Abstract

Enhanced photoacoustic (PA) intensity from gold nanosphere and nanorod colloidal suspensions in water under tightly-focused femtosecond pulsed laser irradiation was systematically investigated. PA signal amplitudes were measured by ultrasound transducers at frequencies of 5, 10, and 25 MHz. The experimental results revealed a linear-dependence of the relative photoacoustic amplitude on the laser power and the mechanism was attributed to non-radiative relaxation dynamics of surface plasmon oscillations. When gold nanorod with longitudinal absorption/extinction peak at 800 nm coincides with the wavelength of femtosecond laser pulses, the most efficient PA signal is generated. Laser excitation was kept within a thermal stability region of gold nanoparticles, i.e., colloidal suspension can be continuously reused for PA generation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoacoustic signal enhancements from gold nano-colloidal suspensions excited by a pair of time-delayed femtosecond pulses

Frances Camille P. Masim, Wei-Hung Hsu, Hao-Li Liu, Tetsu Yonezawa, Armandas Balčytis, Saulius Juodkazis, and Koji Hatanaka
Opt. Express 25(16) 19497-19507 (2017)

MHz-ultrasound generation by chirped femtosecond laser pulses from gold nano-colloidal suspensions

Frances Camille P. Masim, Wei-Hung Hsu, Chih-Hung Tsai, Hao-Li Liu, Matteo Porta, Mai Thanh Nguyen, Tetsu Yonezawa, Armandas Balčytis, Xuewen Wang, Saulius Juodkazis, and Koji Hatanaka
Opt. Express 24(15) 17050-17059 (2016)

Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy

Yun-Sheng Chen, Wolfgang Frey, Seungsoo Kim, Kimberly Homan, Pieter Kruizinga, Konstantin Sokolov, and Stanislav Emelianov
Opt. Express 18(9) 8867-8878 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. Wang, Photoacoustic Imaging and Spectroscopy (Taylor and Francis CRC, 2009).
    [Crossref]
  2. J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
    [Crossref] [PubMed]
  3. A. De La Zerda, J. M. Kim, E. I. Galanzha, S. S. Ghambir, and V. P. Zharov, “Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics,” Contrast Media Mol. Imaging 6, 346–369 (2011).
    [Crossref] [PubMed]
  4. V. P. Zharov and V. S. Letokhov, Laser Optoacoustic Spectroscopy (Springer, 1986).
    [Crossref]
  5. Y. Yamaoka, H. Yoshinori, M. Sakakura, T. Minamikawa, S. Nishino, S. Maehara, S. Hamano, H. Tanaka, and T. Takamatsu, “Photoacoustic microscopy using ultrashort pulses with two different pulse durations,” Opt. Express 19(14), 13365–13377 (2014).
    [Crossref]
  6. C. H. Fan, H. L. Liu, C. Y. Ting, Y. H. Lee, C. Y. Huang, Y. J. Ma, K. C. Wei, T. C. Yen, and C. K. Yeh, “Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery,” PLOS One 5(9), e96327 (2014).
    [Crossref]
  7. H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. H. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, “Magnetic gold-nanorod / PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34, 5651–5660 (2013).
    [Crossref] [PubMed]
  8. V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nature Photonics 5, 110–116 (2015).
    [Crossref]
  9. T. Fukusawa, S. Noguchi, H. Shinto, H. Aoki, S. Ito, and S. Ohshima, “Effects of physicochemical properties of particles and medium on acoustic pressure pulses from laser-irradiated suspensions,” Coll. Surf. A: Physicochem. Eng. Aspects 487, 42–48 (2015).
    [Crossref]
  10. G. Langer, K. D. Bouchal, H. Grun, P. Burgholzer, and T. Berer, “Two-photon absorption-induced photoacoustic imaging of Rhodamine B dyed polyethylene spheres using a femtosecond laser,” Opt. Express 19(21), 22410–22422 (2013).
    [Crossref]
  11. Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. SPIE 7177, 71772A (2009).
    [Crossref]
  12. Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Letters 11, 348–354 (2011).
    [Crossref] [PubMed]
  13. Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).
  14. J. Liaw, S. W. Tsai, H. H. Lin, T. C. Yen, and B. R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid,” J. Quantit. Spectr. Rad. Trans. 113, 2234–2242 (2012).
    [Crossref]
  15. C. Tarapacki, C. Kumaradas, and R. Karshafian, “Enhancing laser thermal-therapy using ultrasound-microbubbles and gold nanorods of in vitro cells,” Ultrasonics 53, 793–798 (2013).
    [Crossref] [PubMed]
  16. V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett. 5(11), 775–792 (2008).
    [Crossref]
  17. L. Wang, C. -H. Liu, Y. Nemoto, N. Fukata, K. C. - Wu, and Y. Yamauchi, ”Rapid synthesis of biocompatible gold nanoflowers with tailored surface textures with the assistance of amino acid molecules,” RCS Advances 2, 4608–4611 (2012).
  18. B. P. Bastakoti, K. C. -W. Wu, and Y. Yamauchi, ”Synthesis of fine gold nanoparticles in mesoporous titania nanoparticles through different reduction methods”, J. Nanosci. Nanotechnol. 13(4), 2735–2739 (2013).
    [Crossref] [PubMed]
  19. Y. -T Liao, J. W. Chen, Y. Isida, T. Yonezawa, M. T. Nguyen, W. -C. Chang, S. M. Alshehri, Y. Yamauchi, and K. C. -W. Wu, ”De novo synthesis of Au nanoparticles-embedded nitrogen-doped nanoporous carbon nanoparticles with enhanced reduction ability,” Chem. Sus. Chem. DOI:.
    [Crossref]
  20. L. H. -W. Chen, C. -Y. Hong, C. -W. Kung, C. -Y. Mou, K. C. -W. Wu, and K. -C. Ho, ”A gold surface plasmon enhanced mesoporous titanium dioxide photoelectrode for plastic based flexible dye-sensitized solar cells”, J. Power Sources. 288, 221–228 (2015).
    [Crossref]
  21. J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
    [Crossref]
  22. Q. Zhang, N. Iwakuma, P. Sharma, B. M. Moudgil, C. Wu, J. Mcneill, H. Jiang, and S. R. Grobmyer, “Gold nanoparticles as contrast agent for in vivo tumor imaging with photoacoustic tomography,” Nanotechnol. 20, 395102 (2009).
    [Crossref]
  23. Y. Yamaoka, N. Mika, and T. Takamatsu, “Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering,” Opt. Express 22(14), 17063–17072 (2011).
    [Crossref]
  24. S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92(10), 101916 (2008).
    [Crossref]
  25. B. Urban, J. Yi, V. Yakovlev, and H. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Opt. 19(8), 085001 (2014).
    [Crossref] [PubMed]
  26. T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Quantification of effective attenuation coefficients using continuous wavelet transform of photoacoustic signals,” Appl. Optics 35(52), 8562–8571 (2013).
    [Crossref]
  27. N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
    [Crossref] [PubMed]
  28. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
    [Crossref]
  29. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [Crossref]
  30. T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic technique,” Eur. Phys. J. Spec. Top. 153, 361–364 (2008).
    [Crossref]
  31. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
    [Crossref]
  32. T. Klar, M. Perner, S. Grosse, V. Plessen, W. Spirkl, and J. Fieldman, “Surface plasmon resonance in single metallic nanoparticles,” Phys. Rev. Lett. 19(80), 4249–4252 (1988).
  33. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: application in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
    [Crossref] [PubMed]
  34. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
    [Crossref] [PubMed]
  35. T. Fukusawa, H. Shinto, H. Aoki, S. Ito, and M. Ohshima, “Size-dependent effect of gold nanospheres on the acoustic pressure pulses from laser-irradiated suspensions,” Adv. Powder Technol. 25, 733–738 (2014).
    [Crossref]
  36. S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mat.2016, online published DOI: (2016).
    [Crossref]
  37. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon resonance oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
    [Crossref]
  38. Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2(4), 382–388 (2014).
    [Crossref]
  39. T. Okamoto, “Near-Field Spectral Analysis of Metallic Beads,” in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer-VerlagBerlin Heidelberg, 2001), pp. 97–123.
    [Crossref]
  40. M. Eghtedari, A. Oraevsky, J. A. Copland, N. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Letters 7(7), 1914–1918 (2007).
    [Crossref] [PubMed]
  41. P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. C. Wang, P. Y. Chen, T. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
    [Crossref] [PubMed]
  42. A. Agarwal, S. W. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
    [Crossref]
  43. S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201910 (2011).
    [Crossref]
  44. A. B. Taylor, A. M. Siddiquee, and J. W. M. Chon, “Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion,” ACS Nano 8(12), 12071–12079 (2014).
    [Crossref] [PubMed]
  45. S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B 33(104), 7867–7870 (2000).
    [Crossref]
  46. H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
    [Crossref] [PubMed]
  47. R. Zou, Q. Zhang, Q. Zhao, F. Peng, H. Wang, H. Yu, and J. Yang, “Thermal stability of gold nanorods in an aqueous solution,” Colloid. Surf. A: Physicochem. Eng. Aspects 372, 177–181 (2010).
    [Crossref]
  48. H. Iwase, S. Kokubo, S. Juodkazis, and H. Misawa, “Suppression of ripples on Ni surface via a polarization grating,” Opt. Express 17(6), 4388–4396 (2009).
    [Crossref] [PubMed]
  49. N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective non-linear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4–6), 1147–1149 (2009).
    [Crossref]
  50. R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

