Abstract

In this work, we use the numerical simulation platform Zemax to investigate the optical properties of electrically tunable aspherical liquid lenses, as we recently reported in an experimental study [K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014)]. Based on the measured lens profiles in the presence of an inhomogeneous electric field and the geometry of the optical device, we calculate the optical aberrations, focusing in particular on the Z11 Zernike coefficient of spherical aberration obtained at zero defocus (Z4). Focal length and spherical aberrations are calculated for a wide range of control parameters (fluid pressure and electric field), parallel with the experimental results. Similarly, the modulation transfer function (MTF), image spot diagrams, Strehl’s ratio, and peak-to-valley (P–V) and root mean square (RMS) wavefront errors are calculated to quantify the performance of our aspherical liquid lenses. We demonstrate that the device concept allows compensation for a wide range of spherical aberrations encountered in optical systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode

N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele
Opt. Express 24(4) 4210-4220 (2016)

Design and wavefront characterization of an electrically tunable aspherical optofluidic lens

Kartikeya Mishra, Aditya Narayanan, and Frieder Mugele
Opt. Express 27(13) 17601-17609 (2019)

Spherical aberration free liquid-filled tunable lens with variable thickness membrane

Pengpeng Zhao, Çağlar Ataman, and Hans Zappe
Opt. Express 23(16) 21264-21278 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. W. Yoo, M. Verhaegen, M. E. van Royen, and G. Schitter, “Automated Adjustment of Aberration Correction in Scanning Confocal Microscopy,” in Proceeding of IEEE on International Instrumentation and Measurement Technology Conference (IEEE, 2012), pp.1083–1088 (2012).
    [Crossref]
  2. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
    [Crossref] [PubMed]
  3. N. T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics 4(3), 031501 (2010).
    [Crossref] [PubMed]
  4. A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 44(16), 3238–3245 (2005).
    [Crossref] [PubMed]
  5. C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26(12–17), 1773–1788 (2012).
  6. M. Pan, M. Kim, S. Kuiper, and S. K. Y. Tang, “Actuating fluid-fluid interfaces for the reconfiguration of light,” IEEE J. Sel. Top. Quantum Electron. 21(4), 9100612 (2015).
  7. C.-C. Cheng and J. Andrew Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [Crossref] [PubMed]
  8. H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18(10), 9945–9954 (2010).
    [Crossref] [PubMed]
  9. S. H. Cho, F. S. Tsai, W. Qiao, N. H. Kim, and Y. H. Lo, “Fabrication of aspherical polymer lenses using a tunable liquid-filled mold,” Opt. Lett. 34(5), 605–607 (2009).
    [Crossref] [PubMed]
  10. P. P. Zhao, C. Ataman, and H. Zappe, “An endoscopic microscope with liquid-tunable aspheric lenses for continuous zoom capability,” Proc. SPIE 9130, 913004 (2014).
    [Crossref]
  11. Z. Zhan, K. Wang, H. Yao, and Z. Cao, “Fabrication and characterization of aspherical lens manipulated by electrostatic field,” Appl. Opt. 48(22), 4375–4380 (2009).
    [Crossref] [PubMed]
  12. S. M. Kuo and C. H. Lin, “Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method,” Opt. Express 18(18), 19114–19119 (2010).
    [Crossref] [PubMed]
  13. G. I. Kweon and C. H. Kim, “Aspherical lens design by using a numerical analysis,” J. Korean Phys. Soc. 51(1), 93–103 (2007).
    [Crossref]
  14. Z. L. Cao, C. Cheng, and K. Y. Wang, “Numerical simulation on aspherical lens modulated by electrostatic force,” Proc. SPIE 9281, 92810H (2014).
    [Crossref]
  15. S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15(21), 14146–14154 (2007).
    [Crossref] [PubMed]
  16. H. Zhao, “Optical ensemble analysis of intraocular lens performance through a simulated clinical trial with ZEMAX,” Opt. Lett. 34(1), 7–9 (2009).
    [Crossref] [PubMed]
  17. Y. K. Fuh and P. W. Chen, “Novel dual-function lens with microscopic and vari-focus capability incorporated with an aberration-suppression aspheric lens,” Opt. Express 23(17), 21771–21785 (2015).
    [Crossref] [PubMed]
  18. N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
    [Crossref] [PubMed]
  19. Y. H. Gao, Z. Q. Yang, W. X. Zhao, B. Jiang, D. M. Li, and M. S. Li, “Optimum design of cam curve of zoom system based on Zemax,” Optik (Stuttg.) 124(23), 6358–6362 (2013).
    [Crossref]
  20. R. A. Flynn, E. F. Fleet, G. Beadie, and J. S. Shirk, “Achromatic GRIN singlet lens design,” Opt. Express 21(4), 4970–4978 (2013).
    [Crossref] [PubMed]
  21. J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Electric-field-driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011).
    [Crossref]
  22. I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
    [Crossref]
  23. Q. H. Li and X. P. Shao, “Spherical aberration and modulation transfer function,” Proc. SPIE 9124, 91241B (2014).
    [Crossref]
  24. P. Zhao, Ç. Ataman, and H. Zappe, “Spherical aberration free liquid-filled tunable lens with variable thickness membrane,” Opt. Express 23(16), 21264–21278 (2015).
    [Crossref] [PubMed]

