Abstract

We demonstrate a polymer network liquid crystal (PNLC) with negligible hysteresis while keeping submillisecond response time. By doping about 1% dodecyl acrylate (C12A) into the liquid crystal/monomer precursor, both hysteresis and residual birefringence are almost completely eliminated. The operating voltage and scattering properties remain nearly intact, but the tradeoff is enhanced double relaxation. This hysteresis-free PNLC should find applications in spatial light modulators, laser beam control, and optical communications in infrared region.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Submillisecond-response and scattering-free infrared liquid crystal phase modulators

Jie Sun, Yuan Chen, and Shin-Tson Wu
Opt. Express 20(18) 20124-20129 (2012)

Submillisecond-response polymer network liquid crystals for mid-infrared applications

Fangwang Gou, Ran Chen, Minggang Hu, Juanli Li, Jian Li, Zhongwei An, and Shin-Tson Wu
Opt. Express 26(23) 29735-29743 (2018)

Effects of monomer/liquid crystal compositions on electro-optical properties of polymer-stabilized blue phase liquid crystal

Thet Naing Oo, Tatsuro Mizunuma, Yasutomo Nagano, Hengyi Ma, Yukiko Ogawa, Yasuhiro Haseba, Hiroki Higuchi, Yasushi Okumura, and Hirotsugu Kikuchi
Opt. Mater. Express 1(8) 1502-1510 (2011)

References

  • View by:
  • |
  • |
  • |

  1. U. Efron, Spatial Light Modulator Technology: Materials, Devices, and Applications (Marcel Dekker, 1994).
  2. S. Quirin, D. S. Peterka, and R. Yuste, “Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging,” Opt. Express 21(13), 16007–16021 (2013).
    [Crossref] [PubMed]
  3. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36(7), 1517–1520 (1997).
    [Crossref] [PubMed]
  4. H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).
  5. F. Feng, I. H. White, and T. D. Wilkinson, “Free space communications with beam steering a two-electrode tapered laser diode using liquid-crystal SLM,” J. Lightwave Technol. 31(12), 2001–2007 (2013).
    [Crossref]
  6. H. Kikuchi, J. Nishiwaki, and T. Kajiyama, “Mechanism of electro-optical switching hysteresis for (polymer/liquid crystal) composite films,” Polym. J. 27(12), 1246–1256 (1995).
    [Crossref]
  7. L. Bouteiller and P. L. Barny, “Polymer-dispersed liquid crystals: preparation, operation and application,” Liq. Cryst. 21(2), 157–174 (1996).
    [Crossref]
  8. Y. F. Lan, C. Y. Tsai, J. K. Lu, and N. Sugiura, “Mechanism of hysteresis in polymer-network stabilized blue phase liquid crystal,” Polym. 54(7), 1876–1879 (2013).
    [Crossref]
  9. D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
    [Crossref]
  10. Y. Chen and S.-T. Wu, “Recent advances in polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 6333–6342 (2014).
    [Crossref]
  11. J. Sun, Y. Chen, and S. T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
    [Crossref] [PubMed]
  12. J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci. Part B, Polym. Phys. 52(3), 183–192 (2014).
    [Crossref]
  13. F. Peng, H. Chen, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Fast-response infrared phase modulator based on polymer network liquid crystal,” Opt. Mater. Express 5(2), 265–273 (2015).
    [Crossref]
  14. K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
    [Crossref]
  15. F. Peng, Y. H. Lee, Z. Luo, and S.-T. Wu, “Low voltage blue phase liquid crystal for spatial light modulators,” Opt. Lett. 40(21), 5097–5100 (2015).
    [Crossref] [PubMed]

2015 (2)

2014 (3)

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Y. Chen and S.-T. Wu, “Recent advances in polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 6333–6342 (2014).
[Crossref]

J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci. Part B, Polym. Phys. 52(3), 183–192 (2014).
[Crossref]

2013 (3)

2012 (1)

2010 (1)

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[Crossref]

1997 (1)

1996 (1)

L. Bouteiller and P. L. Barny, “Polymer-dispersed liquid crystals: preparation, operation and application,” Liq. Cryst. 21(2), 157–174 (1996).
[Crossref]

1995 (1)

H. Kikuchi, J. Nishiwaki, and T. Kajiyama, “Mechanism of electro-optical switching hysteresis for (polymer/liquid crystal) composite films,” Polym. J. 27(12), 1246–1256 (1995).
[Crossref]

Barny, P. L.

L. Bouteiller and P. L. Barny, “Polymer-dispersed liquid crystals: preparation, operation and application,” Liq. Cryst. 21(2), 157–174 (1996).
[Crossref]

Bouteiller, L.

L. Bouteiller and P. L. Barny, “Polymer-dispersed liquid crystals: preparation, operation and application,” Liq. Cryst. 21(2), 157–174 (1996).
[Crossref]

Chen, H.

Chen, K. M.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[Crossref]

Chen, Y.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Y. Chen and S.-T. Wu, “Recent advances in polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 6333–6342 (2014).
[Crossref]

J. Sun, Y. Chen, and S. T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
[Crossref] [PubMed]

Feng, F.

Gauza, S.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[Crossref]

Kajiyama, T.

H. Kikuchi, J. Nishiwaki, and T. Kajiyama, “Mechanism of electro-optical switching hysteresis for (polymer/liquid crystal) composite films,” Polym. J. 27(12), 1246–1256 (1995).
[Crossref]

Kikuchi, H.