2015 (3)

L. H. -W. Chen, C. -Y. Hong, C. -W. Kung, C. -Y. Mou, K. C. -W. Wu, and K. -C. Ho, ”A gold surface plasmon enhanced mesoporous titanium dioxide photoelectrode for plastic based flexible dye-sensitized solar cells”, J. Power Sources. 288, 221–228 (2015).
[Crossref]

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nature Photonics 5, 110–116 (2015).
[Crossref]

T. Fukusawa, S. Noguchi, H. Shinto, H. Aoki, S. Ito, and S. Ohshima, “Effects of physicochemical properties of particles and medium on acoustic pressure pulses from laser-irradiated suspensions,” Coll. Surf. A: Physicochem. Eng. Aspects 487, 42–48 (2015).
[Crossref]

2014 (7)

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref] [PubMed]

Y. Yamaoka, H. Yoshinori, M. Sakakura, T. Minamikawa, S. Nishino, S. Maehara, S. Hamano, H. Tanaka, and T. Takamatsu, “Photoacoustic microscopy using ultrashort pulses with two different pulse durations,” Opt. Express 19(14), 13365–13377 (2014).
[Crossref]

C. H. Fan, H. L. Liu, C. Y. Ting, Y. H. Lee, C. Y. Huang, Y. J. Ma, K. C. Wei, T. C. Yen, and C. K. Yeh, “Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery,” PLOS One 5(9), e96327 (2014).
[Crossref]

A. B. Taylor, A. M. Siddiquee, and J. W. M. Chon, “Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion,” ACS Nano 8(12), 12071–12079 (2014).
[Crossref] [PubMed]

B. Urban, J. Yi, V. Yakovlev, and H. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Opt. 19(8), 085001 (2014).
[Crossref] [PubMed]

T. Fukusawa, H. Shinto, H. Aoki, S. Ito, and M. Ohshima, “Size-dependent effect of gold nanospheres on the acoustic pressure pulses from laser-irradiated suspensions,” Adv. Powder Technol. 25, 733–738 (2014).
[Crossref]

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2(4), 382–388 (2014).
[Crossref]

2013 (7)

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Quantification of effective attenuation coefficients using continuous wavelet transform of photoacoustic signals,” Appl. Optics 35(52), 8562–8571 (2013).
[Crossref]

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. H. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, “Magnetic gold-nanorod / PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34, 5651–5660 (2013).
[Crossref] [PubMed]

C. Tarapacki, C. Kumaradas, and R. Karshafian, “Enhancing laser thermal-therapy using ultrasound-microbubbles and gold nanorods of in vitro cells,” Ultrasonics 53, 793–798 (2013).
[Crossref] [PubMed]

G. Langer, K. D. Bouchal, H. Grun, P. Burgholzer, and T. Berer, “Two-photon absorption-induced photoacoustic imaging of Rhodamine B dyed polyethylene spheres using a femtosecond laser,” Opt. Express 19(21), 22410–22422 (2013).
[Crossref]

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

B. P. Bastakoti, K. C. -W. Wu, and Y. Yamauchi, ”Synthesis of fine gold nanoparticles in mesoporous titania nanoparticles through different reduction methods”, J. Nanosci. Nanotechnol. 13(4), 2735–2739 (2013).
[Crossref] [PubMed]

2012 (4)

L. Wang, C. -H. Liu, Y. Nemoto, N. Fukata, K. C. - Wu, and Y. Yamauchi, ”Rapid synthesis of biocompatible gold nanoflowers with tailored surface textures with the assistance of amino acid molecules,” RCS Advances 2, 4608–4611 (2012).

J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[Crossref]

J. Liaw, S. W. Tsai, H. H. Lin, T. C. Yen, and B. R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid,” J. Quantit. Spectr. Rad. Trans. 113, 2234–2242 (2012).
[Crossref]

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. C. Wang, P. Y. Chen, T. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

2011 (5)

N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref] [PubMed]

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201910 (2011).
[Crossref]

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Letters 11, 348–354 (2011).
[Crossref] [PubMed]

Y. Yamaoka, N. Mika, and T. Takamatsu, “Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering,” Opt. Express 22(14), 17063–17072 (2011).
[Crossref]

A. De La Zerda, J. M. Kim, E. I. Galanzha, S. S. Ghambir, and V. P. Zharov, “Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics,” Contrast Media Mol. Imaging 6, 346–369 (2011).
[Crossref] [PubMed]

2010 (1)

R. Zou, Q. Zhang, Q. Zhao, F. Peng, H. Wang, H. Yu, and J. Yang, “Thermal stability of gold nanorods in an aqueous solution,” Colloid. Surf. A: Physicochem. Eng. Aspects 372, 177–181 (2010).
[Crossref]

2009 (4)

Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. SPIE 7177, 71772A (2009).
[Crossref]

Q. Zhang, N. Iwakuma, P. Sharma, B. M. Moudgil, C. Wu, J. Mcneill, H. Jiang, and S. R. Grobmyer, “Gold nanoparticles as contrast agent for in vivo tumor imaging with photoacoustic tomography,” Nanotechnol. 20, 395102 (2009).
[Crossref]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective non-linear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4–6), 1147–1149 (2009).
[Crossref]

H. Iwase, S. Kokubo, S. Juodkazis, and H. Misawa, “Suppression of ripples on Ni surface via a polarization grating,” Opt. Express 17(6), 4388–4396 (2009).
[Crossref] [PubMed]

2008 (3)

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett. 5(11), 775–792 (2008).
[Crossref]

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92(10), 101916 (2008).
[Crossref]

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic technique,” Eur. Phys. J. Spec. Top. 153, 361–364 (2008).
[Crossref]

2007 (2)

A. Agarwal, S. W. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

M. Eghtedari, A. Oraevsky, J. A. Copland, N. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Letters 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

2006 (3)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: application in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref] [PubMed]

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[Crossref] [PubMed]

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

2003 (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

2001 (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
[Crossref]

2000 (1)

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B 33(104), 7867–7870 (2000).
[Crossref]

1999 (2)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon resonance oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

1988 (1)

T. Klar, M. Perner, S. Grosse, V. Plessen, W. Spirkl, and J. Fieldman, “Surface plasmon resonance in single metallic nanoparticles,” Phys. Rev. Lett. 19(80), 4249–4252 (1988).

