. S. Fischer, B. Fröhlich, K. W. Kramer, and J.-C. Goldschmidt, “Relation Between Excitation Power Density and Er3+ Doping Yielding the Highest Absolute Upconversion Quantum Yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
    [Crossref]
  50. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  51. S. Fischer, B. Fröhlich, H. Steinkemper, K. W. Krämer, and J. C. Goldschmidt, “Absolute upconversion quantum yield of β-NaYF4 doped with Er3+ and external quantum efficiency of upconverter solar cell devices under broad-band excitation considering spectral mismatch corrections,” Sol. Energy Mater. Sol. Cells 122, 197–207 (2014).
    [Crossref]
  52. J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, and D. Biner, eds., Advanced Upconverter Systems with Spectral and Geometric Concentration for High Upconversion Efficiencies, 2008 COMMAD (2008).
  53. G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, K. W. Krämer, S. Fischer, J. C. Goldschmidt, and B. S. Richards, “Enhanced up-conversion for photovoltaics via concentrating integrated optics,” Opt. Express 22(S2), A452–A464 (2014).
    [Crossref] [PubMed]
  54. G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
    [Crossref]
  55. C. Strümpel, M. McCann, C. D. Canizo, I. Tobías, and P. Fath, Erbium-doped up-converters of silicon solar cells: assessment of the potential, Proceedings of the 20th European Photovoltaic Solar Energy Conference. (2005).
  56. I. M. Peters, Photonic concepts for solar cells, Dissertation, Freiburg, Albert-Ludwigs Universität (2009).

2016 (1)

2015 (5)

S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
[Crossref]

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles. a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[PubMed]

S. Fischer, E. Favilla, M. Tonelli, and J. C. Goldschmidt, “Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8. 30% Er3+ upconverter,” Sol. Energy Mater. Sol. Cells 136, 127–134 (2015).
[Crossref]

J. H. Lin, H. Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, and C. C. Hsu, “Giant Enhancement of Upconversion Fluorescence of NaYF4:Yb3+,Tm3+ Nanocrystals with Resonant Waveguide Grating Substrate,” ACS Photonics 2(4), 530–536 (2015).
[Crossref]

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

2014 (7)

S. Fischer, B. Fröhlich, H. Steinkemper, K. W. Krämer, and J. C. Goldschmidt, “Absolute upconversion quantum yield of β-NaYF4 doped with Er3+ and external quantum efficiency of upconverter solar cell devices under broad-band excitation considering spectral mismatch corrections,” Sol. Energy Mater. Sol. Cells 122, 197–207 (2014).
[Crossref]

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, K. W. Krämer, S. Fischer, J. C. Goldschmidt, and B. S. Richards, “Enhanced up-conversion for photovoltaics via concentrating integrated optics,” Opt. Express 22(S2), A452–A464 (2014).
[Crossref] [PubMed]

S. Fischer, B. Fröhlich, K. W. Kramer, and J.-C. Goldschmidt, “Relation Between Excitation Power Density and Er3+ Doping Yielding the Highest Absolute Upconversion Quantum Yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

W. Niu, L. T. Su, R. Chen, H. Chen, Y. Wang, A. Palaniappan, H. Sun, and A. I. Tok, “3-Dimensional photonic crystal surface enhanced upconversion emission for improved near-infrared photoresponse,” Nanoscale 6(2), 817–824 (2014).
[Crossref] [PubMed]

L. Tao, W. Xu, Y. Zhu, L. Xu, H. Zhu, Y. Liu, S. Xu, P. Zhou, and H. Song, “Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4186–4195 (2014).
[Crossref]

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

2013 (5)

B. Herter, S. Wolf, S. Fischer, J. Gutmann, B. Bläsi, and J. C. Goldschmidt, “Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis,” Opt. Express 21(S5), A883–A900 (2013).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

J. Gutmann, H. Zappe, and J. C. Goldschmidt, “Quantitative modeling of fluorescence emission in photonic crystals,” Phys. Rev. B 88, 239901 (2013).

C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Theoretical and experimental evaluation of silicon photonic structures for enhanced erbium up-conversion luminescence,” Sol. Energy Mater. Sol. Cells 112, 168–181 (2013).
[Crossref]

Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.) 49(36), 3781–3783 (2013).
[Crossref] [PubMed]

2012 (5)

F. C. J. M. van Veggel, C. Dong, N. J. Johnson, and J. Pichaandi, “Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered,” Nanoscale 4(23), 7309–7321 (2012).
[Crossref] [PubMed]

J. Gutmann, M. Peters, B. Bläsi, M. Hermle, A. Gombert, H. Zappe, and J. C. Goldschmidt, “Electromagnetic simulations of a photonic luminescent solar concentrator,” Opt. Express 20(S2), A157–A167 (2012).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[Crossref] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 03109 (2012).
[Crossref]

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

2011 (2)

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

J. C. Goldschmidt, S. Fischer, P. Löper, K. W. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95(7), 1960–1963 (2011).
[Crossref]

2010 (3)

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Z. Fan, D. Yonghui, S. Yifeng, Z. Renyuan, and Z. Dongyuan, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

2009 (3)

2007 (2)

B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE T. Electron Dev. 54(10), 2679–2684 (2007).
[Crossref]

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

2006 (1)

T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[Crossref]

2005 (1)

M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71(11), 115102 (2005).
[Crossref]

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

2001 (1)

2000 (1)

P. Andrew and W. L. Barnes, “Förster Energy Transfer in an Optical Microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

1999 (1)

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[Crossref]

1997 (1)

K. W. Krämer, H. U. Güdel, and R. N. Schwartz, “Infrared-to-visible upconversion in LaCl3 1% Er3+: Energy-level and line-strength calculations,” Phys. Rev. B 56(21), 13830–13840 (1997).
[Crossref]

1996 (2)

L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13(5), 1024–1035 (1996).
[Crossref]

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
[Crossref]

1992 (1)

J. P. Dowling and C. M. Bowden, “Atomic emission rates in inhomogeneous media with applications to photonic band structures,” Phys. Rev. A 46(1), 612–622 (1992).
[Crossref] [PubMed]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Andrew, P.

