Abstract

We report on the fabrication of Bragg gratings within rib-type waveguides of previously UV-cured inorganic-organic Ormocer hybrid polymers by applying the interferometric phase mask technique in conjunction with deep-UV laser radiation. The fabrication process as well as the influence of the applied laser fluence and the length of the Bragg grating on the characteristics of the Bragg grating’s transmission and reflection spectra are discussed and compared to numerical simulations and calculations. Depending on the applied laser fluence and the chosen grating length, waveguide Bragg gratings with strong reflectivities of up to 98 % and narrow bandwidths of down to 120 pm have been achieved.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of an elastomeric rib waveguide Bragg grating filter

Cheng-Sheng Huang, Edwin Yue-Bun Pun, and Wei-Chih Wang
J. Opt. Soc. Am. B 26(6) 1256-1262 (2009)

Influence of the UV dosage on planar Bragg gratings in cyclo-olefin copolymer substrates

M. Rosenberger, B. Schmauss, and R. Hellmann
Opt. Mater. Express 6(6) 2118-2127 (2016)

Polymer distributed feedback dye laser with an external volume Bragg grating inscribed in a nanocomposite by holographic technique

Tatiana N. Smirnova, Oksana V. Sakhno, Joachim Stumpe, and Volodymyr M. Fitio
J. Opt. Soc. Am. B 33(2) 202-210 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCER ®s for optical interconnection technology,” J. Sol-Gel Sci. Techn. 20(2), 181–186 (2001).
    [Crossref]
  2. C. Sanchez, B. Julián, P. Belleville, and M. Popall, “Applications of hybrid organic–inorganic nanocomposites,” J. Mater. Chem. 15(35), 3559–3592 (2005).
    [Crossref]
  3. R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
    [Crossref]
  4. K.-H. Haas and H. Wolter, “Synthesis, properties and applications of inorganicorganic copolymers (ORMOCER ®s),” Curr. Opin. Solid St. M. 4(6), 571–580 (1999).
    [Crossref]
  5. K.-H. Haas and K. Rose, “Hybrid inorganic/organic polymers with nanoscale building blocks: precursors, processing, properties and applications,” Rev. Adv. Mater. Sci. 5(1), 47–52 (2003).
  6. S. Wang, V. Vaidyanathan, and B. Borden, “Polymer optical channel waveguide components fabricated by using a laser direct writing system,” JASET 3, 47–52 (2009).
  7. M. Wang, J. Hiltunen, C. Liedert, L. Hakalahti, and R. Myllylä, “An integrated young interferometer based on UV-imprinted polymer waveguides for label-free biosensing applications,” J. Eur. Opt. Soc. Rap. Public. 7, 12019 (2012).
    [Crossref]
  8. K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  9. D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
    [Crossref]
  10. W. W. Morey, G. Mel, and C. M. Ferrar, “Tunable Narrowband External-cavity Diode Laser With An Embedded Fiber Grating Reflector,” in Proceedings of IEEE LEOS Summer Topical on New Semiconductor Laser Devices and Applications 90-82562 (IEEE, 1990), pp. 16–17.
    [Crossref]
  11. W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber Optic Bragg Grating Sensors,” Proc. SPIE 1169, 98–107 (1990).
    [Crossref]
  12. M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Compressive and tensile strain sensing using a polymer planar Bragg grating,” Opt. Express 22(5), 5483–5490 (2014).
    [Crossref] [PubMed]
  13. M. Girschikofsky, M. Rosenberger, S. Belle, M. Brutschy, S. R. Waldvogel, and R. Hellmann, “Optical planar Bragg grating sensor for real-time detection of benzene, toluene and xylene in solvent vapour,” Sensor. Actuat. B 171–172, 338–342 (2012).
    [Crossref]
  14. W.-C. Chuang, Y.-T. Huang, H.-C. Lin, and A.-C. Lee, “Fabrication of an asymmetric Bragg coupler-based polymeric filter with a single-grating waveguide,” Opt. Express 19(11), 10776–10788 (2011).
    [Crossref] [PubMed]
  15. M. Cheng, J. Hiltunen, M. Wang, A. Suutala, P. Karioja, and R. Myllylä, “Fabrication of polymer waveguide devices for sensor applications,” Proc. SPIE 7376, 73761A (2010).
    [Crossref]
  16. M. Girschikofsky, S. Belle, M. Förthner, R. Fader, M. Rommel, L. Frey, and R. Hellmann, “Optical Bragg gratings in inorganic-organic hybrid polymers for highly sensitive temperature measurements,” in Proceedings of SENSOR 2015, (2015), pp. 812–814.
  17. G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
    [Crossref]
  18. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1171 (2004).
    [Crossref]
  19. K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [Crossref]
  20. A. Othonos and X. Lee, “Novel and improved methods of writing Bragg gratings with phase masks,” IEEE Photonics Technol. Lett. 7(10), 1183–1185 (1995).
    [Crossref]
  21. B. J. Eggleton, F. Ouellette, L. Poladian, and P. A. Krug, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
    [Crossref]
  22. A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30(23), 1972–1974 (1994).
    [Crossref]
  23. R. Fader, J. Landwehr, M. Rumler, M. Rommel, A. J. Bauer, L. Frey, R. Völkel, M. Brehm, and A. Kraft, “Functional epoxy polymer for direct nano-imprinting of micro-optical elements,” Microelectron. Eng. 110, 90–93 (2013).
    [Crossref]
  24. R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87 (5-8), 963–967 (2010).
    [Crossref]
  25. M. Förthner, M. Rumler, F. Stumpf, R. Fader, M. Rommel, L. Frey, M. Girschikofsky, S. Belle, R. Hellmann, and J.J. Klein, “Hybrid polymers processed by substrate conformal imprint lithography for the fabrication of planar Bragg gratings,” Appl. Phys. A 122(3), 1–6 (2016).
  26. Y. Qiu, Y. Sheng, and C. Beaulieu, “Optimal Phase Mask for Fiber Bragg Grating Fabrication,” J. Lightwave Technol. 17(11), 2366–2370 (1999).
    [Crossref]
  27. S. Obi, Replicated Optical Microstructures in Hybrid Polymers. Process Technology and Applications, University of Neuchatel, 2006.
  28. C. Wochnowski, “UV-laser-based fabrication of a planar, polymeric Bragg-structure,” Opt. Laser Technol. 41(6), 734–740 (2009).
    [Crossref]
  29. R. Kashyap, Fiber Bragg Gratings, 2nd ed (Academic Press, 2010), Chap. 9.
  30. A. Othonos and K. Kalli, Fiber Bragg Gratings. Fundamentals and Applications in Telecommunications and Sensing, (Artech House, 1999), Chap. 3.
  31. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  32. J. Skaar, “Fiber Bragg Gratings: Analysis and Synthesis Techniques,” in Fiber Bragg Grating Sensors, A. Cusano, A. Cutolo, and J. Albert, eds. (Bentham Science Publishers, 2011), Chap. 3.
  33. P.St.J. Russell, J.-L. Archambault, and L. Reekie, “Fibre gratings,” Physics World, 41–46 (October1993).
    [Crossref]
  34. R.C.S.B. Allil and M. M. Werneck, “Optical High-Voltage Sensor Based on Fiber Bragg Grating and PZT Piezoelectric Ceramics,” IEEE Trans. Instrum. Meas. 60(6), 2118–2125 (2011).
    [Crossref]