Abdallah, S.

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic technique,” Eur. Phys. J. Spec. Top. 153, 361–364 (2008).
[Crossref]

Abdallah, T.

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic technique,” Eur. Phys. J. Spec. Top. 153, 361–364 (2008).
[Crossref]

Agarwal, A.

A. Agarwal, S. W. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

Alshehri, S. M.

Y. -T Liao, J. W. Chen, Y. Isida, T. Yonezawa, M. T. Nguyen, W. -C. Chang, S. M. Alshehri, Y. Yamauchi, and K. C. -W. Wu, ”De novo synthesis of Au nanoparticles-embedded nitrogen-doped nanoporous carbon nanoparticles with enhanced reduction ability,” Chem. Sus. Chem. DOI:.
[Crossref]

Aoki, H.

T. Fukusawa, S. Noguchi, H. Shinto, H. Aoki, S. Ito, and S. Ohshima, “Effects of physicochemical properties of particles and medium on acoustic pressure pulses from laser-irradiated suspensions,” Coll. Surf. A: Physicochem. Eng. Aspects 487, 42–48 (2015).
[Crossref]

T. Fukusawa, H. Shinto, H. Aoki, S. Ito, and M. Ohshima, “Size-dependent effect of gold nanospheres on the acoustic pressure pulses from laser-irradiated suspensions,” Adv. Powder Technol. 25, 733–738 (2014).
[Crossref]

Ashkenazi, S.

A. Agarwal, S. W. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

Bastakoti, B. P.

B. P. Bastakoti, K. C. -W. Wu, and Y. Yamauchi, ”Synthesis of fine gold nanoparticles in mesoporous titania nanoparticles through different reduction methods”, J. Nanosci. Nanotechnol. 13(4), 2735–2739 (2013).
[Crossref] [PubMed]

Bastus, N. G.

N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref] [PubMed]

Baumgart, J.

J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[Crossref]

Berer, T.

Blandin, P.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

Bouchal, K. D.

Boulais, E.

J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[Crossref]

Burgholzer, P.

Chang, W. -C.

Y. -T Liao, J. W. Chen, Y. Isida, T. Yonezawa, M. T. Nguyen, W. -C. Chang, S. M. Alshehri, Y. Yamauchi, and K. C. -W. Wu, ”De novo synthesis of Au nanoparticles-embedded nitrogen-doped nanoporous carbon nanoparticles with enhanced reduction ability,” Chem. Sus. Chem. DOI:.
[Crossref]

Chen, B. R.

J. Liaw, S. W. Tsai, H. H. Lin, T. C. Yen, and B. R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid,” J. Quantit. Spectr. Rad. Trans. 113, 2234–2242 (2012).
[Crossref]

Chen, J. W.

Y. -T Liao, J. W. Chen, Y. Isida, T. Yonezawa, M. T. Nguyen, W. -C. Chang, S. M. Alshehri, Y. Yamauchi, and K. C. -W. Wu, ”De novo synthesis of Au nanoparticles-embedded nitrogen-doped nanoporous carbon nanoparticles with enhanced reduction ability,” Chem. Sus. Chem. DOI:.
[Crossref]

Chen, L. H. -W.

L. H. -W. Chen, C. -Y. Hong, C. -W. Kung, C. -Y. Mou, K. C. -W. Wu, and K. -C. Ho, ”A gold surface plasmon enhanced mesoporous titanium dioxide photoelectrode for plastic based flexible dye-sensitized solar cells”, J. Power Sources. 288, 221–228 (2015).
[Crossref]

Chen, P. Y.

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. C. Wang, P. Y. Chen, T. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Chen, Y. S.

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Letters 11, 348–354 (2011).
[Crossref] [PubMed]

Chon, J. W. M.

A. B. Taylor, A. M. Siddiquee, and J. W. M. Chon, “Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion,” ACS Nano 8(12), 12071–12079 (2014).
[Crossref] [PubMed]

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

Chou, H. Y.

H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. H. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, “Magnetic gold-nanorod / PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34, 5651–5660 (2013).
[Crossref] [PubMed]

Clayton, A. H. A.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

Comenge, J.

N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref] [PubMed]

Conjusteau, A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Letters 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

Copland, J. A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Letters 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

Danworaphong, S.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201910 (2011).
[Crossref]

Day, K.

A. Agarwal, S. W. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

Day, M.

A. Agarwal, S. W. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

De La Zerda, A.

A. De La Zerda, J. M. Kim, E. I. Galanzha, S. S. Ghambir, and V. P. Zharov, “Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics,” Contrast Media Mol. Imaging 6, 346–369 (2011).
[Crossref] [PubMed]

Easawi, K.

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic technique,” Eur. Phys. J. Spec. Top. 153, 361–364 (2008).
[Crossref]

Eghtedari, M.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Letters 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

El-Brolossy, T. A.

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic technique,” Eur. Phys. J. Spec. Top. 153, 361–364 (2008).
[Crossref]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: application in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: application in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref] [PubMed]

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[Crossref] [PubMed]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B 33(104), 7867–7870 (2000).
[Crossref]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon resonance oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Emalianov, S.

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

Emelianov, S.

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Letters 11, 348–354 (2011).
[Crossref] [PubMed]

Fan, C. H.

C. H. Fan, H. L. Liu, C. Y. Ting, Y. H. Lee, C. Y. Huang, Y. J. Ma, K. C. Wei, T. C. Yen, and C. K. Yeh, “Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery,” PLOS One 5(9), e96327 (2014).
[Crossref]

H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. H. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, “Magnetic gold-nanorod / PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34, 5651–5660 (2013).
[Crossref] [PubMed]

Fieldman, J.

T. Klar, M. Perner, S. Grosse, V. Plessen, W. Spirkl, and J. Fieldman, “Surface plasmon resonance in single metallic nanoparticles,” Phys. Rev. Lett. 19(80), 4249–4252 (1988).

Frey, W.

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Letters 11, 348–354 (2011).
[Crossref] [PubMed]

Fujita, M.

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Quantification of effective attenuation coefficients using continuous wavelet transform of photoacoustic signals,” Appl. Optics 35(52), 8562–8571 (2013).
[Crossref]

Fukata, N.

L. Wang, C. -H. Liu, Y. Nemoto, N. Fukata, K. C. - Wu, and Y. Yamauchi, ”Rapid synthesis of biocompatible gold nanoflowers with tailored surface textures with the assistance of amino acid molecules,” RCS Advances 2, 4608–4611 (2012).

Fukusawa, T.

T. Fukusawa, S. Noguchi, H. Shinto, H. Aoki, S. Ito, and S. Ohshima, “Effects of physicochemical properties of particles and medium on acoustic pressure pulses from laser-irradiated suspensions,” Coll. Surf. A: Physicochem. Eng. Aspects 487, 42–48 (2015).
[Crossref]

T. Fukusawa, H. Shinto, H. Aoki, S. Ito, and M. Ohshima, “Size-dependent effect of gold nanospheres on the acoustic pressure pulses from laser-irradiated suspensions,” Adv. Powder Technol. 25, 733–738 (2014).
[Crossref]

Gailevicius, D.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mat.2016, online published DOI: (2016).
[Crossref]

Galanzha, E. I.

A. De La Zerda, J. M. Kim, E. I. Galanzha, S. S. Ghambir, and V. P. Zharov, “Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics,” Contrast Media Mol. Imaging 6, 346–369 (2011).
[Crossref] [PubMed]

Gamaly, E. G.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mat.2016, online published DOI: (2016).
[Crossref]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
[Crossref]

Ghambir, S. S.