P. Andrew and W. L. Barnes, “Förster Energy Transfer in an Optical Microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

Arkhipov, V.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Arnaoutakis, G. E.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, K. W. Krämer, S. Fischer, J. C. Goldschmidt, and B. S. Richards, “Enhanced up-conversion for photovoltaics via concentrating integrated optics,” Opt. Express 22(S2), A452–A464 (2014).
[Crossref] [PubMed]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Banerjee, D.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Barnes, W. L.

P. Andrew and W. L. Barnes, “Förster Energy Transfer in an Optical Microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

Bauer, G. H.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Beaucarne, G.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Biner, D.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[Crossref] [PubMed]

J. C. Goldschmidt, S. Fischer, P. Löper, K. W. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95(7), 1960–1963 (2011).
[Crossref]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Bläsi, B.

Blum, C.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Bowden, C. M.

J. P. Dowling and C. M. Bowden, “Atomic emission rates in inhomogeneous media with applications to photonic band structures,” Phys. Rev. A 46(1), 612–622 (1992).
[Crossref] [PubMed]

Brüggemann, R.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Canizo, C. D.

C. Strümpel, M. McCann, C. D. Canizo, I. Tobías, and P. Fath, Erbium-doped up-converters of silicon solar cells: assessment of the potential, Proceedings of the 20th European Photovoltaic Solar Energy Conference. (2005).

Chen, C.

Z.-X. Li, L.-L. Li, H.-P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C.-H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.) 43, 6616–6618 (2009).
[Crossref] [PubMed]

Chen, H.

W. Niu, L. T. Su, R. Chen, H. Chen, Y. Wang, A. Palaniappan, H. Sun, and A. I. Tok, “3-Dimensional photonic crystal surface enhanced upconversion emission for improved near-infrared photoresponse,” Nanoscale 6(2), 817–824 (2014).
[Crossref] [PubMed]

Chen, R.

W. Niu, L. T. Su, R. Chen, H. Chen, Y. Wang, A. Palaniappan, H. Sun, and A. I. Tok, “3-Dimensional photonic crystal surface enhanced upconversion emission for improved near-infrared photoresponse,” Nanoscale 6(2), 817–824 (2014).
[Crossref] [PubMed]

Chen, X.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Conibeer, G. J.

C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Theoretical and experimental evaluation of silicon photonic structures for enhanced erbium up-conversion luminescence,” Sol. Energy Mater. Sol. Cells 112, 168–181 (2013).
[Crossref]

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[Crossref]

de Dood, M. J. A.

M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71(11), 115102 (2005).
[Crossref]

del Cañizo, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Dionne, J. A.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

Dong, B.

Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.) 49(36), 3781–3783 (2013).
[Crossref] [PubMed]

Dong, C.

F. C. J. M. van Veggel, C. Dong, N. J. Johnson, and J. Pichaandi, “Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered,” Nanoscale 4(23), 7309–7321 (2012).
[Crossref] [PubMed]

Dongyuan, Z.

Z. Fan, D. Yonghui, S. Yifeng, Z. Renyuan, and Z. Dongyuan, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

Dowling, J. P.

J. P. Dowling and C. M. Bowden, “Atomic emission rates in inhomogeneous media with applications to photonic band structures,” Phys. Rev. A 46(1), 612–622 (1992).
[Crossref] [PubMed]

Eichelkraut, T.

Fan, Z.

Z. Fan, D. Yonghui, S. Yifeng, Z. Renyuan, and Z. Dongyuan, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

Fath, P.

C. Strümpel, M. McCann, C. D. Canizo, I. Tobías, and P. Fath, Erbium-doped up-converters of silicon solar cells: assessment of the potential, Proceedings of the 20th European Photovoltaic Solar Energy Conference. (2005).

Favilla, E.

S. Fischer, E. Favilla, M. Tonelli, and J. C. Goldschmidt, “Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8. 30% Er3+ upconverter,” Sol. Energy Mater. Sol. Cells 136, 127–134 (2015).
[Crossref]

Fischer, S.

S. Fischer, D. Kumar, F. Hallermann, G. von Plessen, and J. C. Goldschmidt, “Enhanced upconversion quantum yield near spherical gold nanoparticles - a comprehensive simulation based analysis,” Opt. Express 24(6), A460–A475 (2016).
[Crossref] [PubMed]

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

S. Fischer, E. Favilla, M. Tonelli, and J. C. Goldschmidt, “Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8. 30% Er3+ upconverter,” Sol. Energy Mater. Sol. Cells 136, 127–134 (2015).
[Crossref]

S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
[Crossref]

S. Fischer, B. Fröhlich, K. W. Kramer, and J.-C. Goldschmidt, “Relation Between Excitation Power Density and Er3+ Doping Yielding the Highest Absolute Upconversion Quantum Yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

S. Fischer, B. Fröhlich, H. Steinkemper, K. W. Krämer, and J. C. Goldschmidt, “Absolute upconversion quantum yield of β-NaYF4 doped with Er3+ and external quantum efficiency of upconverter solar cell devices under broad-band excitation considering spectral mismatch corrections,” Sol. Energy Mater. Sol. Cells 122, 197–207 (2014).
[Crossref]

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, K. W. Krämer, S. Fischer, J. C. Goldschmidt, and B. S. Richards, “Enhanced up-conversion for photovoltaics via concentrating integrated optics,” Opt. Express 22(S2), A452–A464 (2014).
[Crossref] [PubMed]

B. Herter, S. Wolf, S. Fischer, J. Gutmann, B. Bläsi, and J. C. Goldschmidt, “Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis,” Opt. Express 21(S5), A883–A900 (2013).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[Crossref] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 03109 (2012).
[Crossref]

J. C. Goldschmidt, S. Fischer, P. Löper, K. W. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95(7), 1960–1963 (2011).
[Crossref]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Fröhlich, B.