2016 (1)

2015 (4)

M. Pan, M. Kim, S. Kuiper, and S. K. Y. Tang, “Actuating fluid-fluid interfaces for the reconfiguration of light,” IEEE J. Sel. Top. Quantum Electron. 21(4), 9100612 (2015).

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

Y. K. Fuh and P. W. Chen, “Novel dual-function lens with microscopic and vari-focus capability incorporated with an aberration-suppression aspheric lens,” Opt. Express 23(17), 21771–21785 (2015).
[Crossref] [PubMed]

P. Zhao, Ç. Ataman, and H. Zappe, “Spherical aberration free liquid-filled tunable lens with variable thickness membrane,” Opt. Express 23(16), 21264–21278 (2015).
[Crossref] [PubMed]

2014 (4)

Q. H. Li and X. P. Shao, “Spherical aberration and modulation transfer function,” Proc. SPIE 9124, 91241B (2014).
[Crossref]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

P. P. Zhao, C. Ataman, and H. Zappe, “An endoscopic microscope with liquid-tunable aspheric lenses for continuous zoom capability,” Proc. SPIE 9130, 913004 (2014).
[Crossref]

Z. L. Cao, C. Cheng, and K. Y. Wang, “Numerical simulation on aspherical lens modulated by electrostatic force,” Proc. SPIE 9281, 92810H (2014).
[Crossref]

2013 (2)

Y. H. Gao, Z. Q. Yang, W. X. Zhao, B. Jiang, D. M. Li, and M. S. Li, “Optimum design of cam curve of zoom system based on Zemax,” Optik (Stuttg.) 124(23), 6358–6362 (2013).
[Crossref]

R. A. Flynn, E. F. Fleet, G. Beadie, and J. S. Shirk, “Achromatic GRIN singlet lens design,” Opt. Express 21(4), 4970–4978 (2013).
[Crossref] [PubMed]

2012 (1)

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26(12–17), 1773–1788 (2012).

2011 (1)

J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Electric-field-driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011).
[Crossref]

2010 (3)

2009 (3)

2007 (3)

2005 (1)

Andrew Yeh, J.

Ataman, C.

P. P. Zhao, C. Ataman, and H. Zappe, “An endoscopic microscope with liquid-tunable aspheric lenses for continuous zoom capability,” Proc. SPIE 9130, 913004 (2014).
[Crossref]

Ataman, Ç.

Beadie, G.

Cao, Z.

Cao, Z. L.

Z. L. Cao, C. Cheng, and K. Y. Wang, “Numerical simulation on aspherical lens modulated by electrostatic force,” Proc. SPIE 9281, 92810H (2014).
[Crossref]

Carreel, B.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Cavalli, A.

Chang, F. C.

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26(12–17), 1773–1788 (2012).