A. De La Zerda, J. M. Kim, E. I. Galanzha, S. S. Ghambir, and V. P. Zharov, “Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics,” Contrast Media Mol. Imaging 6, 346–369 (2011).
[Crossref] [PubMed]

Grobmyer, S. R.

Q. Zhang, N. Iwakuma, P. Sharma, B. M. Moudgil, C. Wu, J. Mcneill, H. Jiang, and S. R. Grobmyer, “Gold nanoparticles as contrast agent for in vivo tumor imaging with photoacoustic tomography,” Nanotechnol. 20, 395102 (2009).
[Crossref]

Grosse, S.

T. Klar, M. Perner, S. Grosse, V. Plessen, W. Spirkl, and J. Fieldman, “Surface plasmon resonance in single metallic nanoparticles,” Phys. Rev. Lett. 19(80), 4249–4252 (1988).

Grun, H.

Hamano, S.

Hartland, G.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

Hartley, J. S.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

Hashimoto, Y.

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2(4), 382–388 (2014).
[Crossref]

Hirasawa, T.

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Quantification of effective attenuation coefficients using continuous wavelet transform of photoacoustic signals,” Appl. Optics 35(52), 8562–8571 (2013).
[Crossref]

Ho, K. -C.

L. H. -W. Chen, C. -Y. Hong, C. -W. Kung, C. -Y. Mou, K. C. -W. Wu, and K. -C. Ho, ”A gold surface plasmon enhanced mesoporous titanium dioxide photoelectrode for plastic based flexible dye-sensitized solar cells”, J. Power Sources. 288, 221–228 (2015).
[Crossref]

Homan, K.

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Letters 11, 348–354 (2011).
[Crossref] [PubMed]

Hong, C. -Y.

L. H. -W. Chen, C. -Y. Hong, C. -W. Kung, C. -Y. Mou, K. C. -W. Wu, and K. -C. Ho, ”A gold surface plasmon enhanced mesoporous titanium dioxide photoelectrode for plastic based flexible dye-sensitized solar cells”, J. Power Sources. 288, 221–228 (2015).
[Crossref]

Hsi, I. W.

H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. H. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, “Magnetic gold-nanorod / PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34, 5651–5660 (2013).
[Crossref] [PubMed]

Hsu, P. H.

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. C. Wang, P. Y. Chen, T. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Hua, M. Y.

H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. H. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, “Magnetic gold-nanorod / PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34, 5651–5660 (2013).
[Crossref] [PubMed]

Huang, C. Y.

C. H. Fan, H. L. Liu, C. Y. Ting, Y. H. Lee, C. Y. Huang, Y. J. Ma, K. C. Wei, T. C. Yen, and C. K. Yeh, “Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery,” PLOS One 5(9), e96327 (2014).
[Crossref]

H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. H. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, “Magnetic gold-nanorod / PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34, 5651–5660 (2013).
[Crossref] [PubMed]

Huang, S. W.

A. Agarwal, S. W. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

Humbert, L.

J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[Crossref]

Ionin, A. A.

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92(10), 101916 (2008).
[Crossref]

Ishihara, M.

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Quantification of effective attenuation coefficients using continuous wavelet transform of photoacoustic signals,” Appl. Optics 35(52), 8562–8571 (2013).
[Crossref]

Isida, Y.

Y. -T Liao, J. W. Chen, Y. Isida, T. Yonezawa, M. T. Nguyen, W. -C. Chang, S. M. Alshehri, Y. Yamauchi, and K. C. -W. Wu, ”De novo synthesis of Au nanoparticles-embedded nitrogen-doped nanoporous carbon nanoparticles with enhanced reduction ability,” Chem. Sus. Chem. DOI:.
[Crossref]

Ito, S.

T. Fukusawa, S. Noguchi, H. Shinto, H. Aoki, S. Ito, and S. Ohshima, “Effects of physicochemical properties of particles and medium on acoustic pressure pulses from laser-irradiated suspensions,” Coll. Surf. A: Physicochem. Eng. Aspects 487, 42–48 (2015).
[Crossref]

T. Fukusawa, H. Shinto, H. Aoki, S. Ito, and M. Ohshima, “Size-dependent effect of gold nanospheres on the acoustic pressure pulses from laser-irradiated suspensions,” Adv. Powder Technol. 25, 733–738 (2014).
[Crossref]

Iwakuma, N.

Q. Zhang, N. Iwakuma, P. Sharma, B. M. Moudgil, C. Wu, J. Mcneill, H. Jiang, and S. R. Grobmyer, “Gold nanoparticles as contrast agent for in vivo tumor imaging with photoacoustic tomography,” Nanotechnol. 20, 395102 (2009).
[Crossref]

Iwase, H.

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: application in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref] [PubMed]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
[Crossref]

Jiang, H.

Q. Zhang, N. Iwakuma, P. Sharma, B. M. Moudgil, C. Wu, J. Mcneill, H. Jiang, and S. R. Grobmyer, “Gold nanoparticles as contrast agent for in vivo tumor imaging with photoacoustic tomography,” Nanotechnol. 20, 395102 (2009).
[Crossref]

Jonavicius, T.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mat.2016, online published DOI: (2016).
[Crossref]

Juodkazis, S.

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2(4), 382–388 (2014).
[Crossref]

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201910 (2011).
[Crossref]

H. Iwase, S. Kokubo, S. Juodkazis, and H. Misawa, “Suppression of ripples on Ni surface via a polarization grating,” Opt. Express 17(6), 4388–4396 (2009).
[Crossref] [PubMed]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective non-linear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4–6), 1147–1149 (2009).
[Crossref]

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92(10), 101916 (2008).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mat.2016, online published DOI: (2016).
[Crossref]

Juste, J. P.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

Kabashin, A.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

Karshafian, R.

C. Tarapacki, C. Kumaradas, and R. Karshafian, “Enhancing laser thermal-therapy using ultrasound-microbubbles and gold nanorods of in vitro cells,” Ultrasonics 53, 793–798 (2013).
[Crossref] [PubMed]

Kelf, T. A.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201910 (2011).
[Crossref]

Khurgin, J. B.

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2(4), 382–388 (2014).
[Crossref]

Kim, J. M.

A. De La Zerda, J. M. Kim, E. I. Galanzha, S. S. Ghambir, and V. P. Zharov, “Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics,” Contrast Media Mol. Imaging 6, 346–369 (2011).
[Crossref] [PubMed]

Kim, S.

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Letters 11, 348–354 (2011).
[Crossref] [PubMed]

Klar, T.

T. Klar, M. Perner, S. Grosse, V. Plessen, W. Spirkl, and J. Fieldman, “Surface plasmon resonance in single metallic nanoparticles,” Phys. Rev. Lett. 19(80), 4249–4252 (1988).

Kokubo, S.

Kotov, N.

A. Agarwal, S. W. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

M. Eghtedari, A. Oraevsky, J. A. Copland, N. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Letters 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

Kruizinga, P.

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Letters 11, 348–354 (2011).
[Crossref] [PubMed]

Kubiliute, R.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

Kudryashov, S. I.

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92(10), 101916 (2008).
[Crossref]

Kumaradas, C.

C. Tarapacki, C. Kumaradas, and R. Karshafian, “Enhancing laser thermal-therapy using ultrasound-microbubbles and gold nanorods of in vitro cells,” Ultrasonics 53, 793–798 (2013).
[Crossref] [PubMed]

Kung, C. -W.

L. H. -W. Chen, C. -Y. Hong, C. -W. Kung, C. -Y. Mou, K. C. -W. Wu, and K. -C. Ho, ”A gold surface plasmon enhanced mesoporous titanium dioxide photoelectrode for plastic based flexible dye-sensitized solar cells”, J. Power Sources. 288, 221–228 (2015).
[Crossref]

Kushibiki, T.