S. Fischer, B. Fröhlich, K. W. Kramer, and J.-C. Goldschmidt, “Relation Between Excitation Power Density and Er3+ Doping Yielding the Highest Absolute Upconversion Quantum Yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

S. Fischer, B. Fröhlich, H. Steinkemper, K. W. Krämer, and J. C. Goldschmidt, “Absolute upconversion quantum yield of β-NaYF4 doped with Er3+ and external quantum efficiency of upconverter solar cell devices under broad-band excitation considering spectral mismatch corrections,” Sol. Energy Mater. Sol. Cells 122, 197–207 (2014).
[Crossref]

García-Etxarri, A.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

Glunz, S. W.

J. C. Goldschmidt, S. Fischer, P. Löper, K. W. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95(7), 1960–1963 (2011).
[Crossref]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Goldschmidt, J. C.

S. Fischer, D. Kumar, F. Hallermann, G. von Plessen, and J. C. Goldschmidt, “Enhanced upconversion quantum yield near spherical gold nanoparticles - a comprehensive simulation based analysis,” Opt. Express 24(6), A460–A475 (2016).
[Crossref] [PubMed]

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

S. Fischer, E. Favilla, M. Tonelli, and J. C. Goldschmidt, “Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8. 30% Er3+ upconverter,” Sol. Energy Mater. Sol. Cells 136, 127–134 (2015).
[Crossref]

S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
[Crossref]

S. Fischer, B. Fröhlich, H. Steinkemper, K. W. Krämer, and J. C. Goldschmidt, “Absolute upconversion quantum yield of β-NaYF4 doped with Er3+ and external quantum efficiency of upconverter solar cell devices under broad-band excitation considering spectral mismatch corrections,” Sol. Energy Mater. Sol. Cells 122, 197–207 (2014).
[Crossref]

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, K. W. Krämer, S. Fischer, J. C. Goldschmidt, and B. S. Richards, “Enhanced up-conversion for photovoltaics via concentrating integrated optics,” Opt. Express 22(S2), A452–A464 (2014).
[Crossref] [PubMed]

B. Herter, S. Wolf, S. Fischer, J. Gutmann, B. Bläsi, and J. C. Goldschmidt, “Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis,” Opt. Express 21(S5), A883–A900 (2013).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

J. Gutmann, H. Zappe, and J. C. Goldschmidt, “Quantitative modeling of fluorescence emission in photonic crystals,” Phys. Rev. B 88, 239901 (2013).

J. Gutmann, M. Peters, B. Bläsi, M. Hermle, A. Gombert, H. Zappe, and J. C. Goldschmidt, “Electromagnetic simulations of a photonic luminescent solar concentrator,” Opt. Express 20(S2), A157–A167 (2012).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[Crossref] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 03109 (2012).
[Crossref]

J. C. Goldschmidt, S. Fischer, P. Löper, K. W. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95(7), 1960–1963 (2011).
[Crossref]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Goldschmidt, J.-C.

S. Fischer, B. Fröhlich, K. W. Kramer, and J.-C. Goldschmidt, “Relation Between Excitation Power Density and Er3+ Doping Yielding the Highest Absolute Upconversion Quantum Yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

Gombert, A.

Green, M. A.

T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[Crossref]

Güdel, H. U.

K. W. Krämer, H. U. Güdel, and R. N. Schwartz, “Infrared-to-visible upconversion in LaCl3 1% Er3+: Energy-level and line-strength calculations,” Phys. Rev. B 56(21), 13830–13840 (1997).
[Crossref]

Gutmann, J.

Haase, M.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Hallermann, F.

Hermle, M.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

J. Gutmann, M. Peters, B. Bläsi, M. Hermle, A. Gombert, H. Zappe, and J. C. Goldschmidt, “Electromagnetic simulations of a photonic luminescent solar concentrator,” Opt. Express 20(S2), A157–A167 (2012).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[Crossref] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 03109 (2012).
[Crossref]

J. C. Goldschmidt, S. Fischer, P. Löper, K. W. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95(7), 1960–1963 (2011).
[Crossref]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Herter, B.

Hsu, C. C.

J. H. Lin, H. Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, and C. C. Hsu, “Giant Enhancement of Upconversion Fluorescence of NaYF4:Yb3+,Tm3+ Nanocrystals with Resonant Waveguide Grating Substrate,” ACS Photonics 2(4), 530–536 (2015).
[Crossref]

Hyeon, T.

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles. a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[PubMed]

Ivaturi, A.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, K. W. Krämer, S. Fischer, J. C. Goldschmidt, and B. S. Richards, “Enhanced up-conversion for photovoltaics via concentrating integrated optics,” Opt. Express 22(S2), A452–A464 (2014).
[Crossref] [PubMed]

Joannopoulos, J.

Johnson, C. M.

C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Theoretical and experimental evaluation of silicon photonic structures for enhanced erbium up-conversion luminescence,” Sol. Energy Mater. Sol. Cells 112, 168–181 (2013).
[Crossref]

Johnson, N. J.

F. C. J. M. van Veggel, C. Dong, N. J. Johnson, and J. Pichaandi, “Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered,” Nanoscale 4(23), 7309–7321 (2012).
[Crossref] [PubMed]

Johnson, N. J. J.

S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
[Crossref]

Johnson, S.

Kan, H.-C.

J. H. Lin, H. Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, and C. C. Hsu, “Giant Enhancement of Upconversion Fluorescence of NaYF4:Yb3+,Tm3+ Nanocrystals with Resonant Waveguide Grating Substrate,” ACS Photonics 2(4), 530–536 (2015).
[Crossref]

Knoester, J.

M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71(11), 115102 (2005).
[Crossref]

Koenderink, A. F.

Kramer, K. W.