2016 (1)

M. Förthner, M. Rumler, F. Stumpf, R. Fader, M. Rommel, L. Frey, M. Girschikofsky, S. Belle, R. Hellmann, and J.J. Klein, “Hybrid polymers processed by substrate conformal imprint lithography for the fabrication of planar Bragg gratings,” Appl. Phys. A 122(3), 1–6 (2016).

2014 (1)

2013 (1)

R. Fader, J. Landwehr, M. Rumler, M. Rommel, A. J. Bauer, L. Frey, R. Völkel, M. Brehm, and A. Kraft, “Functional epoxy polymer for direct nano-imprinting of micro-optical elements,” Microelectron. Eng. 110, 90–93 (2013).
[Crossref]

2012 (2)

M. Girschikofsky, M. Rosenberger, S. Belle, M. Brutschy, S. R. Waldvogel, and R. Hellmann, “Optical planar Bragg grating sensor for real-time detection of benzene, toluene and xylene in solvent vapour,” Sensor. Actuat. B 171–172, 338–342 (2012).
[Crossref]

M. Wang, J. Hiltunen, C. Liedert, L. Hakalahti, and R. Myllylä, “An integrated young interferometer based on UV-imprinted polymer waveguides for label-free biosensing applications,” J. Eur. Opt. Soc. Rap. Public. 7, 12019 (2012).
[Crossref]

2011 (2)

W.-C. Chuang, Y.-T. Huang, H.-C. Lin, and A.-C. Lee, “Fabrication of an asymmetric Bragg coupler-based polymeric filter with a single-grating waveguide,” Opt. Express 19(11), 10776–10788 (2011).
[Crossref] [PubMed]

R.C.S.B. Allil and M. M. Werneck, “Optical High-Voltage Sensor Based on Fiber Bragg Grating and PZT Piezoelectric Ceramics,” IEEE Trans. Instrum. Meas. 60(6), 2118–2125 (2011).
[Crossref]

2010 (2)

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87 (5-8), 963–967 (2010).
[Crossref]

M. Cheng, J. Hiltunen, M. Wang, A. Suutala, P. Karioja, and R. Myllylä, “Fabrication of polymer waveguide devices for sensor applications,” Proc. SPIE 7376, 73761A (2010).
[Crossref]

2009 (2)

S. Wang, V. Vaidyanathan, and B. Borden, “Polymer optical channel waveguide components fabricated by using a laser direct writing system,” JASET 3, 47–52 (2009).

C. Wochnowski, “UV-laser-based fabrication of a planar, polymeric Bragg-structure,” Opt. Laser Technol. 41(6), 734–740 (2009).
[Crossref]

2005 (1)

C. Sanchez, B. Julián, P. Belleville, and M. Popall, “Applications of hybrid organic–inorganic nanocomposites,” J. Mater. Chem. 15(35), 3559–3592 (2005).
[Crossref]

2004 (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1171 (2004).
[Crossref]

2003 (2)

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
[Crossref]

K.-H. Haas and K. Rose, “Hybrid inorganic/organic polymers with nanoscale building blocks: precursors, processing, properties and applications,” Rev. Adv. Mater. Sci. 5(1), 47–52 (2003).

