Abstract

The generation of 170 fs pulses at 755 nm from a Kerr-lens mode-locked Alexandrite laser was demonstrated. The laser was pumped at 532 nm and produced 780 mW of average output power with 9.8% of optical-to-optical efficiency. To the best of our knowledge, these are the shortest pulses that have been produced from a mode-locked Alexandrite laser to date.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond Alexandrite laser passively mode-locked by an InP/InGaP quantum-dot saturable absorber

Shirin Ghanbari, Ksenia A. Fedorova, Andrey B. Krysa, Edik U. Rafailov, and Arkady Major
Opt. Lett. 43(2) 232-234 (2018)

Dispersive properties of alexandrite and beryllium hexaaluminate crystals

Pavel Loiko and Arkady Major
Opt. Mater. Express 6(7) 2177-2183 (2016)

High-power diode-pumped Kerr-lens mode-locked bulk Yb:KGW laser

Reza Akbari and Arkady Major
Appl. Opt. 56(31) 8838-8844 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for all-optical switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
    [Crossref]
  2. D. Sandkuijl, R. Cisek, A. Major, and V. Barzda, “Differential microscopy for fluorescence-detected nonlinear absorption linear anisotropy based on a staggered two-beam femtosecond Yb:KGW oscillator,” Biomed. Opt. Express 1(3), 895–901 (2010).
    [Crossref] [PubMed]
  3. A. Major, D. Sandkuijl, and V. Barzda, “Efficient frequency doubling of a femtosecond Yb:KGW laser in a BiB3O6 crystal,” Opt. Express 17(14), 12039–12042 (2009).
    [Crossref] [PubMed]
  4. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
    [Crossref] [PubMed]
  5. R. Ell, U. Morgner, F. X. Kãârtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26(6), 373–375 (2001).
    [Crossref] [PubMed]
  6. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kaertner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:Colquiriite lasers,” Opt. Express 17(16), 14374–14388 (2009).
    [Crossref] [PubMed]
  7. J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4(6), 182–183 (1979).
    [Crossref] [PubMed]
  8. A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
    [Crossref] [PubMed]
  9. V. N. Lisitsyn, V. N. Matrosov, V. P. Orekhova, E. V. Pestryakov, B. K. Sevast’yanov, V. I. Trunov, V. N. Zenin, and Yu. L. Renigailo, “Generation of 0.7-0.8 µm picosecond pulses in an Alexandrite laser with passive mode-locking,” Sov. J. Quant. Electron. 12(3), 368–370 (1982).
    [Crossref]
  10. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(1), 42–44 (1991).
    [Crossref] [PubMed]
  11. S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
    [Crossref]
  12. G. Cerullo, S. De Silvestri, V. Magni, and L. Pallaro, “Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers,” Opt. Lett. 19(11), 807–809 (1994).
    [Crossref] [PubMed]
  13. H. Zhao and A. Major, “Powerful 67 fs Kerr-lens mode-locked prismless Yb:KGW oscillator,” Opt. Express 21(26), 31846–31851 (2013).
    [Crossref] [PubMed]
  14. H. Zhao and A. Major, “Megawatt peak power level sub-100 fs Yb:KGW oscillators,” Opt. Express 22(25), 30425–30431 (2014).
    [Crossref] [PubMed]
  15. T. Waritanant and A. Major, “High efficiency passively mode-locked Nd:YVO4 laser with direct in-band pumping at 914 nm,” Opt. Express 24(12), 12851–12855 (2016).
    [Crossref]
  16. P. Loiko and A. Major, “Dispersive properties of alexandrite and beryllium hexaaluminate crystals,” Opt. Mater. Express 6(7), 2177–2183 (2016).
    [Crossref]

2016 (3)

2014 (2)

2013 (1)

2010 (1)

2009 (2)

2004 (1)

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for all-optical switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

2003 (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[Crossref] [PubMed]

2001 (1)

1994 (1)

1991 (1)

1982 (1)

V. N. Lisitsyn, V. N. Matrosov, V. P. Orekhova, E. V. Pestryakov, B. K. Sevast’yanov, V. I. Trunov, V. N. Zenin, and Yu. L. Renigailo, “Generation of 0.7-0.8 µm picosecond pulses in an Alexandrite laser with passive mode-locking,” Sov. J. Quant. Electron. 12(3), 368–370 (1982).
[Crossref]

1979 (1)

Aitchison, J. S.