S. Fischer, B. Fröhlich, K. W. Kramer, and J.-C. Goldschmidt, “Relation Between Excitation Power Density and Er3+ Doping Yielding the Highest Absolute Upconversion Quantum Yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

Krämer, K.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Krämer, K. W.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

S. Fischer, B. Fröhlich, H. Steinkemper, K. W. Krämer, and J. C. Goldschmidt, “Absolute upconversion quantum yield of β-NaYF4 doped with Er3+ and external quantum efficiency of upconverter solar cell devices under broad-band excitation considering spectral mismatch corrections,” Sol. Energy Mater. Sol. Cells 122, 197–207 (2014).
[Crossref]

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, K. W. Krämer, S. Fischer, J. C. Goldschmidt, and B. S. Richards, “Enhanced up-conversion for photovoltaics via concentrating integrated optics,” Opt. Express 22(S2), A452–A464 (2014).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[Crossref] [PubMed]

J. C. Goldschmidt, S. Fischer, P. Löper, K. W. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95(7), 1960–1963 (2011).
[Crossref]

K. W. Krämer, H. U. Güdel, and R. N. Schwartz, “Infrared-to-visible upconversion in LaCl3 1% Er3+: Energy-level and line-strength calculations,” Phys. Rev. B 56(21), 13830–13840 (1997).
[Crossref]

Kuipers, L.

Kumar, D.

Lagendijk, A.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
[Crossref]

Lee, C.-T.

J. H. Lin, H. Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, and C. C. Hsu, “Giant Enhancement of Upconversion Fluorescence of NaYF4:Yb3+,Tm3+ Nanocrystals with Resonant Waveguide Grating Substrate,” ACS Photonics 2(4), 530–536 (2015).
[Crossref]

Lee, K. T.

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles. a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[PubMed]

Li, L.

Li, L.-L.

Z.-X. Li, L.-L. Li, H.-P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C.-H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.) 43, 6616–6618 (2009).
[Crossref] [PubMed]

Li, Z.-X.

Z.-X. Li, L.-L. Li, H.-P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C.-H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.) 43, 6616–6618 (2009).
[Crossref] [PubMed]

Lin, J. H.

J. H. Lin, H. Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, and C. C. Hsu, “Giant Enhancement of Upconversion Fluorescence of NaYF4:Yb3+,Tm3+ Nanocrystals with Resonant Waveguide Grating Substrate,” ACS Photonics 2(4), 530–536 (2015).
[Crossref]

Liou, H. Y.

J. H. Lin, H. Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, and C. C. Hsu, “Giant Enhancement of Upconversion Fluorescence of NaYF4:Yb3+,Tm3+ Nanocrystals with Resonant Waveguide Grating Substrate,” ACS Photonics 2(4), 530–536 (2015).
[Crossref]

Liu, X.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Liu, Y.

L. Tao, W. Xu, Y. Zhu, L. Xu, H. Zhu, Y. Liu, S. Xu, P. Zhou, and H. Song, “Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4186–4195 (2014).
[Crossref]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Löper, P.

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 03109 (2012).
[Crossref]

J. C. Goldschmidt, S. Fischer, P. Löper, K. W. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95(7), 1960–1963 (2011).
[Crossref]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Marques-Hueso, J.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, K. W. Krämer, S. Fischer, J. C. Goldschmidt, and B. S. Richards, “Enhanced up-conversion for photovoltaics via concentrating integrated optics,” Opt. Express 22(S2), A452–A464 (2014).
[Crossref] [PubMed]

McCann, M.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

C. Strümpel, M. McCann, C. D. Canizo, I. Tobías, and P. Fath, Erbium-doped up-converters of silicon solar cells: assessment of the potential, Proceedings of the 20th European Photovoltaic Solar Energy Conference. (2005).

Mosk, A. P.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Nikolaev, I. S.

Niu, W.

W. Niu, L. T. Su, R. Chen, H. Chen, Y. Wang, A. Palaniappan, H. Sun, and A. I. Tok, “3-Dimensional photonic crystal surface enhanced upconversion emission for improved near-infrared photoresponse,” Nanoscale 6(2), 817–824 (2014).
[Crossref] [PubMed]

Palaniappan, A.

W. Niu, L. T. Su, R. Chen, H. Chen, Y. Wang, A. Palaniappan, H. Sun, and A. I. Tok, “3-Dimensional photonic crystal surface enhanced upconversion emission for improved near-infrared photoresponse,” Nanoscale 6(2), 817–824 (2014).
[Crossref] [PubMed]

Park, Y. I.

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles. a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[PubMed]

Peters, M.

Pichaandi, J.

S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
[Crossref]

F. C. J. M. van Veggel, C. Dong, N. J. Johnson, and J. Pichaandi, “Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered,” Nanoscale 4(23), 7309–7321 (2012).
[Crossref] [PubMed]

Polman, A.

E. Verhagen, L. Kuipers, and A. Polman, “Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence,” Opt. Express 17(17), 14586–14598 (2009).
[Crossref] [PubMed]

M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71(11), 115102 (2005).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Reece, P. J.

C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Theoretical and experimental evaluation of silicon photonic structures for enhanced erbium up-conversion luminescence,” Sol. Energy Mater. Sol. Cells 112, 168–181 (2013).
[Crossref]

Renyuan, Z.

Z. Fan, D. Yonghui, S. Yifeng, Z. Renyuan, and Z. Dongyuan, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

Richards, B. S.

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, K. W. Krämer, S. Fischer, J. C. Goldschmidt, and B. S. Richards, “Enhanced up-conversion for photovoltaics via concentrating integrated optics,” Opt. Express 22(S2), A452–A464 (2014).
[Crossref] [PubMed]

B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE T. Electron Dev. 54(10), 2679–2684 (2007).
[Crossref]

T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[Crossref]

Salleo, A.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

Schäfer, H.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Schwartz, R. N.

K. W. Krämer, H. U. Güdel, and R. N. Schwartz, “Infrared-to-visible upconversion in LaCl3 1% Er3+: Energy-level and line-strength calculations,” Phys. Rev. B 56(21), 13830–13840 (1997).
[Crossref]

Shalav, A.

B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE T. Electron Dev. 54(10), 2679–2684 (2007).
[Crossref]

T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Slaoui, A.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Song, H.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

L. Tao, W. Xu, Y. Zhu, L. Xu, H. Zhu, Y. Liu, S. Xu, P. Zhou, and H. Song, “Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4186–4195 (2014).
[Crossref]

Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.) 49(36), 3781–3783 (2013).
[Crossref] [PubMed]

Sprik, R.