2002 (1)

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

2001 (1)

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCER ®s for optical interconnection technology,” J. Sol-Gel Sci. Techn. 20(2), 181–186 (2001).
[Crossref]

1999 (2)

K.-H. Haas and H. Wolter, “Synthesis, properties and applications of inorganicorganic copolymers (ORMOCER ®s),” Curr. Opin. Solid St. M. 4(6), 571–580 (1999).
[Crossref]

Y. Qiu, Y. Sheng, and C. Beaulieu, “Optimal Phase Mask for Fiber Bragg Grating Fabrication,” J. Lightwave Technol. 17(11), 2366–2370 (1999).
[Crossref]

1998 (1)

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

1997 (2)

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1995 (1)

A. Othonos and X. Lee, “Novel and improved methods of writing Bragg gratings with phase masks,” IEEE Photonics Technol. Lett. 7(10), 1183–1185 (1995).
[Crossref]

1994 (2)

B. J. Eggleton, F. Ouellette, L. Poladian, and P. A. Krug, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30(23), 1972–1974 (1994).
[Crossref]

1993 (2)

K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

P.St.J. Russell, J.-L. Archambault, and L. Reekie, “Fibre gratings,” Physics World, 41–46 (October1993).
[Crossref]

1990 (1)

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber Optic Bragg Grating Sensors,” Proc. SPIE 1169, 98–107 (1990).
[Crossref]

Albanis, V.

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

Albert, J.

K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Allil, R.C.S.B.

R.C.S.B. Allil and M. M. Werneck, “Optical High-Voltage Sensor Based on Fiber Bragg Grating and PZT Piezoelectric Ceramics,” IEEE Trans. Instrum. Meas. 60(6), 2118–2125 (2011).
[Crossref]

Archambault, J.-L.

P.St.J. Russell, J.-L. Archambault, and L. Reekie, “Fibre gratings,” Physics World, 41–46 (October1993).
[Crossref]

Bauer, A. J.

R. Fader, J. Landwehr, M. Rumler, M. Rommel, A. J. Bauer, L. Frey, R. Völkel, M. Brehm, and A. Kraft, “Functional epoxy polymer for direct nano-imprinting of micro-optical elements,” Microelectron. Eng. 110, 90–93 (2013).
[Crossref]

Beaulieu, C.

Belle, S.

M. Förthner, M. Rumler, F. Stumpf, R. Fader, M. Rommel, L. Frey, M. Girschikofsky, S. Belle, R. Hellmann, and J.J. Klein, “Hybrid polymers processed by substrate conformal imprint lithography for the fabrication of planar Bragg gratings,” Appl. Phys. A 122(3), 1–6 (2016).

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Compressive and tensile strain sensing using a polymer planar Bragg grating,” Opt. Express 22(5), 5483–5490 (2014).
[Crossref] [PubMed]

M. Girschikofsky, M. Rosenberger, S. Belle, M. Brutschy, S. R. Waldvogel, and R. Hellmann, “Optical planar Bragg grating sensor for real-time detection of benzene, toluene and xylene in solvent vapour,” Sensor. Actuat. B 171–172, 338–342 (2012).
[Crossref]

M. Girschikofsky, S. Belle, M. Förthner, R. Fader, M. Rommel, L. Frey, and R. Hellmann, “Optical Bragg gratings in inorganic-organic hybrid polymers for highly sensitive temperature measurements,” in Proceedings of SENSOR 2015, (2015), pp. 812–814.

Belleville, P.

C. Sanchez, B. Julián, P. Belleville, and M. Popall, “Applications of hybrid organic–inorganic nanocomposites,” J. Mater. Chem. 15(35), 3559–3592 (2005).
[Crossref]

Bennion, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1171 (2004).
[Crossref]

Bilodeau, F.

K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Boimovich, E.

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

Borden, B.

S. Wang, V. Vaidyanathan, and B. Borden, “Polymer optical channel waveguide components fabricated by using a laser direct writing system,” JASET 3, 47–52 (2009).

Bräuer, A.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
[Crossref]

Brehm, M.

R. Fader, J. Landwehr, M. Rumler, M. Rommel, A. J. Bauer, L. Frey, R. Völkel, M. Brehm, and A. Kraft, “Functional epoxy polymer for direct nano-imprinting of micro-optical elements,” Microelectron. Eng. 110, 90–93 (2013).
[Crossref]

Brutschy, M.

M. Girschikofsky, M. Rosenberger, S. Belle, M. Brutschy, S. R. Waldvogel, and R. Hellmann, “Optical planar Bragg grating sensor for real-time detection of benzene, toluene and xylene in solvent vapour,” Sensor. Actuat. B 171–172, 338–342 (2012).
[Crossref]

Buestrich, R.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
[Crossref]

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCER ®s for optical interconnection technology,” J. Sol-Gel Sci. Techn. 20(2), 181–186 (2001).
[Crossref]

Cheng, M.

M. Cheng, J. Hiltunen, M. Wang, A. Suutala, P. Karioja, and R. Myllylä, “Fabrication of polymer waveguide devices for sensor applications,” Proc. SPIE 7376, 73761A (2010).
[Crossref]

Chuang, W.-C.

Cronauer, C.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
[Crossref]

Dannberg, P.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
[Crossref]

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCER ®s for optical interconnection technology,” J. Sol-Gel Sci. Techn. 20(2), 181–186 (2001).
[Crossref]

Domann, G.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
[Crossref]

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1171 (2004).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, F. Ouellette, L. Poladian, and P. A. Krug, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

Emmerson, G.D.

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Fader, R.

M. Förthner, M. Rumler, F. Stumpf, R. Fader, M. Rommel, L. Frey, M. Girschikofsky, S. Belle, R. Hellmann, and J.J. Klein, “Hybrid polymers processed by substrate conformal imprint lithography for the fabrication of planar Bragg gratings,” Appl. Phys. A 122(3), 1–6 (2016).