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Quantification of effective attenuation coefficients using continuous wavelet transform of photoacoustic signals,” Appl. Optics 35(52), 8562–8571 (2013).
[Crossref]

Lachaine, R.

J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[Crossref]

Lajevardipour, A.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

Langer, G.

Lebrun, J. J.

J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[Crossref]

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[Crossref] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: application in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref] [PubMed]

Lee, Y. H.

C. H. Fan, H. L. Liu, C. Y. Ting, Y. H. Lee, C. Y. Huang, Y. J. Ma, K. C. Wei, T. C. Yen, and C. K. Yeh, “Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery,” PLOS One 5(9), e96327 (2014).
[Crossref]

Letokhov, V. S.

V. P. Zharov and V. S. Letokhov, Laser Optoacoustic Spectroscopy (Springer, 1986).
[Crossref]

Li, M. L.

H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. H. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, “Magnetic gold-nanorod / PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34, 5651–5660 (2013).
[Crossref] [PubMed]

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. C. Wang, P. Y. Chen, T. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Liao, Y. -T

Y. -T Liao, J. W. Chen, Y. Isida, T. Yonezawa, M. T. Nguyen, W. -C. Chang, S. M. Alshehri, Y. Yamauchi, and K. C. -W. Wu, ”De novo synthesis of Au nanoparticles-embedded nitrogen-doped nanoporous carbon nanoparticles with enhanced reduction ability,” Chem. Sus. Chem. DOI:.
[Crossref]

Liaw, J.

J. Liaw, S. W. Tsai, H. H. Lin, T. C. Yen, and B. R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid,” J. Quantit. Spectr. Rad. Trans. 113, 2234–2242 (2012).
[Crossref]

Liaw, J. W.

H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. H. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, “Magnetic gold-nanorod / PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34, 5651–5660 (2013).
[Crossref] [PubMed]

Lin, C. Y.

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. C. Wang, P. Y. Chen, T. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Lin, H. H.

J. Liaw, S. W. Tsai, H. H. Lin, T. C. Yen, and B. R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid,” J. Quantit. Spectr. Rad. Trans. 113, 2234–2242 (2012).
[Crossref]

Link, S.

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B 33(104), 7867–7870 (2000).
[Crossref]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon resonance oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Liu, C. -H.

L. Wang, C. -H. Liu, Y. Nemoto, N. Fukata, K. C. - Wu, and Y. Yamauchi, ”Rapid synthesis of biocompatible gold nanoflowers with tailored surface textures with the assistance of amino acid molecules,” RCS Advances 2, 4608–4611 (2012).

Liu, H. L.

C. H. Fan, H. L. Liu, C. Y. Ting, Y. H. Lee, C. Y. Huang, Y. J. Ma, K. C. Wei, T. C. Yen, and C. K. Yeh, “Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery,” PLOS One 5(9), e96327 (2014).
[Crossref]

H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. H. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, “Magnetic gold-nanorod / PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34, 5651–5660 (2013).
[Crossref] [PubMed]

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. C. Wang, P. Y. Chen, T. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Liz-Marzan, L. M.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

Lu, Y. J.

H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. H. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, “Magnetic gold-nanorod / PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34, 5651–5660 (2013).
[Crossref] [PubMed]

Ma, C. C.

H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. H. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, “Magnetic gold-nanorod / PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34, 5651–5660 (2013).
[Crossref] [PubMed]

Ma, Y. J.

C. H. Fan, H. L. Liu, C. Y. Ting, Y. H. Lee, C. Y. Huang, Y. J. Ma, K. C. Wei, T. C. Yen, and C. K. Yeh, “Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery,” PLOS One 5(9), e96327 (2014).
[Crossref]

Maehara, S.

Malinauskas, M.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mat.2016, online published DOI: (2016).
[Crossref]

Matsuda, O.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201910 (2011).
[Crossref]

Maximova, K.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

Mcneill, J.

Q. Zhang, N. Iwakuma, P. Sharma, B. M. Moudgil, C. Wu, J. Mcneill, H. Jiang, and S. R. Grobmyer, “Gold nanoparticles as contrast agent for in vivo tumor imaging with photoacoustic tomography,” Nanotechnol. 20, 395102 (2009).
[Crossref]

Meunier, M.

J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[Crossref]

Mika, N.

Minamikawa, T.

Misawa, H.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201910 (2011).
[Crossref]

H. Iwase, S. Kokubo, S. Juodkazis, and H. Misawa, “Suppression of ripples on Ni surface via a polarization grating,” Opt. Express 17(6), 4388–4396 (2009).
[Crossref] [PubMed]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective non-linear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4–6), 1147–1149 (2009).
[Crossref]

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92(10), 101916 (2008).
[Crossref]

Mizeikis, V.

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective non-linear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4–6), 1147–1149 (2009).
[Crossref]

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92(10), 101916 (2008).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mat.2016, online published DOI: (2016).
[Crossref]

Mohamed, M. B.

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic technique,” Eur. Phys. J. Spec. Top. 153, 361–364 (2008).
[Crossref]

Mohsin, A. S. M.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

Motamedi, M.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Letters 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

Mou, C. -Y.

L. H. -W. Chen, C. -Y. Hong, C. -W. Kung, C. -Y. Mou, K. C. -W. Wu, and K. -C. Ho, ”A gold surface plasmon enhanced mesoporous titanium dioxide photoelectrode for plastic based flexible dye-sensitized solar cells”, J. Power Sources. 288, 221–228 (2015).
[Crossref]

Moudgil, B. M.

Q. Zhang, N. Iwakuma, P. Sharma, B. M. Moudgil, C. Wu, J. Mcneill, H. Jiang, and S. R. Grobmyer, “Gold nanoparticles as contrast agent for in vivo tumor imaging with photoacoustic tomography,” Nanotechnol. 20, 395102 (2009).
[Crossref]

Mulvaney, P.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

Murazawa, N.

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective non-linear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4–6), 1147–1149 (2009).
[Crossref]

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
[Crossref]

Negm, S.

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic technique,” Eur. Phys. J. Spec. Top. 153, 361–364 (2008).
[Crossref]

Nemoto, Y.

L. Wang, C. -H. Liu, Y. Nemoto, N. Fukata, K. C. - Wu, and Y. Yamauchi, ”Rapid synthesis of biocompatible gold nanoflowers with tailored surface textures with the assistance of amino acid molecules,” RCS Advances 2, 4608–4611 (2012).

Nguyen, M. T.

Y. -T Liao, J. W. Chen, Y. Isida, T. Yonezawa, M. T. Nguyen, W. -C. Chang, S. M. Alshehri, Y. Yamauchi, and K. C. -W. Wu, ”De novo synthesis of Au nanoparticles-embedded nitrogen-doped nanoporous carbon nanoparticles with enhanced reduction ability,” Chem. Sus. Chem. DOI:.
[Crossref]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Nishiguchi, N.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201910 (2011).
[Crossref]

Nishijima, Y.

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2(4), 382–388 (2014).
[Crossref]

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201910 (2011).
[Crossref]

Nishino, S.

Noguchi, S.

T. Fukusawa, S. Noguchi, H. Shinto, H. Aoki, S. Ito, and S. Ohshima, “Effects of physicochemical properties of particles and medium on acoustic pressure pulses from laser-irradiated suspensions,” Coll. Surf. A: Physicochem. Eng. Aspects 487, 42–48 (2015).
[Crossref]

O’Donnell, M.

A. Agarwal, S. W. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

Ohshima, M.

T. Fukusawa, H. Shinto, H. Aoki, S. Ito, and M. Ohshima, “Size-dependent effect of gold nanospheres on the acoustic pressure pulses from laser-irradiated suspensions,” Adv. Powder Technol. 25, 733–738 (2014).
[Crossref]

Ohshima, S.