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
[Crossref]

Steinkemper, H.

S. Fischer, B. Fröhlich, H. Steinkemper, K. W. Krämer, and J. C. Goldschmidt, “Absolute upconversion quantum yield of β-NaYF4 doped with Er3+ and external quantum efficiency of upconverter solar cell devices under broad-band excitation considering spectral mismatch corrections,” Sol. Energy Mater. Sol. Cells 122, 197–207 (2014).
[Crossref]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[Crossref] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 03109 (2012).
[Crossref]

Strümpel, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

C. Strümpel, M. McCann, C. D. Canizo, I. Tobías, and P. Fath, Erbium-doped up-converters of silicon solar cells: assessment of the potential, Proceedings of the 20th European Photovoltaic Solar Energy Conference. (2005).

Su, L. T.

W. Niu, L. T. Su, R. Chen, H. Chen, Y. Wang, A. Palaniappan, H. Sun, and A. I. Tok, “3-Dimensional photonic crystal surface enhanced upconversion emission for improved near-infrared photoresponse,” Nanoscale 6(2), 817–824 (2014).
[Crossref] [PubMed]

Subramaniam, V.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Suh, Y. D.

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles. a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[PubMed]

Sun, H.

W. Niu, L. T. Su, R. Chen, H. Chen, Y. Wang, A. Palaniappan, H. Sun, and A. I. Tok, “3-Dimensional photonic crystal surface enhanced upconversion emission for improved near-infrared photoresponse,” Nanoscale 6(2), 817–824 (2014).
[Crossref] [PubMed]

Sun, L. D.

Z.-X. Li, L.-L. Li, H.-P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C.-H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.) 43, 6616–6618 (2009).
[Crossref] [PubMed]

Švrcek, V.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Tao, L.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

L. Tao, W. Xu, Y. Zhu, L. Xu, H. Zhu, Y. Liu, S. Xu, P. Zhou, and H. Song, “Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4186–4195 (2014).
[Crossref]

Ting, C.-C.

J. H. Lin, H. Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, and C. C. Hsu, “Giant Enhancement of Upconversion Fluorescence of NaYF4:Yb3+,Tm3+ Nanocrystals with Resonant Waveguide Grating Substrate,” ACS Photonics 2(4), 530–536 (2015).
[Crossref]

Tip, A.

M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71(11), 115102 (2005).
[Crossref]

Tobias, I.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Tobías, I.

C. Strümpel, M. McCann, C. D. Canizo, I. Tobías, and P. Fath, Erbium-doped up-converters of silicon solar cells: assessment of the potential, Proceedings of the 20th European Photovoltaic Solar Energy Conference. (2005).

Tok, A. I.

W. Niu, L. T. Su, R. Chen, H. Chen, Y. Wang, A. Palaniappan, H. Sun, and A. I. Tok, “3-Dimensional photonic crystal surface enhanced upconversion emission for improved near-infrared photoresponse,” Nanoscale 6(2), 817–824 (2014).
[Crossref] [PubMed]

Tonelli, M.

S. Fischer, E. Favilla, M. Tonelli, and J. C. Goldschmidt, “Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8. 30% Er3+ upconverter,” Sol. Energy Mater. Sol. Cells 136, 127–134 (2015).
[Crossref]

Trupke, T.

T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[Crossref]

Tseng, C.-Y.

J. H. Lin, H. Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, and C. C. Hsu, “Giant Enhancement of Upconversion Fluorescence of NaYF4:Yb3+,Tm3+ Nanocrystals with Resonant Waveguide Grating Substrate,” ACS Photonics 2(4), 530–536 (2015).
[Crossref]

van Tiggelen, B. A.

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
[Crossref]

van Veggel, F. C. J. M.

S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
[Crossref]

F. C. J. M. van Veggel, C. Dong, N. J. Johnson, and J. Pichaandi, “Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered,” Nanoscale 4(23), 7309–7321 (2012).
[Crossref] [PubMed]

Verhagen, E.

von Plessen, G.

Vos, W. L.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

I. S. Nikolaev, W. L. Vos, and A. F. Koenderink, “Accurate calculation of the local density of optical states in inverse-opal photonic crystals,” J. Opt. Soc. Am. B 26(5), 987–997 (2009).
[Crossref]

Wang, C.-D.

J. H. Lin, H. Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, and C. C. Hsu, “Giant Enhancement of Upconversion Fluorescence of NaYF4:Yb3+,Tm3+ Nanocrystals with Resonant Waveguide Grating Substrate,” ACS Photonics 2(4), 530–536 (2015).
[Crossref]

Wang, F.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Wang, J.

Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.) 49(36), 3781–3783 (2013).
[Crossref] [PubMed]

Wang, Y.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

W. Niu, L. T. Su, R. Chen, H. Chen, Y. Wang, A. Palaniappan, H. Sun, and A. I. Tok, “3-Dimensional photonic crystal surface enhanced upconversion emission for improved near-infrared photoresponse,” Nanoscale 6(2), 817–824 (2014).
[Crossref] [PubMed]

Whittaker, D. M.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[Crossref]

Wolf, S.

Wu, D. M.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

Wubs, M.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Würfel, P.

T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[Crossref]

Xia, L.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Xu, L.

L. Tao, W. Xu, Y. Zhu, L. Xu, H. Zhu, Y. Liu, S. Xu, P. Zhou, and H. Song, “Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4186–4195 (2014).
[Crossref]

Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.) 49(36), 3781–3783 (2013).
[Crossref] [PubMed]

Xu, S.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

L. Tao, W. Xu, Y. Zhu, L. Xu, H. Zhu, Y. Liu, S. Xu, P. Zhou, and H. Song, “Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4186–4195 (2014).
[Crossref]

Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.) 49(36), 3781–3783 (2013).
[Crossref] [PubMed]

Xu, W.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

L. Tao, W. Xu, Y. Zhu, L. Xu, H. Zhu, Y. Liu, S. Xu, P. Zhou, and H. Song, “Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4186–4195 (2014).
[Crossref]

Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.) 49(36), 3781–3783 (2013).
[Crossref] [PubMed]

Yan, C.-H.