R. Fader, J. Landwehr, M. Rumler, M. Rommel, A. J. Bauer, L. Frey, R. Völkel, M. Brehm, and A. Kraft, “Functional epoxy polymer for direct nano-imprinting of micro-optical elements,” Microelectron. Eng. 110, 90–93 (2013).
[Crossref]

M. Girschikofsky, S. Belle, M. Förthner, R. Fader, M. Rommel, L. Frey, and R. Hellmann, “Optical Bragg gratings in inorganic-organic hybrid polymers for highly sensitive temperature measurements,” in Proceedings of SENSOR 2015, (2015), pp. 812–814.

Ferrar, C. M.

W. W. Morey, G. Mel, and C. M. Ferrar, “Tunable Narrowband External-cavity Diode Laser With An Embedded Fiber Grating Reflector,” in Proceedings of IEEE LEOS Summer Topical on New Semiconductor Laser Devices and Applications 90-82562 (IEEE, 1990), pp. 16–17.
[Crossref]

Förthner, M.

M. Förthner, M. Rumler, F. Stumpf, R. Fader, M. Rommel, L. Frey, M. Girschikofsky, S. Belle, R. Hellmann, and J.J. Klein, “Hybrid polymers processed by substrate conformal imprint lithography for the fabrication of planar Bragg gratings,” Appl. Phys. A 122(3), 1–6 (2016).

M. Girschikofsky, S. Belle, M. Förthner, R. Fader, M. Rommel, L. Frey, and R. Hellmann, “Optical Bragg gratings in inorganic-organic hybrid polymers for highly sensitive temperature measurements,” in Proceedings of SENSOR 2015, (2015), pp. 812–814.

Frey, L.

M. Förthner, M. Rumler, F. Stumpf, R. Fader, M. Rommel, L. Frey, M. Girschikofsky, S. Belle, R. Hellmann, and J.J. Klein, “Hybrid polymers processed by substrate conformal imprint lithography for the fabrication of planar Bragg gratings,” Appl. Phys. A 122(3), 1–6 (2016).

R. Fader, J. Landwehr, M. Rumler, M. Rommel, A. J. Bauer, L. Frey, R. Völkel, M. Brehm, and A. Kraft, “Functional epoxy polymer for direct nano-imprinting of micro-optical elements,” Microelectron. Eng. 110, 90–93 (2013).
[Crossref]

M. Girschikofsky, S. Belle, M. Förthner, R. Fader, M. Rommel, L. Frey, and R. Hellmann, “Optical Bragg gratings in inorganic-organic hybrid polymers for highly sensitive temperature measurements,” in Proceedings of SENSOR 2015, (2015), pp. 812–814.

Fröhlich, L.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
[Crossref]

Gawith, C.B.E.

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

Girschikofsky, M.

M. Förthner, M. Rumler, F. Stumpf, R. Fader, M. Rommel, L. Frey, M. Girschikofsky, S. Belle, R. Hellmann, and J.J. Klein, “Hybrid polymers processed by substrate conformal imprint lithography for the fabrication of planar Bragg gratings,” Appl. Phys. A 122(3), 1–6 (2016).

M. Girschikofsky, M. Rosenberger, S. Belle, M. Brutschy, S. R. Waldvogel, and R. Hellmann, “Optical planar Bragg grating sensor for real-time detection of benzene, toluene and xylene in solvent vapour,” Sensor. Actuat. B 171–172, 338–342 (2012).
[Crossref]

M. Girschikofsky, S. Belle, M. Förthner, R. Fader, M. Rommel, L. Frey, and R. Hellmann, “Optical Bragg gratings in inorganic-organic hybrid polymers for highly sensitive temperature measurements,” in Proceedings of SENSOR 2015, (2015), pp. 812–814.

Glenn, W. H.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber Optic Bragg Grating Sensors,” Proc. SPIE 1169, 98–107 (1990).
[Crossref]

Haas, K.-H.

K.-H. Haas and K. Rose, “Hybrid inorganic/organic polymers with nanoscale building blocks: precursors, processing, properties and applications,” Rev. Adv. Mater. Sci. 5(1), 47–52 (2003).

K.-H. Haas and H. Wolter, “Synthesis, properties and applications of inorganicorganic copolymers (ORMOCER ®s),” Curr. Opin. Solid St. M. 4(6), 571–580 (1999).
[Crossref]

Hakalahti, L.

M. Wang, J. Hiltunen, C. Liedert, L. Hakalahti, and R. Myllylä, “An integrated young interferometer based on UV-imprinted polymer waveguides for label-free biosensing applications,” J. Eur. Opt. Soc. Rap. Public. 7, 12019 (2012).
[Crossref]

Hellmann, R.

M. Förthner, M. Rumler, F. Stumpf, R. Fader, M. Rommel, L. Frey, M. Girschikofsky, S. Belle, R. Hellmann, and J.J. Klein, “Hybrid polymers processed by substrate conformal imprint lithography for the fabrication of planar Bragg gratings,” Appl. Phys. A 122(3), 1–6 (2016).

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Compressive and tensile strain sensing using a polymer planar Bragg grating,” Opt. Express 22(5), 5483–5490 (2014).
[Crossref] [PubMed]

M. Girschikofsky, M. Rosenberger, S. Belle, M. Brutschy, S. R. Waldvogel, and R. Hellmann, “Optical planar Bragg grating sensor for real-time detection of benzene, toluene and xylene in solvent vapour,” Sensor. Actuat. B 171–172, 338–342 (2012).
[Crossref]

M. Girschikofsky, S. Belle, M. Förthner, R. Fader, M. Rommel, L. Frey, and R. Hellmann, “Optical Bragg gratings in inorganic-organic hybrid polymers for highly sensitive temperature measurements,” in Proceedings of SENSOR 2015, (2015), pp. 812–814.