T. Fukusawa, S. Noguchi, H. Shinto, H. Aoki, S. Ito, and S. Ohshima, “Effects of physicochemical properties of particles and medium on acoustic pressure pulses from laser-irradiated suspensions,” Coll. Surf. A: Physicochem. Eng. Aspects 487, 42–48 (2015).
[Crossref]

Okamoto, T.

T. Okamoto, “Near-Field Spectral Analysis of Metallic Beads,” in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer-VerlagBerlin Heidelberg, 2001), pp. 97–123.
[Crossref]

Okawa, S.

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Quantification of effective attenuation coefficients using continuous wavelet transform of photoacoustic signals,” Appl. Optics 35(52), 8562–8571 (2013).
[Crossref]

Oraevsky, A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Letters 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

Pastoriza-Santos, I.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

Peng, F.

R. Zou, Q. Zhang, Q. Zhao, F. Peng, H. Wang, H. Yu, and J. Yang, “Thermal stability of gold nanorods in an aqueous solution,” Colloid. Surf. A: Physicochem. Eng. Aspects 372, 177–181 (2010).
[Crossref]

Perner, M.

T. Klar, M. Perner, S. Grosse, V. Plessen, W. Spirkl, and J. Fieldman, “Surface plasmon resonance in single metallic nanoparticles,” Phys. Rev. Lett. 19(80), 4249–4252 (1988).

Petrova, H.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

Plessen, V.

T. Klar, M. Perner, S. Grosse, V. Plessen, W. Spirkl, and J. Fieldman, “Surface plasmon resonance in single metallic nanoparticles,” Phys. Rev. Lett. 19(80), 4249–4252 (1988).

Puntes, V.

N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref] [PubMed]

Pustovalov, V. K.

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett. 5(11), 775–792 (2008).
[Crossref]

Rekštyte, S.

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mat.2016, online published DOI: (2016).
[Crossref]

Rosa, L.

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2(4), 382–388 (2014).
[Crossref]

Rotomskis, R.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

Sakakura, M.

Sentis, M.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

Sharma, P.

Q. Zhang, N. Iwakuma, P. Sharma, B. M. Moudgil, C. Wu, J. Mcneill, H. Jiang, and S. R. Grobmyer, “Gold nanoparticles as contrast agent for in vivo tumor imaging with photoacoustic tomography,” Nanotechnol. 20, 395102 (2009).
[Crossref]

Shinto, H.

T. Fukusawa, S. Noguchi, H. Shinto, H. Aoki, S. Ito, and S. Ohshima, “Effects of physicochemical properties of particles and medium on acoustic pressure pulses from laser-irradiated suspensions,” Coll. Surf. A: Physicochem. Eng. Aspects 487, 42–48 (2015).
[Crossref]

T. Fukusawa, H. Shinto, H. Aoki, S. Ito, and M. Ohshima, “Size-dependent effect of gold nanospheres on the acoustic pressure pulses from laser-irradiated suspensions,” Adv. Powder Technol. 25, 733–738 (2014).
[Crossref]

Siddiquee, A. M.

A. B. Taylor, A. M. Siddiquee, and J. W. M. Chon, “Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion,” ACS Nano 8(12), 12071–12079 (2014).
[Crossref] [PubMed]

Smetannikov, A. S.

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett. 5(11), 775–792 (2008).
[Crossref]

Sokolov, K.

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

Spirkl, W.

T. Klar, M. Perner, S. Grosse, V. Plessen, W. Spirkl, and J. Fieldman, “Surface plasmon resonance in single metallic nanoparticles,” Phys. Rev. Lett. 19(80), 4249–4252 (1988).

Stoddart, P. R.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

Takamatsu, T.

Talaat, H.

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic technique,” Eur. Phys. J. Spec. Top. 153, 361–364 (2008).
[Crossref]

Tanaka, H.

Tanaka, Y.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201910 (2011).
[Crossref]

Tarapacki, C.

C. Tarapacki, C. Kumaradas, and R. Karshafian, “Enhancing laser thermal-therapy using ultrasound-microbubbles and gold nanorods of in vitro cells,” Ultrasonics 53, 793–798 (2013).
[Crossref] [PubMed]

Taylor, A. B.

A. B. Taylor, A. M. Siddiquee, and J. W. M. Chon, “Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion,” ACS Nano 8(12), 12071–12079 (2014).
[Crossref] [PubMed]

Ting, C. Y.

C. H. Fan, H. L. Liu, C. Y. Ting, Y. H. Lee, C. Y. Huang, Y. J. Ma, K. C. Wei, T. C. Yen, and C. K. Yeh, “Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery,” PLOS One 5(9), e96327 (2014).
[Crossref]

Tomoda, M.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201910 (2011).
[Crossref]

Tsai, S. W.

J. Liaw, S. W. Tsai, H. H. Lin, T. C. Yen, and B. R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid,” J. Quantit. Spectr. Rad. Trans. 113, 2234–2242 (2012).
[Crossref]

Ueno, K.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201910 (2011).
[Crossref]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective non-linear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4–6), 1147–1149 (2009).
[Crossref]

Urban, B.

B. Urban, J. Yi, V. Yakovlev, and H. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Opt. 19(8), 085001 (2014).
[Crossref] [PubMed]

Wang, C. C.

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. C. Wang, P. Y. Chen, T. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Wang, H.

R. Zou, Q. Zhang, Q. Zhao, F. Peng, H. Wang, H. Yu, and J. Yang, “Thermal stability of gold nanorods in an aqueous solution,” Colloid. Surf. A: Physicochem. Eng. Aspects 372, 177–181 (2010).
[Crossref]

Wang, L.

L. Wang, C. -H. Liu, Y. Nemoto, N. Fukata, K. C. - Wu, and Y. Yamauchi, ”Rapid synthesis of biocompatible gold nanoflowers with tailored surface textures with the assistance of amino acid molecules,” RCS Advances 2, 4608–4611 (2012).

L. Wang, Photoacoustic Imaging and Spectroscopy (Taylor and Francis CRC, 2009).
[Crossref]

Wang, L. V.

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref] [PubMed]

Wang, P. H.

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. C. Wang, P. Y. Chen, T. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Wang, Z. L.

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B 33(104), 7867–7870 (2000).
[Crossref]

Wei, K. C.

C. H. Fan, H. L. Liu, C. Y. Ting, Y. H. Lee, C. Y. Huang, Y. J. Ma, K. C. Wei, T. C. Yen, and C. K. Yeh, “Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery,” PLOS One 5(9), e96327 (2014).
[Crossref]

H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. H. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, “Magnetic gold-nanorod / PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34, 5651–5660 (2013).
[Crossref] [PubMed]

Wei, T. C.

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. C. Wang, P. Y. Chen, T. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Wright, O. B.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201910 (2011).
[Crossref]

Wu, C.

Q. Zhang, N. Iwakuma, P. Sharma, B. M. Moudgil, C. Wu, J. Mcneill, H. Jiang, and S. R. Grobmyer, “Gold nanoparticles as contrast agent for in vivo tumor imaging with photoacoustic tomography,” Nanotechnol. 20, 395102 (2009).
[Crossref]

Wu, K. C. -

L. Wang, C. -H. Liu, Y. Nemoto, N. Fukata, K. C. - Wu, and Y. Yamauchi, ”Rapid synthesis of biocompatible gold nanoflowers with tailored surface textures with the assistance of amino acid molecules,” RCS Advances 2, 4608–4611 (2012).

Wu, K. C. -W.