H. Kikuchi, J. Nishiwaki, and T. Kajiyama, “Mechanism of electro-optical switching hysteresis for (polymer/liquid crystal) composite films,” Polym. J. 27(12), 1246–1256 (1995).
[Crossref]

Lan, Y. F.

Y. F. Lan, C. Y. Tsai, J. K. Lu, and N. Sugiura, “Mechanism of hysteresis in polymer-network stabilized blue phase liquid crystal,” Polym. 54(7), 1876–1879 (2013).
[Crossref]

Lee, Y. H.

Love, G. D.

Lu, J. K.

Y. F. Lan, C. Y. Tsai, J. K. Lu, and N. Sugiura, “Mechanism of hysteresis in polymer-network stabilized blue phase liquid crystal,” Polym. 54(7), 1876–1879 (2013).
[Crossref]

Luo, Z.

Nishiwaki, J.

H. Kikuchi, J. Nishiwaki, and T. Kajiyama, “Mechanism of electro-optical switching hysteresis for (polymer/liquid crystal) composite films,” Polym. J. 27(12), 1246–1256 (1995).
[Crossref]

Peng, F.

Peterka, D. S.

Quirin, S.

Sugiura, N.

Y. F. Lan, C. Y. Tsai, J. K. Lu, and N. Sugiura, “Mechanism of hysteresis in polymer-network stabilized blue phase liquid crystal,” Polym. 54(7), 1876–1879 (2013).
[Crossref]

Sun, J.

J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci. Part B, Polym. Phys. 52(3), 183–192 (2014).
[Crossref]

J. Sun, Y. Chen, and S. T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
[Crossref] [PubMed]

Tripathi, S.

Tsai, C. Y.

Y. F. Lan, C. Y. Tsai, J. K. Lu, and N. Sugiura, “Mechanism of hysteresis in polymer-network stabilized blue phase liquid crystal,” Polym. 54(7), 1876–1879 (2013).
[Crossref]

Twieg, R. J.

White, I. H.

Wilkinson, T. D.

Wu, S. T.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci. Part B, Polym. Phys. 52(3), 183–192 (2014).
[Crossref]

J. Sun, Y. Chen, and S. T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
[Crossref] [PubMed]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[Crossref]

Wu, S.-T.

Xianyu, H.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[Crossref]

Xu, D.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Yan, J.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Yuan, J.

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

Yuste, R.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 105(1), 011119 (2014).
[Crossref]

J. Appl. Polym. Sci. (1)

Y. Chen and S.-T. Wu, “Recent advances in polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 6333–6342 (2014).
[Crossref]

J. Disp. Technol. (1)

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Polym. Sci. Part B, Polym. Phys. (1)

J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci. Part B, Polym. Phys. 52(3), 183–192 (2014).
[Crossref]

Liq. Cryst. (1)

L. Bouteiller and P. L. Barny, “Polymer-dispersed liquid crystals: preparation, operation and application,” Liq. Cryst. 21(2), 157–174 (1996).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Polym. (1)

Y. F. Lan, C. Y. Tsai, J. K. Lu, and N. Sugiura, “Mechanism of hysteresis in polymer-network stabilized blue phase liquid crystal,” Polym. 54(7), 1876–1879 (2013).
[Crossref]

Polym. J. (1)

H. Kikuchi, J. Nishiwaki, and T. Kajiyama, “Mechanism of electro-optical switching hysteresis for (polymer/liquid crystal) composite films,” Polym. J. 27(12), 1246–1256 (1995).
[Crossref]

Other (2)

U. Efron, Spatial Light Modulator Technology: Materials, Devices, and Applications (Marcel Dekker, 1994).

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The chemical structures of C12A and RM257. RM257 exhibits nematic liquid crystal phase between 70°C and 130°C while C12A does not have a mesogenic phase.
Fig. 2
Fig. 2 Hysteresis of PNLC samples at λ = 1550 nm with (a) 7wt% RM257 without C12A and (b) 6wt% RM257 with 1wt% C12A. The red arrow indicates forward voltage scan while the blue arrow is backward. The thin red lines represent the transmittance of the LC host without polymers. Insets: the PNLC cells observed on a light table between crossed polarizers.
Fig. 3
Fig. 3 Measured transmission spectra of PNLC samples S70, S61 and S52 at 60 Vrms, near where the strongest scattering occurs. The relative transmittance of sample S61 is 97.8% and 99.8% at λ = 1060 and 1550 nm, respectively. Transmittance was normalized to the case when the cell was infiltrated with pure nematic host.
Fig. 4
Fig. 4 The transient relaxation process of the sample (a) S70 and (b) S52 from 50 Vrms to 0 Vrms fitted with single (dashed blue lines) and double (solid red lines) relaxation curves.
Fig. 5
Fig. 5 The A/(A + B) ratios for samples S70, S61 and S52. Only statistical errors were included. Dashed trend lines are added for visual aid.
Fig. 6
Fig. 6 (a) The extracted fast relaxation time constant (τ1) and (b) slow relaxation time constant (τ2) for S70, S61, and S52 PNLC samples.
Fig. 7
Fig. 7 The phase shift measured at λ = 1550 nm and 1060 nm of sample S61. For 1060 nm, the π and 2π phase shift occurs at 53.2 Vrms and 76.2 Vrms, respectively.

Tables (1)

Tables Icon

Table 1 Measured hysteresis of PNLC samples with different monomer compositions. λ = 1550 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ(t)=A× e t/ τ 1 +B× e t/ τ 2 ,
τ γ 1 k 11 d 1 2 π 2 ,
δ=2πdΔn/λ.

Metrics