Hessler, S.

Hill, K.

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Hill, K.O.

K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Hiltunen, J.

M. Wang, J. Hiltunen, C. Liedert, L. Hakalahti, and R. Myllylä, “An integrated young interferometer based on UV-imprinted polymer waveguides for label-free biosensing applications,” J. Eur. Opt. Soc. Rap. Public. 7, 12019 (2012).
[Crossref]

M. Cheng, J. Hiltunen, M. Wang, A. Suutala, P. Karioja, and R. Myllylä, “Fabrication of polymer waveguide devices for sensor applications,” Proc. SPIE 7376, 73761A (2010).
[Crossref]

Hornung, M.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87 (5-8), 963–967 (2010).
[Crossref]

Houbertz, R.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
[Crossref]

Huang, Y.-T.

Ibsen, M.

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

Ji, R.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87 (5-8), 963–967 (2010).
[Crossref]

Johnson, D.C.

K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Julián, B.

C. Sanchez, B. Julián, P. Belleville, and M. Popall, “Applications of hybrid organic–inorganic nanocomposites,” J. Mater. Chem. 15(35), 3559–3592 (2005).
[Crossref]

Kahlenberg, F.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCER ®s for optical interconnection technology,” J. Sol-Gel Sci. Techn. 20(2), 181–186 (2001).
[Crossref]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings. Fundamentals and Applications in Telecommunications and Sensing, (Artech House, 1999), Chap. 3.

Karioja, P.

M. Cheng, J. Hiltunen, M. Wang, A. Suutala, P. Karioja, and R. Myllylä, “Fabrication of polymer waveguide devices for sensor applications,” Proc. SPIE 7376, 73761A (2010).
[Crossref]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings, 2nd ed (Academic Press, 2010), Chap. 9.

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1171 (2004).
[Crossref]

Klein, J.J.

M. Förthner, M. Rumler, F. Stumpf, R. Fader, M. Rommel, L. Frey, M. Girschikofsky, S. Belle, R. Hellmann, and J.J. Klein, “Hybrid polymers processed by substrate conformal imprint lithography for the fabrication of planar Bragg gratings,” Appl. Phys. A 122(3), 1–6 (2016).

Kraft, A.

R. Fader, J. Landwehr, M. Rumler, M. Rommel, A. J. Bauer, L. Frey, R. Völkel, M. Brehm, and A. Kraft, “Functional epoxy polymer for direct nano-imprinting of micro-optical elements,” Microelectron. Eng. 110, 90–93 (2013).
[Crossref]

Krug, P. A.

B. J. Eggleton, F. Ouellette, L. Poladian, and P. A. Krug, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

Landwehr, J.

R. Fader, J. Landwehr, M. Rumler, M. Rommel, A. J. Bauer, L. Frey, R. Völkel, M. Brehm, and A. Kraft, “Functional epoxy polymer for direct nano-imprinting of micro-optical elements,” Microelectron. Eng. 110, 90–93 (2013).
[Crossref]

Lee, A.-C.

Lee, X.

A. Othonos and X. Lee, “Novel and improved methods of writing Bragg gratings with phase masks,” IEEE Photonics Technol. Lett. 7(10), 1183–1185 (1995).
[Crossref]

A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30(23), 1972–1974 (1994).
[Crossref]

Liedert, C.

M. Wang, J. Hiltunen, C. Liedert, L. Hakalahti, and R. Myllylä, “An integrated young interferometer based on UV-imprinted polymer waveguides for label-free biosensing applications,” J. Eur. Opt. Soc. Rap. Public. 7, 12019 (2012).
[Crossref]

Lin, H.-C.

Malo, B.

K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Martin, H.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
[Crossref]

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1171 (2004).
[Crossref]

Measures, R. M.

A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30(23), 1972–1974 (1994).
[Crossref]

Mel, G.

W. W. Morey, G. Mel, and C. M. Ferrar, “Tunable Narrowband External-cavity Diode Laser With An Embedded Fiber Grating Reflector,” in Proceedings of IEEE LEOS Summer Topical on New Semiconductor Laser Devices and Applications 90-82562 (IEEE, 1990), pp. 16–17.
[Crossref]

Meltz, G.

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber Optic Bragg Grating Sensors,” Proc. SPIE 1169, 98–107 (1990).
[Crossref]

Moeller, M.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87 (5-8), 963–967 (2010).
[Crossref]

Moormann, C.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87 (5-8), 963–967 (2010).
[Crossref]

Morey, W. W.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber Optic Bragg Grating Sensors,” Proc. SPIE 1169, 98–107 (1990).
[Crossref]

W. W. Morey, G. Mel, and C. M. Ferrar, “Tunable Narrowband External-cavity Diode Laser With An Embedded Fiber Grating Reflector,” in Proceedings of IEEE LEOS Summer Topical on New Semiconductor Laser Devices and Applications 90-82562 (IEEE, 1990), pp. 16–17.
[Crossref]

Müller-Fiedler, R.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCER ®s for optical interconnection technology,” J. Sol-Gel Sci. Techn. 20(2), 181–186 (2001).
[Crossref]

Myllylä, R.

M. Wang, J. Hiltunen, C. Liedert, L. Hakalahti, and R. Myllylä, “An integrated young interferometer based on UV-imprinted polymer waveguides for label-free biosensing applications,” J. Eur. Opt. Soc. Rap. Public. 7, 12019 (2012).
[Crossref]

M. Cheng, J. Hiltunen, M. Wang, A. Suutala, P. Karioja, and R. Myllylä, “Fabrication of polymer waveguide devices for sensor applications,” Proc. SPIE 7376, 73761A (2010).
[Crossref]

Obi, S.