Chau, F. S.

Chen, J. K.

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26(12–17), 1773–1788 (2012).

Chen, P. W.

Cheng, C.

Z. L. Cao, C. Cheng, and K. Y. Wang, “Numerical simulation on aspherical lens modulated by electrostatic force,” Proc. SPIE 9281, 92810H (2014).
[Crossref]

Cheng, C.-C.

Chiang, T. J.

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26(12–17), 1773–1788 (2012).

Chiu, C. P.

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26(12–17), 1773–1788 (2012).

Cho, S. H.

Chu, C. W.

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26(12–17), 1773–1788 (2012).

Fan, S. K.

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26(12–17), 1773–1788 (2012).

Fleet, E. F.

Flynn, R. A.

Fuh, Y. K.

Gao, Y. H.

Y. H. Gao, Z. Q. Yang, W. X. Zhao, B. Jiang, D. M. Li, and M. S. Li, “Optimum design of cam curve of zoom system based on Zemax,” Optik (Stuttg.) 124(23), 6358–6362 (2013).
[Crossref]

Jiang, B.

Y. H. Gao, Z. Q. Yang, W. X. Zhao, B. Jiang, D. M. Li, and M. S. Li, “Optimum design of cam curve of zoom system based on Zemax,” Optik (Stuttg.) 124(23), 6358–6362 (2013).
[Crossref]

Kim, C. H.

G. I. Kweon and C. H. Kim, “Aspherical lens design by using a numerical analysis,” J. Korean Phys. Soc. 51(1), 93–103 (2007).
[Crossref]

Kim, M.

M. Pan, M. Kim, S. Kuiper, and S. K. Y. Tang, “Actuating fluid-fluid interfaces for the reconfiguration of light,” IEEE J. Sel. Top. Quantum Electron. 21(4), 9100612 (2015).

Kim, N. H.

Kleijn, C. R.

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

Ko, F. H.

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26(12–17), 1773–1788 (2012).

Kreutzer, M.

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

Kuiper, S.

M. Pan, M. Kim, S. Kuiper, and S. K. Y. Tang, “Actuating fluid-fluid interfaces for the reconfiguration of light,” IEEE J. Sel. Top. Quantum Electron. 21(4), 9100612 (2015).

Kuo, S. M.

Kuo, S. W.

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26(12–17), 1773–1788 (2012).

Kweon, G. I.

G. I. Kweon and C. H. Kim, “Aspherical lens design by using a numerical analysis,” J. Korean Phys. Soc. 51(1), 93–103 (2007).
[Crossref]

Leung, H. M.

Li, D. M.

Y. H. Gao, Z. Q. Yang, W. X. Zhao, B. Jiang, D. M. Li, and M. S. Li, “Optimum design of cam curve of zoom system based on Zemax,” Optik (Stuttg.) 124(23), 6358–6362 (2013).
[Crossref]

Li, M. S.

Y. H. Gao, Z. Q. Yang, W. X. Zhao, B. Jiang, D. M. Li, and M. S. Li, “Optimum design of cam curve of zoom system based on Zemax,” Optik (Stuttg.) 124(23), 6358–6362 (2013).
[Crossref]

Li, Q. H.

Q. H. Li and X. P. Shao, “Spherical aberration and modulation transfer function,” Proc. SPIE 9124, 91241B (2014).
[Crossref]

Lima, N. C.

Lin, C. H.

Lo, Y. H.

Manukyan, G.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Electric-field-driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011).
[Crossref]

Mishra, K.

N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
[Crossref] [PubMed]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Mugele, F.

N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
[Crossref] [PubMed]

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Electric-field-driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011).
[Crossref]

Murade, C.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Musterd, M.

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

Nguyen, N. T.

N. T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics 4(3), 031501 (2010).
[Crossref] [PubMed]

Oh, J. M.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Electric-field-driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011).
[Crossref]

Pan, M.

M. Pan, M. Kim, S. Kuiper, and S. K. Y. Tang, “Actuating fluid-fluid interfaces for the reconfiguration of light,” IEEE J. Sel. Top. Quantum Electron. 21(4), 9100612 (2015).