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for all-optical switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

Angelow, G.

Barzda, V.

Birge, J. R.

Boiko, A.

Cerullo, G.

Cisek, R.

Damzen, M. J.

De Silvestri, S.

Demirbas, U.

Ell, R.

Fujimoto, J. G.

Ghanbari, S.

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
[Crossref]

Ippen, E. P.

Jenssen, H. P.

Kãârtner, F. X.

Kaertner, F. X.

Kean, P. N.

Kolodziejski, L. A.

Lederer, M. J.

Li, D.

Lisitsyn, V. N.

V. N. Lisitsyn, V. N. Matrosov, V. P. Orekhova, E. V. Pestryakov, B. K. Sevast’yanov, V. I. Trunov, V. N. Zenin, and Yu. L. Renigailo, “Generation of 0.7-0.8 µm picosecond pulses in an Alexandrite laser with passive mode-locking,” Sov. J. Quant. Electron. 12(3), 368–370 (1982).
[Crossref]

Loiko, P.

Luther-Davies, B.

Magni, V.

Major, A.

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
[Crossref]

P. Loiko and A. Major, “Dispersive properties of alexandrite and beryllium hexaaluminate crystals,” Opt. Mater. Express 6(7), 2177–2183 (2016).
[Crossref]

T. Waritanant and A. Major, “High efficiency passively mode-locked Nd:YVO4 laser with direct in-band pumping at 914 nm,” Opt. Express 24(12), 12851–12855 (2016).
[Crossref]

H. Zhao and A. Major, “Megawatt peak power level sub-100 fs Yb:KGW oscillators,” Opt. Express 22(25), 30425–30431 (2014).
[Crossref] [PubMed]

H. Zhao and A. Major, “Powerful 67 fs Kerr-lens mode-locked prismless Yb:KGW oscillator,” Opt. Express 21(26), 31846–31851 (2013).
[Crossref] [PubMed]

D. Sandkuijl, R. Cisek, A. Major, and V. Barzda, “Differential microscopy for fluorescence-detected nonlinear absorption linear anisotropy based on a staggered two-beam femtosecond Yb:KGW oscillator,” Biomed. Opt. Express 1(3), 895–901 (2010).
[Crossref] [PubMed]

A. Major, D. Sandkuijl, and V. Barzda, “Efficient frequency doubling of a femtosecond Yb:KGW laser in a BiB3O6 crystal,” Opt. Express 17(14), 12039–12042 (2009).
[Crossref] [PubMed]

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for all-optical switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

Matrosov, V. N.

V. N. Lisitsyn, V. N. Matrosov, V. P. Orekhova, E. V. Pestryakov, B. K. Sevast’yanov, V. I. Trunov, V. N. Zenin, and Yu. L. Renigailo, “Generation of 0.7-0.8 µm picosecond pulses in an Alexandrite laser with passive mode-locking,” Sov. J. Quant. Electron. 12(3), 368–370 (1982).
[Crossref]

Minassian, A.

Morgner, U.

Morris, R. C.

O’Dell, E. W.

Orekhova, V. P.

V. N. Lisitsyn, V. N. Matrosov, V. P. Orekhova, E. V. Pestryakov, B. K. Sevast’yanov, V. I. Trunov, V. N. Zenin, and Yu. L. Renigailo, “Generation of 0.7-0.8 µm picosecond pulses in an Alexandrite laser with passive mode-locking,” Sov. J. Quant. Electron. 12(3), 368–370 (1982).
[Crossref]

Pallaro, L.

Pestryakov, E. V.

V. N. Lisitsyn, V. N. Matrosov, V. P. Orekhova, E. V. Pestryakov, B. K. Sevast’yanov, V. I. Trunov, V. N. Zenin, and Yu. L. Renigailo, “Generation of 0.7-0.8 µm picosecond pulses in an Alexandrite laser with passive mode-locking,” Sov. J. Quant. Electron. 12(3), 368–370 (1982).
[Crossref]

Peterson, O. G.

Petrich, G. S.

Renigailo, Yu. L.