S. Obi, Replicated Optical Microstructures in Hybrid Polymers. Process Technology and Applications, University of Neuchatel, 2006.

Othonos, A.

A. Othonos and X. Lee, “Novel and improved methods of writing Bragg gratings with phase masks,” IEEE Photonics Technol. Lett. 7(10), 1183–1185 (1995).
[Crossref]

A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30(23), 1972–1974 (1994).
[Crossref]

A. Othonos and K. Kalli, Fiber Bragg Gratings. Fundamentals and Applications in Telecommunications and Sensing, (Artech House, 1999), Chap. 3.

Ouellette, F.

B. J. Eggleton, F. Ouellette, L. Poladian, and P. A. Krug, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

Park, J.-U.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
[Crossref]

Plachetka, U.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87 (5-8), 963–967 (2010).
[Crossref]

Poladian, L.

B. J. Eggleton, F. Ouellette, L. Poladian, and P. A. Krug, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

Popall, M.

C. Sanchez, B. Julián, P. Belleville, and M. Popall, “Applications of hybrid organic–inorganic nanocomposites,” J. Mater. Chem. 15(35), 3559–3592 (2005).
[Crossref]

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
[Crossref]

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCER ®s for optical interconnection technology,” J. Sol-Gel Sci. Techn. 20(2), 181–186 (2001).
[Crossref]

Qiu, Y.

Reekie, L.

P.St.J. Russell, J.-L. Archambault, and L. Reekie, “Fibre gratings,” Physics World, 41–46 (October1993).
[Crossref]

Rommel, M.

M. Förthner, M. Rumler, F. Stumpf, R. Fader, M. Rommel, L. Frey, M. Girschikofsky, S. Belle, R. Hellmann, and J.J. Klein, “Hybrid polymers processed by substrate conformal imprint lithography for the fabrication of planar Bragg gratings,” Appl. Phys. A 122(3), 1–6 (2016).

R. Fader, J. Landwehr, M. Rumler, M. Rommel, A. J. Bauer, L. Frey, R. Völkel, M. Brehm, and A. Kraft, “Functional epoxy polymer for direct nano-imprinting of micro-optical elements,” Microelectron. Eng. 110, 90–93 (2013).
[Crossref]

M. Girschikofsky, S. Belle, M. Förthner, R. Fader, M. Rommel, L. Frey, and R. Hellmann, “Optical Bragg gratings in inorganic-organic hybrid polymers for highly sensitive temperature measurements,” in Proceedings of SENSOR 2015, (2015), pp. 812–814.

Rösch, O.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCER ®s for optical interconnection technology,” J. Sol-Gel Sci. Techn. 20(2), 181–186 (2001).
[Crossref]

Rose, K.

K.-H. Haas and K. Rose, “Hybrid inorganic/organic polymers with nanoscale building blocks: precursors, processing, properties and applications,” Rev. Adv. Mater. Sci. 5(1), 47–52 (2003).

Rosenberger, M.

M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Compressive and tensile strain sensing using a polymer planar Bragg grating,” Opt. Express 22(5), 5483–5490 (2014).
[Crossref] [PubMed]

M. Girschikofsky, M. Rosenberger, S. Belle, M. Brutschy, S. R. Waldvogel, and R. Hellmann, “Optical planar Bragg grating sensor for real-time detection of benzene, toluene and xylene in solvent vapour,” Sensor. Actuat. B 171–172, 338–342 (2012).
[Crossref]

Rumler, M.

M. Förthner, M. Rumler, F. Stumpf, R. Fader, M. Rommel, L. Frey, M. Girschikofsky, S. Belle, R. Hellmann, and J.J. Klein, “Hybrid polymers processed by substrate conformal imprint lithography for the fabrication of planar Bragg gratings,” Appl. Phys. A 122(3), 1–6 (2016).

R. Fader, J. Landwehr, M. Rumler, M. Rommel, A. J. Bauer, L. Frey, R. Völkel, M. Brehm, and A. Kraft, “Functional epoxy polymer for direct nano-imprinting of micro-optical elements,” Microelectron. Eng. 110, 90–93 (2013).
[Crossref]

Russell, P.St.J.

P.St.J. Russell, J.-L. Archambault, and L. Reekie, “Fibre gratings,” Physics World, 41–46 (October1993).
[Crossref]

Sadot, D.

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

Sanchez, C.

C. Sanchez, B. Julián, P. Belleville, and M. Popall, “Applications of hybrid organic–inorganic nanocomposites,” J. Mater. Chem. 15(35), 3559–3592 (2005).
[Crossref]

Schmauss, B.

Schmitt, A.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
[Crossref]

Sheng, Y.

Skaar, J.

J. Skaar, “Fiber Bragg Gratings: Analysis and Synthesis Techniques,” in Fiber Bragg Grating Sensors, A. Cusano, A. Cutolo, and J. Albert, eds. (Bentham Science Publishers, 2011), Chap. 3.

Smith, P.G.R.

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

Streppel, U.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
[Crossref]

Stumpf, F.

M. Förthner, M. Rumler, F. Stumpf, R. Fader, M. Rommel, L. Frey, M. Girschikofsky, S. Belle, R. Hellmann, and J.J. Klein, “Hybrid polymers processed by substrate conformal imprint lithography for the fabrication of planar Bragg gratings,” Appl. Phys. A 122(3), 1–6 (2016).

Suutala, A.