Qiao, W.

Reichelt, S.

Roghair, I.

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Shao, X. P.

Q. H. Li and X. P. Shao, “Spherical aberration and modulation transfer function,” Proc. SPIE 9124, 91241B (2014).
[Crossref]

Shirk, J. S.

Tang, S. K. Y.

M. Pan, M. Kim, S. Kuiper, and S. K. Y. Tang, “Actuating fluid-fluid interfaces for the reconfiguration of light,” IEEE J. Sel. Top. Quantum Electron. 21(4), 9100612 (2015).

Tsai, F. S.

van den Ende, D.

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Electric-field-driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011).
[Crossref]

Wang, K.

Wang, K. Y.

Z. L. Cao, C. Cheng, and K. Y. Wang, “Numerical simulation on aspherical lens modulated by electrostatic force,” Proc. SPIE 9281, 92810H (2014).
[Crossref]

Werber, A.

Yang, Z. Q.

Y. H. Gao, Z. Q. Yang, W. X. Zhao, B. Jiang, D. M. Li, and M. S. Li, “Optimum design of cam curve of zoom system based on Zemax,” Optik (Stuttg.) 124(23), 6358–6362 (2013).
[Crossref]

Yao, H.

Yu, H.

Zappe, H.

Zhan, Z.

Zhao, H.

Zhao, P.

Zhao, P. P.

P. P. Zhao, C. Ataman, and H. Zappe, “An endoscopic microscope with liquid-tunable aspheric lenses for continuous zoom capability,” Proc. SPIE 9130, 913004 (2014).
[Crossref]

Zhao, W. X.

Y. H. Gao, Z. Q. Yang, W. X. Zhao, B. Jiang, D. M. Li, and M. S. Li, “Optimum design of cam curve of zoom system based on Zemax,” Optik (Stuttg.) 124(23), 6358–6362 (2013).
[Crossref]

Zhou, G.

Appl. Opt. (2)

Biomicrofluidics (1)

N. T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics 4(3), 031501 (2010).
[Crossref] [PubMed]

Europhys. Lett. (1)

J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Electric-field-driven instabilities on superhydrophobic surfaces,” Europhys. Lett. 93(5), 56001 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Pan, M. Kim, S. Kuiper, and S. K. Y. Tang, “Actuating fluid-fluid interfaces for the reconfiguration of light,” IEEE J. Sel. Top. Quantum Electron. 21(4), 9100612 (2015).

J. Adhes. Sci. Technol. (1)

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid lenses and driving mechanisms: a review,” J. Adhes. Sci. Technol. 26(12–17), 1773–1788 (2012).

J. Korean Phys. Soc. (1)

G. I. Kweon and C. H. Kim, “Aspherical lens design by using a numerical analysis,” J. Korean Phys. Soc. 51(1), 93–103 (2007).
[Crossref]

Microfluid. Nanofluidics (1)

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

Opt. Express (8)

Opt. Lett. (2)

Optik (Stuttg.) (1)

Y. H. Gao, Z. Q. Yang, W. X. Zhao, B. Jiang, D. M. Li, and M. S. Li, “Optimum design of cam curve of zoom system based on Zemax,” Optik (Stuttg.) 124(23), 6358–6362 (2013).
[Crossref]

Proc. SPIE (3)

Q. H. Li and X. P. Shao, “Spherical aberration and modulation transfer function,” Proc. SPIE 9124, 91241B (2014).
[Crossref]

Z. L. Cao, C. Cheng, and K. Y. Wang, “Numerical simulation on aspherical lens modulated by electrostatic force,” Proc. SPIE 9281, 92810H (2014).
[Crossref]

P. P. Zhao, C. Ataman, and H. Zappe, “An endoscopic microscope with liquid-tunable aspheric lenses for continuous zoom capability,” Proc. SPIE 9130, 913004 (2014).
[Crossref]

Sci. Rep. (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Other (1)