V. N. Lisitsyn, V. N. Matrosov, V. P. Orekhova, E. V. Pestryakov, B. K. Sevast’yanov, V. I. Trunov, V. N. Zenin, and Yu. L. Renigailo, “Generation of 0.7-0.8 µm picosecond pulses in an Alexandrite laser with passive mode-locking,” Sov. J. Quant. Electron. 12(3), 368–370 (1982).
[Crossref]

Sandkuijl, D.

Scheuer, V.

Sennaroglu, A.

Sevast’yanov, B. K.

V. N. Lisitsyn, V. N. Matrosov, V. P. Orekhova, E. V. Pestryakov, B. K. Sevast’yanov, V. I. Trunov, V. N. Zenin, and Yu. L. Renigailo, “Generation of 0.7-0.8 µm picosecond pulses in an Alexandrite laser with passive mode-locking,” Sov. J. Quant. Electron. 12(3), 368–370 (1982).
[Crossref]

Sibbett, W.

Smith, P. W. E.

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for all-optical switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

Sorokin, E.

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for all-optical switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

Sorokina, I. T.

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for all-optical switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

Spence, D. E.

Teppitaksak, A.

Thomas, G. M.

Trunov, V. I.

V. N. Lisitsyn, V. N. Matrosov, V. P. Orekhova, E. V. Pestryakov, B. K. Sevast’yanov, V. I. Trunov, V. N. Zenin, and Yu. L. Renigailo, “Generation of 0.7-0.8 µm picosecond pulses in an Alexandrite laser with passive mode-locking,” Sov. J. Quant. Electron. 12(3), 368–370 (1982).
[Crossref]

Tschudi, T.

Walling, J. C.

Waritanant, T.

Yoshino, F.

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for all-optical switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

Zenin, V. N.

V. N. Lisitsyn, V. N. Matrosov, V. P. Orekhova, E. V. Pestryakov, B. K. Sevast’yanov, V. I. Trunov, V. N. Zenin, and Yu. L. Renigailo, “Generation of 0.7-0.8 µm picosecond pulses in an Alexandrite laser with passive mode-locking,” Sov. J. Quant. Electron. 12(3), 368–370 (1982).
[Crossref]

Zhao, H.

Appl. Phys. Lett. (1)

A. Major, F. Yoshino, J. S. Aitchison, P. W. E. Smith, E. Sorokin, and I. T. Sorokina, “Ultrafast nonresonant third-order optical nonlinearities in ZnSe for all-optical switching at telecom wavelengths,” Appl. Phys. Lett. 85(20), 4606–4608 (2004).
[Crossref]

Biomed. Opt. Express (1)

Laser Phys. (1)

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26(7), 075001 (2016).
[Crossref]

Nat. Biotechnol. (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (4)

Opt. Mater. Express (1)

Sov. J. Quant. Electron. (1)

V. N. Lisitsyn, V. N. Matrosov, V. P. Orekhova, E. V. Pestryakov, B. K. Sevast’yanov, V. I. Trunov, V. N. Zenin, and Yu. L. Renigailo, “Generation of 0.7-0.8 µm picosecond pulses in an Alexandrite laser with passive mode-locking,” Sov. J. Quant. Electron. 12(3), 368–370 (1982).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic layout of the femtosecond KLM Alexandrite laser oscillator and a photograph of the laser crystal between the folding mirrors at low pump power. (b) The path of the pump light in the crystal near its center is clearly visualized by the excited fluorescence.
Fig. 2
Fig. 2 Contour Magni plots for the used KLM resonator in the tangential plane. Red dot indicates the operating point. Dashed horizontal lines show stability edges. LMS - low misalignment sensitivity region, HMS - high misalignment sensitivity region of the resonator.
Fig. 3
Fig. 3 Measured (a) spectrum and (b) autocorrelation trace of the pulses with fits assuming a sech2 profile.
Fig. 4
Fig. 4 Laser beam on paper surface (a) and its intensity profiles in the CW (b) and mode-locked (c) regimes. Beam size change in (b) and (c) is due to the different locations of the CCD camera in the CW and KLM experiments.
Fig. 5
Fig. 5 Photograph of the pumped Alexandrite crystal in the laser cavity.

Metrics