Z.-X. Li, L.-L. Li, H.-P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C.-H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.) 43, 6616–6618 (2009).
[Crossref] [PubMed]

Yifeng, S.

Z. Fan, D. Yonghui, S. Yifeng, Z. Renyuan, and Z. Dongyuan, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

Yin, Z.

Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.) 49(36), 3781–3783 (2013).
[Crossref] [PubMed]

Yonghui, D.

Z. Fan, D. Yonghui, S. Yifeng, Z. Renyuan, and Z. Dongyuan, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

Yuan, Q.

Z.-X. Li, L.-L. Li, H.-P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C.-H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.) 43, 6616–6618 (2009).
[Crossref] [PubMed]

Zappe, H.

J. Gutmann, H. Zappe, and J. C. Goldschmidt, “Quantitative modeling of fluorescence emission in photonic crystals,” Phys. Rev. B 88, 239901 (2013).

J. Gutmann, M. Peters, B. Bläsi, M. Hermle, A. Gombert, H. Zappe, and J. C. Goldschmidt, “Electromagnetic simulations of a photonic luminescent solar concentrator,” Opt. Express 20(S2), A157–A167 (2012).
[Crossref] [PubMed]

Zhang, S.

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.) 49(36), 3781–3783 (2013).
[Crossref] [PubMed]

Zhou, H.-P.

Z.-X. Li, L.-L. Li, H.-P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C.-H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.) 43, 6616–6618 (2009).
[Crossref] [PubMed]

Zhou, P.

L. Tao, W. Xu, Y. Zhu, L. Xu, H. Zhu, Y. Liu, S. Xu, P. Zhou, and H. Song, “Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4186–4195 (2014).
[Crossref]

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Zhu, H.

L. Tao, W. Xu, Y. Zhu, L. Xu, H. Zhu, Y. Liu, S. Xu, P. Zhou, and H. Song, “Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4186–4195 (2014).
[Crossref]

Zhu, Y.

L. Tao, W. Xu, Y. Zhu, L. Xu, H. Zhu, Y. Liu, S. Xu, P. Zhou, and H. Song, “Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4186–4195 (2014).
[Crossref]

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.) 49(36), 3781–3783 (2013).
[Crossref] [PubMed]

Zijlstra, N.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

J. H. Lin, H. Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, and C. C. Hsu, “Giant Enhancement of Upconversion Fluorescence of NaYF4:Yb3+,Tm3+ Nanocrystals with Resonant Waveguide Grating Substrate,” ACS Photonics 2(4), 530–536 (2015).
[Crossref]

Analyst (Lond.) (1)

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (2)

Z.-X. Li, L.-L. Li, H.-P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C.-H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. (Camb.) 43, 6616–6618 (2009).
[Crossref] [PubMed]

Z. Yin, Y. Zhu, W. Xu, J. Wang, S. Xu, B. Dong, L. Xu, S. Zhang, and H. Song, “Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF4:Yb3+, Tm3+/Er3+ nanocrystals,” Chem. Commun. (Camb.) 49(36), 3781–3783 (2013).
[Crossref] [PubMed]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles. a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[PubMed]

Europhys. Lett. (1)

R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35(4), 265–270 (1996).
[Crossref]

IEEE T. Electron Dev. (1)

B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE T. Electron Dev. 54(10), 2679–2684 (2007).
[Crossref]

J. Appl. Phys. (4)

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 03109 (2012).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
[Crossref]

J. Mater. Chem. (1)

Z. Fan, D. Yonghui, S. Yifeng, Z. Renyuan, and Z. Dongyuan, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20(19), 3895–3900 (2010).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

L. Tao, W. Xu, Y. Zhu, L. Xu, H. Zhu, Y. Liu, S. Xu, P. Zhou, and H. Song, “Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(21), 4186–4195 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

S. Fischer, B. Fröhlich, K. W. Kramer, and J.-C. Goldschmidt, “Relation Between Excitation Power Density and Er3+ Doping Yielding the Highest Absolute Upconversion Quantum Yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

J. Phys. Chem. Lett. (1)

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

Nanoscale (3)

S. Xu, W. Xu, Y. Wang, S. Zhang, Y. Zhu, L. Tao, L. Xia, P. Zhou, and H. Song, “NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin,” Nanoscale 6(11), 5859–5870 (2014).
[Crossref] [PubMed]

W. Niu, L. T. Su, R. Chen, H. Chen, Y. Wang, A. Palaniappan, H. Sun, and A. I. Tok, “3-Dimensional photonic crystal surface enhanced upconversion emission for improved near-infrared photoresponse,” Nanoscale 6(2), 817–824 (2014).
[Crossref] [PubMed]

F. C. J. M. van Veggel, C. Dong, N. J. Johnson, and J. Pichaandi, “Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered,” Nanoscale 4(23), 7309–7321 (2012).
[Crossref] [PubMed]

Opt. Express (8)

B. Herter, S. Wolf, S. Fischer, J. Gutmann, B. Bläsi, and J. C. Goldschmidt, “Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis,” Opt. Express 21(S5), A883–A900 (2013).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

S. Fischer, D. Kumar, F. Hallermann, G. von Plessen, and J. C. Goldschmidt, “Enhanced upconversion quantum yield near spherical gold nanoparticles - a comprehensive simulation based analysis,” Opt. Express 24(6), A460–A475 (2016).
[Crossref] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, “Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence,” Opt. Express 17(17), 14586–14598 (2009).
[Crossref] [PubMed]

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref] [PubMed]

J. Gutmann, M. Peters, B. Bläsi, M. Hermle, A. Gombert, H. Zappe, and J. C. Goldschmidt, “Electromagnetic simulations of a photonic luminescent solar concentrator,” Opt. Express 20(S2), A157–A167 (2012).
[Crossref] [PubMed]

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, K. W. Krämer, S. Fischer, J. C. Goldschmidt, and B. S. Richards, “Enhanced up-conversion for photovoltaics via concentrating integrated optics,” Opt. Express 22(S2), A452–A464 (2014).
[Crossref] [PubMed]

Phys. Rev. A (1)

J. P. Dowling and C. M. Bowden, “Atomic emission rates in inhomogeneous media with applications to photonic band structures,” Phys. Rev. A 46(1), 612–622 (1992).
[Crossref] [PubMed]

Phys. Rev. B (4)

M. J. A. de Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71(11), 115102 (2005).
[Crossref]

J. Gutmann, H. Zappe, and J. C. Goldschmidt, “Quantitative modeling of fluorescence emission in photonic crystals,” Phys. Rev. B 88, 239901 (2013).