H. W. Yoo, M. Verhaegen, M. E. van Royen, and G. Schitter, “Automated Adjustment of Aberration Correction in Scanning Confocal Microscopy,” in Proceeding of IEEE on International Instrumentation and Measurement Technology Conference (IEEE, 2012), pp.1083–1088 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 a) Schematic of electrically tunable optofluidic lens setup. A spherical lens created via hydrostatic pressure (ΔPh) is deformed into an aspherical shape by an application of a voltage (U) between the aperture plate and top electrode. Red curves spanning between the aperture plate and top electrode signify electric field lines. b) Side-view of aspherical lens under an applied voltage. The red curve shows the conic section fit.
Fig. 2
Fig. 2 Simulation set-up of an optofluidic lens device in Zemax. A liquid lens is produced by hydrostatic pressure through an aperture of 1-mm diameter. Sections of the device are numbered as follows: 1-Top glass plate with 30-nm coated ITO, 2-Silicon oil, 3-Electrically conductive aqueous solution, 4-Bottom glass plate, and 5-Image plane. The material, thickness, and refractive indices of the device sections are summarized in Table 1.
Fig. 3
Fig. 3 a) Lens profiles at ΔPh = 30 Pa (blue), 56 Pa (green), and 88 Pa (red) for different values of U: 0 V (top), 1.73 kV (middle), and 2.45 kV (bottom). b) Variation of f0 (open symbols) and Zernike spherical aberration (closed symbols) versus ΔPh for U = 0V (squares), 1.73 kV (circles), and 2.45 kV (triangles).
Fig. 4
Fig. 4 Variation of f0 with voltage squared (blue circles) for ranges of ΔPh = 30 Pa, 34 Pa, 42 Pa, 50 Pa, 56 Pa, 68 Pa, 77 Pa, and 88 Pa. Increasing the color gradient of blue circles delineates increase in hydrostatic pressure. The green curve depicts lens profiles with zero values of Z11. Red lines connect the profiles of the Z11 = −0.1waves and the Z11 = 0.2waves, while magenta lines show the profiles of the Z11 = 0.1waves and the Z11 = 0.2waves.
Fig. 5
Fig. 5 a) MTF versus angular frequency for four different values of hydrostatic pressure under zero voltage: 50 Pa (red), 56 Pa (blue), 68 Pa (orange), and 77 Pa (green). The black curve depicts diffraction-limited MTF. b) MTF versus angular frequency as voltage is applied at 0 kV (red), 1.32 kV (blue), 1.95 kV (orange), 2.12 kV (green), and 2.18 kV (pink) for ΔPh = 68Pa. c) MTF curves of perfect lenses corresponding to four different values of ΔPh: 50 Pa (red), 56 Pa (blue), 68 Pa (orange), and 77 Pa (green). The inset shows the enlarged view of a section (black box) of superimposed MTF curves.
Fig. 6
Fig. 6 a) Spot diagrams of spherical lenses under zero voltage at hydrostatic pressures of 50 Pa, 56 Pa, 68 Pa, and 77 Pa. The black circle represents airy disc. b) Spot diagrams of aspherical lenses corresponding to ΔPh = 68Pa as the voltage is increased from 1.32 kV, 1.95 kV, and 2.12 kV to 2.18 kV. c) Spot diagrams of perfect aspherical lenses with Z11 ≈0, corresponding to different values of ΔPh: 50 Pa, 56 Pa, 68 Pa, and 77 Pa.

Tables (2)

Tables Icon

Table 1 Specifications of lens device sections: material, thickness and refractive index

Tables Icon

Table 2 Optical properties of a) Spherical lenses under zero voltage at hydrostatic pressures of 50 Pa, 56 Pa, 68 Pa and 77 Pa; b) Aspherical lenses corresponding to ΔPh = 68Pa as voltage is applied from 1.32 kV, 1.95 kV, and 2.12 kV to 2.18 kV; and c) Perfect aspherical lenses under applied voltage corresponding to four different values of hydrostatic pressure: 50 Pa, 56 Pa, 68 Pa, and 77 Pa.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P h =2γκ( r )  Π el (r)

Metrics