L. H. -W. Chen, C. -Y. Hong, C. -W. Kung, C. -Y. Mou, K. C. -W. Wu, and K. -C. Ho, ”A gold surface plasmon enhanced mesoporous titanium dioxide photoelectrode for plastic based flexible dye-sensitized solar cells”, J. Power Sources. 288, 221–228 (2015).
[Crossref]

B. P. Bastakoti, K. C. -W. Wu, and Y. Yamauchi, ”Synthesis of fine gold nanoparticles in mesoporous titania nanoparticles through different reduction methods”, J. Nanosci. Nanotechnol. 13(4), 2735–2739 (2013).
[Crossref] [PubMed]

Y. -T Liao, J. W. Chen, Y. Isida, T. Yonezawa, M. T. Nguyen, W. -C. Chang, S. M. Alshehri, Y. Yamauchi, and K. C. -W. Wu, ”De novo synthesis of Au nanoparticles-embedded nitrogen-doped nanoporous carbon nanoparticles with enhanced reduction ability,” Chem. Sus. Chem. DOI:.
[Crossref]

Yakovlev, V.

B. Urban, J. Yi, V. Yakovlev, and H. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Opt. 19(8), 085001 (2014).
[Crossref] [PubMed]

Yamaoka, Y.

Yamauchi, Y.

B. P. Bastakoti, K. C. -W. Wu, and Y. Yamauchi, ”Synthesis of fine gold nanoparticles in mesoporous titania nanoparticles through different reduction methods”, J. Nanosci. Nanotechnol. 13(4), 2735–2739 (2013).
[Crossref] [PubMed]

L. Wang, C. -H. Liu, Y. Nemoto, N. Fukata, K. C. - Wu, and Y. Yamauchi, ”Rapid synthesis of biocompatible gold nanoflowers with tailored surface textures with the assistance of amino acid molecules,” RCS Advances 2, 4608–4611 (2012).

Y. -T Liao, J. W. Chen, Y. Isida, T. Yonezawa, M. T. Nguyen, W. -C. Chang, S. M. Alshehri, Y. Yamauchi, and K. C. -W. Wu, ”De novo synthesis of Au nanoparticles-embedded nitrogen-doped nanoporous carbon nanoparticles with enhanced reduction ability,” Chem. Sus. Chem. DOI:.
[Crossref]

Yang, H. W.

H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. H. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, “Magnetic gold-nanorod / PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34, 5651–5660 (2013).
[Crossref] [PubMed]

Yang, J.

R. Zou, Q. Zhang, Q. Zhao, F. Peng, H. Wang, H. Yu, and J. Yang, “Thermal stability of gold nanorods in an aqueous solution,” Colloid. Surf. A: Physicochem. Eng. Aspects 372, 177–181 (2010).
[Crossref]

Yao, J.

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref] [PubMed]

Yeh, C. K.

C. H. Fan, H. L. Liu, C. Y. Ting, Y. H. Lee, C. Y. Huang, Y. J. Ma, K. C. Wei, T. C. Yen, and C. K. Yeh, “Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery,” PLOS One 5(9), e96327 (2014).
[Crossref]

Yen, T. C.

C. H. Fan, H. L. Liu, C. Y. Ting, Y. H. Lee, C. Y. Huang, Y. J. Ma, K. C. Wei, T. C. Yen, and C. K. Yeh, “Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery,” PLOS One 5(9), e96327 (2014).
[Crossref]

J. Liaw, S. W. Tsai, H. H. Lin, T. C. Yen, and B. R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid,” J. Quantit. Spectr. Rad. Trans. 113, 2234–2242 (2012).
[Crossref]

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. C. Wang, P. Y. Chen, T. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

Yi, J.

B. Urban, J. Yi, V. Yakovlev, and H. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Opt. 19(8), 085001 (2014).
[Crossref] [PubMed]

Yonezawa, T.

Y. -T Liao, J. W. Chen, Y. Isida, T. Yonezawa, M. T. Nguyen, W. -C. Chang, S. M. Alshehri, Y. Yamauchi, and K. C. -W. Wu, ”De novo synthesis of Au nanoparticles-embedded nitrogen-doped nanoporous carbon nanoparticles with enhanced reduction ability,” Chem. Sus. Chem. DOI:.
[Crossref]

Yong, J.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

Yoshinori, H.

Yu, H.

R. Zou, Q. Zhang, Q. Zhao, F. Peng, H. Wang, H. Yu, and J. Yang, “Thermal stability of gold nanorods in an aqueous solution,” Colloid. Surf. A: Physicochem. Eng. Aspects 372, 177–181 (2010).
[Crossref]

Zhang, H.

B. Urban, J. Yi, V. Yakovlev, and H. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Opt. 19(8), 085001 (2014).
[Crossref] [PubMed]

Zhang, Q.

R. Zou, Q. Zhang, Q. Zhao, F. Peng, H. Wang, H. Yu, and J. Yang, “Thermal stability of gold nanorods in an aqueous solution,” Colloid. Surf. A: Physicochem. Eng. Aspects 372, 177–181 (2010).
[Crossref]

Q. Zhang, N. Iwakuma, P. Sharma, B. M. Moudgil, C. Wu, J. Mcneill, H. Jiang, and S. R. Grobmyer, “Gold nanoparticles as contrast agent for in vivo tumor imaging with photoacoustic tomography,” Nanotechnol. 20, 395102 (2009).
[Crossref]

Zhao, Q.

R. Zou, Q. Zhang, Q. Zhao, F. Peng, H. Wang, H. Yu, and J. Yang, “Thermal stability of gold nanorods in an aqueous solution,” Colloid. Surf. A: Physicochem. Eng. Aspects 372, 177–181 (2010).
[Crossref]

Zharov, V. P.

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nature Photonics 5, 110–116 (2015).
[Crossref]

A. De La Zerda, J. M. Kim, E. I. Galanzha, S. S. Ghambir, and V. P. Zharov, “Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics,” Contrast Media Mol. Imaging 6, 346–369 (2011).
[Crossref] [PubMed]

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett. 5(11), 775–792 (2008).
[Crossref]

V. P. Zharov and V. S. Letokhov, Laser Optoacoustic Spectroscopy (Springer, 1986).
[Crossref]

Zou, R.

R. Zou, Q. Zhang, Q. Zhao, F. Peng, H. Wang, H. Yu, and J. Yang, “Thermal stability of gold nanorods in an aqueous solution,” Colloid. Surf. A: Physicochem. Eng. Aspects 372, 177–181 (2010).
[Crossref]

Zvorykin, V. D.

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92(10), 101916 (2008).
[Crossref]

ACS Nano (1)

A. B. Taylor, A. M. Siddiquee, and J. W. M. Chon, “Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion,” ACS Nano 8(12), 12071–12079 (2014).
[Crossref] [PubMed]

Adv. Materials (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
[Crossref]

Adv. Opt. Mat. (1)

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2(4), 382–388 (2014).
[Crossref]

Adv. Powder Technol. (1)

T. Fukusawa, H. Shinto, H. Aoki, S. Ito, and M. Ohshima, “Size-dependent effect of gold nanospheres on the acoustic pressure pulses from laser-irradiated suspensions,” Adv. Powder Technol. 25, 733–738 (2014).
[Crossref]

Appl. Optics (1)

T. Hirasawa, M. Fujita, S. Okawa, T. Kushibiki, and M. Ishihara, “Quantification of effective attenuation coefficients using continuous wavelet transform of photoacoustic signals,” Appl. Optics 35(52), 8562–8571 (2013).
[Crossref]

Appl. Phys. Lett. (2)

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92(10), 101916 (2008).
[Crossref]

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201910 (2011).
[Crossref]

Biomaterials (2)

J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials 33(7), 2345–2350 (2012).
[Crossref]

H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. H. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, “Magnetic gold-nanorod / PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy,” Biomaterials 34, 5651–5660 (2013).
[Crossref] [PubMed]

Chem. Mater. (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Coll. Surf. A: Physicochem. Eng. Aspects (1)