M. Cheng, J. Hiltunen, M. Wang, A. Suutala, P. Karioja, and R. Myllylä, “Fabrication of polymer waveguide devices for sensor applications,” Proc. SPIE 7376, 73761A (2010).
[Crossref]

Vaidyanathan, V.

S. Wang, V. Vaidyanathan, and B. Borden, “Polymer optical channel waveguide components fabricated by using a laser direct writing system,” JASET 3, 47–52 (2009).

van de Laar, R.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87 (5-8), 963–967 (2010).
[Crossref]

van Eekelen, J.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87 (5-8), 963–967 (2010).
[Crossref]

Verschuuren, M. A.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87 (5-8), 963–967 (2010).
[Crossref]

Völkel, R.

R. Fader, J. Landwehr, M. Rumler, M. Rommel, A. J. Bauer, L. Frey, R. Völkel, M. Brehm, and A. Kraft, “Functional epoxy polymer for direct nano-imprinting of micro-optical elements,” Microelectron. Eng. 110, 90–93 (2013).
[Crossref]

Wächter, C.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
[Crossref]

Waldvogel, S. R.

M. Girschikofsky, M. Rosenberger, S. Belle, M. Brutschy, S. R. Waldvogel, and R. Hellmann, “Optical planar Bragg grating sensor for real-time detection of benzene, toluene and xylene in solvent vapour,” Sensor. Actuat. B 171–172, 338–342 (2012).
[Crossref]

Wang, M.

M. Wang, J. Hiltunen, C. Liedert, L. Hakalahti, and R. Myllylä, “An integrated young interferometer based on UV-imprinted polymer waveguides for label-free biosensing applications,” J. Eur. Opt. Soc. Rap. Public. 7, 12019 (2012).
[Crossref]

M. Cheng, J. Hiltunen, M. Wang, A. Suutala, P. Karioja, and R. Myllylä, “Fabrication of polymer waveguide devices for sensor applications,” Proc. SPIE 7376, 73761A (2010).
[Crossref]

Wang, S.

S. Wang, V. Vaidyanathan, and B. Borden, “Polymer optical channel waveguide components fabricated by using a laser direct writing system,” JASET 3, 47–52 (2009).

Watts, S.P.

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

Werneck, M. M.

R.C.S.B. Allil and M. M. Werneck, “Optical High-Voltage Sensor Based on Fiber Bragg Grating and PZT Piezoelectric Ceramics,” IEEE Trans. Instrum. Meas. 60(6), 2118–2125 (2011).
[Crossref]

Williams, R.B.

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

Wochnowski, C.

C. Wochnowski, “UV-laser-based fabrication of a planar, polymeric Bragg-structure,” Opt. Laser Technol. 41(6), 734–740 (2009).
[Crossref]

Wolter, H.

K.-H. Haas and H. Wolter, “Synthesis, properties and applications of inorganicorganic copolymers (ORMOCER ®s),” Curr. Opin. Solid St. M. 4(6), 571–580 (1999).
[Crossref]

Appl. Phys. A (1)

M. Förthner, M. Rumler, F. Stumpf, R. Fader, M. Rommel, L. Frey, M. Girschikofsky, S. Belle, R. Hellmann, and J.J. Klein, “Hybrid polymers processed by substrate conformal imprint lithography for the fabrication of planar Bragg gratings,” Appl. Phys. A 122(3), 1–6 (2016).

Appl. Phys. Lett. (1)

K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Curr. Opin. Solid St. M. (1)

K.-H. Haas and H. Wolter, “Synthesis, properties and applications of inorganicorganic copolymers (ORMOCER ®s),” Curr. Opin. Solid St. M. 4(6), 571–580 (1999).
[Crossref]

Electron. Lett. (4)

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1171 (2004).
[Crossref]

B. J. Eggleton, F. Ouellette, L. Poladian, and P. A. Krug, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30(19), 1620–1622 (1994).
[Crossref]

A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30(23), 1972–1974 (1994).
[Crossref]

IEEE Commun. Mag. (1)

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Othonos and X. Lee, “Novel and improved methods of writing Bragg gratings with phase masks,” IEEE Photonics Technol. Lett. 7(10), 1183–1185 (1995).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

R.C.S.B. Allil and M. M. Werneck, “Optical High-Voltage Sensor Based on Fiber Bragg Grating and PZT Piezoelectric Ceramics,” IEEE Trans. Instrum. Meas. 60(6), 2118–2125 (2011).
[Crossref]

J. Eur. Opt. Soc. Rap. Public. (1)

M. Wang, J. Hiltunen, C. Liedert, L. Hakalahti, and R. Myllylä, “An integrated young interferometer based on UV-imprinted polymer waveguides for label-free biosensing applications,” J. Eur. Opt. Soc. Rap. Public. 7, 12019 (2012).
[Crossref]

J. Lightwave Technol. (3)

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Y. Qiu, Y. Sheng, and C. Beaulieu, “Optimal Phase Mask for Fiber Bragg Grating Fabrication,” J. Lightwave Technol. 17(11), 2366–2370 (1999).
[Crossref]

J. Mater. Chem. (1)

C. Sanchez, B. Julián, P. Belleville, and M. Popall, “Applications of hybrid organic–inorganic nanocomposites,” J. Mater. Chem. 15(35), 3559–3592 (2005).
[Crossref]

J. Sol-Gel Sci. Techn. (1)

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, “ORMOCER ®s for optical interconnection technology,” J. Sol-Gel Sci. Techn. 20(2), 181–186 (2001).
[Crossref]

JASET (1)

S. Wang, V. Vaidyanathan, and B. Borden, “Polymer optical channel waveguide components fabricated by using a laser direct writing system,” JASET 3, 47–52 (2009).