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[Crossref]

K. W. Krämer, H. U. Güdel, and R. N. Schwartz, “Infrared-to-visible upconversion in LaCl3 1% Er3+: Energy-level and line-strength calculations,” Phys. Rev. B 56(21), 13830–13840 (1997).
[Crossref]

Phys. Rev. Lett. (1)

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Science (1)

P. Andrew and W. L. Barnes, “Förster Energy Transfer in an Optical Microcavity,” Science 290(5492), 785–788 (2000).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (7)

G. E. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J. C. Goldschmidt, K. W. Krämer, and B. S. Richards, “Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics,” Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).
[Crossref]

S. Fischer, B. Fröhlich, H. Steinkemper, K. W. Krämer, and J. C. Goldschmidt, “Absolute upconversion quantum yield of β-NaYF4 doped with Er3+ and external quantum efficiency of upconverter solar cell devices under broad-band excitation considering spectral mismatch corrections,” Sol. Energy Mater. Sol. Cells 122, 197–207 (2014).
[Crossref]

S. Fischer, E. Favilla, M. Tonelli, and J. C. Goldschmidt, “Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8. 30% Er3+ upconverter,” Sol. Energy Mater. Sol. Cells 136, 127–134 (2015).
[Crossref]

J. C. Goldschmidt, S. Fischer, P. Löper, K. W. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95(7), 1960–1963 (2011).
[Crossref]

C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Theoretical and experimental evaluation of silicon photonic structures for enhanced erbium up-conversion luminescence,” Sol. Energy Mater. Sol. Cells 112, 168–181 (2013).
[Crossref]

T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006).
[Crossref]

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Other (12)

B. Herter, S. Wolf, S. Fischer, C. L. M. Hofmann, M. Zilk, H. Hauser, B. Bläsi, F. C. J. M. van Veggel, and J. C. Goldschmidt, “Photonic structures enhancing upconversion luminescence,” (in preparation).

J. Gutmann, Photonic luminescent solar concentrators - How photonic crystals affect the emission and guiding of light, Dissertation, Freiburg, Albert-Ludwigs Universität (2014).

B. Herter, Photonic Structures for Systems with Silicon Solar Cells and Upconverters, Dissertation, Konstanz, Universität (2015).

F. Bödicker, Modellierung des strahlenden Emissionsverhaltens in einer photonischen Solarzelle, Bachelor's thesis, Darmstadt, Technical University, 2012.

H. A. Macleod, Thin Film Optical Filters, 3rd (Taylor & Francis, 2001).

W. Nolting, Grundkurs Theoretische Physik 3, Elektrodynamik, 10th ed. (Springer Spektrum, 2013).

“MIT Photonic-Bands,” http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands .

J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, and D. Biner, eds., Advanced Upconverter Systems with Spectral and Geometric Concentration for High Upconversion Efficiencies, 2008 COMMAD (2008).

C. Strümpel, M. McCann, C. D. Canizo, I. Tobías, and P. Fath, Erbium-doped up-converters of silicon solar cells: assessment of the potential, Proceedings of the 20th European Photovoltaic Solar Energy Conference. (2005).

I. M. Peters, Photonic concepts for solar cells, Dissertation, Freiburg, Albert-Ludwigs Universität (2009).

OriginLab, “The Smooth Dialog Box,” http://www.originlab.de/doc/Origin-Help/Smooth-Dialog .