T. Fukusawa, S. Noguchi, H. Shinto, H. Aoki, S. Ito, and S. Ohshima, “Effects of physicochemical properties of particles and medium on acoustic pressure pulses from laser-irradiated suspensions,” Coll. Surf. A: Physicochem. Eng. Aspects 487, 42–48 (2015).
[Crossref]

Colloid. Surf. A: Physicochem. Eng. Aspects (1)

R. Zou, Q. Zhang, Q. Zhao, F. Peng, H. Wang, H. Yu, and J. Yang, “Thermal stability of gold nanorods in an aqueous solution,” Colloid. Surf. A: Physicochem. Eng. Aspects 372, 177–181 (2010).
[Crossref]

Contrast Media Mol. Imaging (1)

A. De La Zerda, J. M. Kim, E. I. Galanzha, S. S. Ghambir, and V. P. Zharov, “Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics,” Contrast Media Mol. Imaging 6, 346–369 (2011).
[Crossref] [PubMed]

Eur. Phys. J. Spec. Top. (1)

T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic technique,” Eur. Phys. J. Spec. Top. 153, 361–364 (2008).
[Crossref]

Int. J. Nanomed. (1)

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8(1), 2601–2611 (2013).

J. Appl. Phys. (1)

A. Agarwal, S. W. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

J. Biomed. Opt. (2)

P. H. Wang, H. L. Liu, P. H. Hsu, C. Y. Lin, C. C. Wang, P. Y. Chen, T. C. Wei, T. C. Yen, and M. L. Li, “Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model,” J. Biomed. Opt. 17(6), 061222 (2012).
[Crossref] [PubMed]

B. Urban, J. Yi, V. Yakovlev, and H. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Opt. 19(8), 085001 (2014).
[Crossref] [PubMed]

J. Nanosci. Nanotechnol. (1)

B. P. Bastakoti, K. C. -W. Wu, and Y. Yamauchi, ”Synthesis of fine gold nanoparticles in mesoporous titania nanoparticles through different reduction methods”, J. Nanosci. Nanotechnol. 13(4), 2735–2739 (2013).
[Crossref] [PubMed]

J. Phys. Chem. B (5)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: application in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref] [PubMed]

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[Crossref] [PubMed]

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B 33(104), 7867–7870 (2000).
[Crossref]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon resonance oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

J. Phys. Chem. C (1)

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective non-linear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113(4–6), 1147–1149 (2009).
[Crossref]

J. Power Sources. (1)

L. H. -W. Chen, C. -Y. Hong, C. -W. Kung, C. -Y. Mou, K. C. -W. Wu, and K. -C. Ho, ”A gold surface plasmon enhanced mesoporous titanium dioxide photoelectrode for plastic based flexible dye-sensitized solar cells”, J. Power Sources. 288, 221–228 (2015).
[Crossref]

J. Quantit. Spectr. Rad. Trans. (1)

J. Liaw, S. W. Tsai, H. H. Lin, T. C. Yen, and B. R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid,” J. Quantit. Spectr. Rad. Trans. 113, 2234–2242 (2012).
[Crossref]

Langmuir (1)

N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett. 5(11), 775–792 (2008).
[Crossref]

Nano Letters (2)

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Letters 11, 348–354 (2011).
[Crossref] [PubMed]

M. Eghtedari, A. Oraevsky, J. A. Copland, N. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Letters 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

Nanotechnol. (1)

Q. Zhang, N. Iwakuma, P. Sharma, B. M. Moudgil, C. Wu, J. Mcneill, H. Jiang, and S. R. Grobmyer, “Gold nanoparticles as contrast agent for in vivo tumor imaging with photoacoustic tomography,” Nanotechnol. 20, 395102 (2009).
[Crossref]

Nature Photonics (1)

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nature Photonics 5, 110–116 (2015).
[Crossref]

Opt. Express (5)

Photoacoustics (1)

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2, 87–101 (2014).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. Hartland, L. M. Liz-Marzan, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast-induced heating,” Phys. Chem. Chem. Phys. 8, 814–821 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

T. Klar, M. Perner, S. Grosse, V. Plessen, W. Spirkl, and J. Fieldman, “Surface plasmon resonance in single metallic nanoparticles,” Phys. Rev. Lett. 19(80), 4249–4252 (1988).

PLOS One (1)

C. H. Fan, H. L. Liu, C. Y. Ting, Y. H. Lee, C. Y. Huang, Y. J. Ma, K. C. Wei, T. C. Yen, and C. K. Yeh, “Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery,” PLOS One 5(9), e96327 (2014).
[Crossref]

Proc. SPIE (1)

Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. SPIE 7177, 71772A (2009).
[Crossref]

RCS Advances (1)

L. Wang, C. -H. Liu, Y. Nemoto, N. Fukata, K. C. - Wu, and Y. Yamauchi, ”Rapid synthesis of biocompatible gold nanoflowers with tailored surface textures with the assistance of amino acid molecules,” RCS Advances 2, 4608–4611 (2012).

Ultrasonics (1)

C. Tarapacki, C. Kumaradas, and R. Karshafian, “Enhancing laser thermal-therapy using ultrasound-microbubbles and gold nanorods of in vitro cells,” Ultrasonics 53, 793–798 (2013).
[Crossref] [PubMed]

Other (5)

Y. -T Liao, J. W. Chen, Y. Isida, T. Yonezawa, M. T. Nguyen, W. -C. Chang, S. M. Alshehri, Y. Yamauchi, and K. C. -W. Wu, ”De novo synthesis of Au nanoparticles-embedded nitrogen-doped nanoporous carbon nanoparticles with enhanced reduction ability,” Chem. Sus. Chem. DOI:.
[Crossref]

L. Wang, Photoacoustic Imaging and Spectroscopy (Taylor and Francis CRC, 2009).
[Crossref]

V. P. Zharov and V. S. Letokhov, Laser Optoacoustic Spectroscopy (Springer, 1986).
[Crossref]

S. Rekštytė, T. Jonavičius, D. Gailevičius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mat.2016, online published DOI: (2016).
[Crossref]

T. Okamoto, “Near-Field Spectral Analysis of Metallic Beads,” in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer-VerlagBerlin Heidelberg, 2001), pp. 97–123.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) TEM images of Au nanospheres with a diameter of 20 nm and nanorods with dimensions of 12 × 35 nm or aspect ratio of 2.92. (b) Absorption spectra of Au nanospheres and nanorods together with emission spectrum of femtosecond laser centered at 800 nm.

Fig. 2
Fig. 2

(a) Experimental setup for photoacoustic detection. (b) Schematics of photoacoustic signal measurement. (c) The typical photoacoustic transient observed with oscilloscope; arrows mark the first and second waves, respectively (see, (b)).

Fig. 3
Fig. 3

Dependence of PA signal amplitude on laser power in H2O (a), Au nanosphere (b), and Au nanorod (c) colloidal suspensions. Comparison of PA amplitudes at different frequencies when the laser power was set at 100 mW (d).

Fig. 4
Fig. 4

Absorption spectra of Au nanospheres (a) and nanorods (b) before and after laser irradiation. Transverse (T-) and longitudinal (L-) modes of nanorods are shown.

Fig. 5
Fig. 5

Numerical modeling of light field, E, enhancement for Au nanorod and nanosphere by finite difference time domain (FDTD) method (Lumerical). Au nanorods of 35-nm-long and 12-nm-wide had plasmonic resonances at 505 and 710 nm wavelengths for the transverse and longitudinal bands, respectively (these wavelengths are slightly different from experimental extinction peaks (Fig. 4), most probably, due to slight difference in size). Light enhancement maps of Au nanosphere of 20-nm-diameter is shown on the bottom row. Incident field intensity of a plane wave was E2 = 1. The field enhancement values are from 3 to 10.

Metrics