Microelectron. Eng. (2)

R. Fader, J. Landwehr, M. Rumler, M. Rommel, A. J. Bauer, L. Frey, R. Völkel, M. Brehm, and A. Kraft, “Functional epoxy polymer for direct nano-imprinting of micro-optical elements,” Microelectron. Eng. 110, 90–93 (2013).
[Crossref]

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87 (5-8), 963–967 (2010).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

C. Wochnowski, “UV-laser-based fabrication of a planar, polymeric Bragg-structure,” Opt. Laser Technol. 41(6), 734–740 (2009).
[Crossref]

Physics World (1)

P.St.J. Russell, J.-L. Archambault, and L. Reekie, “Fibre gratings,” Physics World, 41–46 (October1993).
[Crossref]

Proc. SPIE (2)

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber Optic Bragg Grating Sensors,” Proc. SPIE 1169, 98–107 (1990).
[Crossref]

M. Cheng, J. Hiltunen, M. Wang, A. Suutala, P. Karioja, and R. Myllylä, “Fabrication of polymer waveguide devices for sensor applications,” Proc. SPIE 7376, 73761A (2010).
[Crossref]

Rev. Adv. Mater. Sci. (1)

K.-H. Haas and K. Rose, “Hybrid inorganic/organic polymers with nanoscale building blocks: precursors, processing, properties and applications,” Rev. Adv. Mater. Sci. 5(1), 47–52 (2003).

Sensor. Actuat. B (1)

M. Girschikofsky, M. Rosenberger, S. Belle, M. Brutschy, S. R. Waldvogel, and R. Hellmann, “Optical planar Bragg grating sensor for real-time detection of benzene, toluene and xylene in solvent vapour,” Sensor. Actuat. B 171–172, 338–342 (2012).
[Crossref]

Thin Solid Films (1)

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Films 442(1), 194–200 (2003).
[Crossref]

Other (6)

W. W. Morey, G. Mel, and C. M. Ferrar, “Tunable Narrowband External-cavity Diode Laser With An Embedded Fiber Grating Reflector,” in Proceedings of IEEE LEOS Summer Topical on New Semiconductor Laser Devices and Applications 90-82562 (IEEE, 1990), pp. 16–17.
[Crossref]

M. Girschikofsky, S. Belle, M. Förthner, R. Fader, M. Rommel, L. Frey, and R. Hellmann, “Optical Bragg gratings in inorganic-organic hybrid polymers for highly sensitive temperature measurements,” in Proceedings of SENSOR 2015, (2015), pp. 812–814.

R. Kashyap, Fiber Bragg Gratings, 2nd ed (Academic Press, 2010), Chap. 9.

A. Othonos and K. Kalli, Fiber Bragg Gratings. Fundamentals and Applications in Telecommunications and Sensing, (Artech House, 1999), Chap. 3.

J. Skaar, “Fiber Bragg Gratings: Analysis and Synthesis Techniques,” in Fiber Bragg Grating Sensors, A. Cusano, A. Cutolo, and J. Albert, eds. (Bentham Science Publishers, 2011), Chap. 3.

S. Obi, Replicated Optical Microstructures in Hybrid Polymers. Process Technology and Applications, University of Neuchatel, 2006.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Process-chain of the UV-SCIL fabrication of rib-type waveguides in OrmoComp.
Fig. 2
Fig. 2 Schematic illustration of the UV-SCIL process (a) and SEM image of the ridge of a fabricated rib-type waveguide (b).
Fig. 3
Fig. 3 Sample preparation process-chain for refractive index modifiability measurements.
Fig. 4
Fig. 4 Schematic illustration of the Bragg grating inscription process (a) and a differential interference contrast microscopy image of a fabricated Bragg grating (b).
Fig. 5
Fig. 5 Relative refractive index increase of precured OrmoComp due to 248 nm KrF excimer laser radiation determined by multi-wavelength m-line spectroscopy. The error bars take into account the standard deviation of the single pulse fluence and the refractive indices measured for three independently irradiated samples.
Fig. 6
Fig. 6 Reflectivity η and −3 dB bandwidth (FWHM) Δλ of the Bragg grating’s reflection due to an increasing KrF excimer laser fluence.
Fig. 7
Fig. 7 Reflected Bragg wavelength λB and the power transmitted through the Bragg grating containing rib-type waveguide ϕt due to an increasing KrF excimer laser fluence.
Fig. 8
Fig. 8 Reflectivity η and −3 dB bandwidth (FWHM) Δλ of the Bragg grating’s reflection due to an increasing KrF excimer laser fluence (extension of Fig. 6).
Fig. 9
Fig. 9 Reflected Bragg wavelength λB and the power transmitted through the Bragg grating containing rib-type waveguide ϕt due to an increasing KrF excimer laser fluence (extension of Fig. 7).
Fig. 10
Fig. 10 Reflectivity η and −3 dB bandwidth (FWHM) Δλ of the Bragg grating’s reflection due to an increasing length of the Bragg grating.
Fig. 11
Fig. 11 Reflection and transmission of a fabricated Bragg grating within a precured UVSCIL fabricated rib-type OrmoComp waveguide.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

m λ = 2 n eff Λ ,
η = 1 10 Δ ϕ t / 10
η = tanh 2 ( π Δ n λ B l BG M ) ,
Δ λ = λ B S ( Δ n 2 n 0 ) 2 + ( 1 N ) 2 ,

Metrics