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Insights in the upconversion efficiency and dynamics of β-NaYF4: Er3+ by advanced modeling using rate equations,” submitted (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A) The investigated Bragg stack consisting of the active layers made from PMMA containing upconverter nanoparticles (NP) with refractive index n low , and TiO2 ( n high ). The free design parameters are the design wavelength λ D , which defines the layer thickness ( d low ,  d high ), and the number of bilayers. The first and last layer feature a thickness ( d λ/8 ) of one eighth of λ D to reduce side lopes of the reflection peak and only consists of undoped PMMA ( n λ/8 ). Super- and substrate are air and glass, respectively. The reference consists of only the active layers of the respective Bragg stack. B) Energy level diagram, including the most important transitions of the UC processes in β-NaYF4:25% Er3+ for the application in silicon photovoltaics. Two low energy photons at a wavelength of 1523 nm are absorbed. Via an energy transfer process one Er3+ ion is lifted into a higher excited state. After a relaxation process, UC emission at 984 nm takes place. Additionally, the desired effects of the Bragg stack are sketched: a locally increased irradiance increases absorption, which non-linearly enhances the probability of an energy transfer process. A modified local density of photon states (LDOS) can enhance the probability of UC emission and suppress loss mechanisms.
Fig. 2
Fig. 2 Energy level diagram of the first seven energy levels of β-NaYF4:25% Er3+.
Fig. 3
Fig. 3 A) Mean irradiance enhancement γ ¯ I in the active layers of a 20 Bilayer Bragg stack, reaching a sharp maximum of γ ¯ I,max at λ D,max . B) Local irradiance I( x ) at each position x in the Bragg stack, plotted for the design wavelength λ D,max . On the right y-axis the refractive index is shown. Active layers, containing the upconverter nanoparticles, are highlighted in grey. All maxima of I( x ) are positioned in the active layers, which leads to the high enhancement of γ ¯ I,max . C) Reflectance of the same optimized Bragg stack with a design wavelength λ D,max . For this design, the excitation wavelength λ exc lies right at the band edge of the photonic structure.
Fig. 4
Fig. 4 A) Average irradiance enhancement γ ¯ I in dependence on the design wavelength λ D . For an increasing BL number, here shown for 12, 20 and 50 BL, the peak value γ ¯ I,max increases and the peak position λ D,max moves to shorter design wavelengths. B) γ ¯ I,max is plotted for each simulated BL design together with the corresponding design wavelength of the peak position λ D,max . A fit on all determined γ ¯ I,max shows that the maximum possible irradiance enhancement increases quadratically with an increasing number of BL.
Fig. 5
Fig. 5 A) Photonic band structure within the First Brillouin Zone. B) Relative modulated local density of photon states γ LDOS (x, ω ' ) within the Wigner-Seitz unit cell a of an infinite Bragg structure with n low = 1.5 and n high = 1.8. In the active layer where the upconverter is positioned (the region of n low ), a decrease of γ LDOS (x, ω ' ) is reached, especially within the first bandgap. This decrease is a wanted effect to suppress the unwanted emission I 4 13/2 to I 4 15/2 , which is one of the main loss mechanisms in the considered upconverter system.
Fig. 6
Fig. 6 Change of UC performance, only regarding the effect of the LDOS by setting γ I ( x ) to unity. A) UCQY in dependence on design wavelength λ D and incident irradiance I in , reaching a maximum of 16.3%. B) UCQY in dependence on I in (cut through graph (A) at λ D = 1632 nm). The maximum UCQY of the Bragg stack (with γ I =  1) is higher than that of the reference and is reached at a lower I in . C) Mean relative LDOS for the main UC emission L31 ( I 4 11/2 to I 4 15/2 ) and loss mechanism L21 (emission I 4 13/2 to I 4 15/2 ). When the respective transition falls into the bandgap (highlighted region 1.BG), γ ¯ LDOS,if is strongly reduced. D) Relative luminescence of L31 and L21 influenced by γ ¯ LDOS,if . Γ Lum,31 is enhanced in the region where γ ¯ LDOS,21 is suppressed. E) UCQY in dependence on λ D (cut through graph (A) at I in = 5890 W/m2). The UCQY within the Bragg stack follows the course of Γ Lum,31 . Due to the changed LDOS, the maximum possible UCQY within the Bragg stack is higher than that of the reference.
Fig. 7
Fig. 7 Optimization of UC performance for an exemplary Bragg stack of 40 bilayers (BL). A) UCQY in dependence on design wavelength λ D and incident irradiance I in , reaching a maximum of 15.8%. B) UCQY in dependence on I in (cut through graph (A) at λ D = 1604.5 nm). Compared to the reference, the higher maximum UCQY of the Bragg stack is already reached at I in = 600 W/m2, mainly due to the high irradiance enhancement. D) Mean relative LDOS for the main UC emission L31 ( I 4 11/2 to I 4 15/2 ) and loss mechanism L21 (emission I 4 13/2 to I 4 15/2 ). E) Relative luminescence of L31 and L21 influenced by γ ¯ I and γ ¯ LDOS,if . Γ Lum,31 is mainly governed by γ ¯ I , rising non-linearly with an increasing γ ¯ I . F) UCQY in dependence on λ D (cut through graph (A) at I in = 600 W/m2). The UCQY within the Bragg stack is a superposition of the shapes of γ ¯ I and γ ¯ LDOS,if , but again reaches a similar maximum as in Fig. 6. In conclusion, the increased maximum of the UCQY is due to the changed LDOS, while the shift of the maximum to shorter I in is mainly caused by γ ¯ I .
Fig. 8
Fig. 8 Optimization of the Bragg stack design with respect to maximizing the UCQY or the relative UC luminescence Γ Lum,31 for each incident irradiance separately. A) Maximum UCQY ( UCQ Y max ) reached for an optimized Bragg stack design. For each incident irradiance I in , a UCQ Y max close to 16% can be gained. On the right y-axis Γ Lum,31 is additionally plotted. The blue curve ( Γ Lum,31 ) shows the luminescence enhancement when the UCQY is maximized. The green curve ( Γ Lum,max,31 ) depicts the maximum possible luminescence enhancement. For both optimizations, the UC luminescence is strongly enhanced, up to a factor of 480 at I in = 100 W/m2. In graph B) and C) the number of bilayers (BL) and design wavelength λ D of the optimized designs are shown. The blue curve depicts the design when maximizing the UCQY, the green curve when maximizing the UC luminescence.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

S ¯ ( r )= 1 2 ϵ 0  ϵ( r ) μ 0 | E( r ) | 2 ,
γ I ( x r )= I Active (x) I Ref ( x r )  .
γ ¯ I = I Active (x) dx I Ref ( x r ) d x r   .
ρ q3D ( r,ω )= b k κ b,ω | E b,k  ( r ) | 2 2π k y with κ b,ω ={ k j |ωΔω/2 ω b, k j <ω+Δω/2 }.
γ LDOS (x,ω')= ρ q3D ( x, ω ' ) Bragg ρ q3D ( x, ω ' ) Ref   .
ω'= n low + n high 4 n low n high λ D λ if ,
n =[ M ABS + M STE + M SPE + M MPR ] n + v ET ( n ).
M ABS, BS ( x r )=  γ I ( x r )  M ABS,Ref ,
M STE, BS ( x r )=  γ I ( x r )  M STE,Ref .
A i f,BS ( x r )= γ LDOS,if ( x r ) A i f,Ref .
Lu m if = N i A if .
Abs= N 1 GS A 12 + N 2 ES A 24 + N 4 ES A 46 .
Lu m if = j=1 m Lum( x r,j ),
Abs= j=1 m Abs( x r,j ),
UCQY= i Lu m i1 +Lu m 62 Abs for i3.
Γ Lum,if = Lu m if,BS Lu m if,Ref m
Γ Abs = AB S BS Ab s Ref m
Γ UCQY = UCQ Y BS UCQ Y Ref

Metrics