Abstract

We theoretically demonstrate the feasibility of collimating radiating spoof plasmons using a leaky wave lens approach. Spoof plasmons are surface waves excited along reactance surfaces realized through metallic corrugations. By employing a periodic perturbation to the geometric profile of this type of reactance surface, it becomes feasible to convert the excited spoof plasmons into free-space radiating leaky wave modes. It is demonstrated that by structurally modifying such a corrugated surface through the introduction of a non-uniform sinusoidally modulated reactance profile, then a tapered wavenumber, with a real part less than that of free space, can be established along the surface. In this way the radiating properties of the structure (amplitude and phase) can be locally controlled thereby creating a radiating effect similar to that of a non-uniform current distribution. By properly engineering the space dependent wavenumber along the corrugated surface, different regions of the structure will emit spoof plasmon energy at different angles with varying intensity. The combined effect is the emission of an electromagnetic wave exhibiting a converging wave-front that eventually collimates spoof plasmon energy at some desired focal point.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spoof plasmon radiation using sinusoidally modulated corrugated reactance surfaces

Anastasios H. Panaretos and Douglas H. Werner
Opt. Express 24(3) 2443-2456 (2016)

Tunable leaky-wave radiation by graphene-covered corrugated surfaces

Mohammad Reza Tavakol, Amirhossein Saba, Kamalodin Arik, and Amin Khavasi
Appl. Opt. 57(30) 8971-8977 (2018)

The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture

D. R. Jackson, J. Chen, R. Qiang, F. Capolino, and A. A. Oliner
Opt. Express 16(26) 21271-21281 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  2. F. J. de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
    [Crossref] [PubMed]
  3. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
    [Crossref]
  4. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [Crossref] [PubMed]
  5. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
    [Crossref] [PubMed]
  6. A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).
  7. C. C. Cutler, Electromagnetic Waves Guided by Corrugated Conducting Surfaces (Bell Telephone Lab, 1944).
  8. W. Rotman, “A study of single-surface corrugated guides,” IRE Trans. Antennas Propag. 39(8), 952–959 (1951).
  9. R. S. Elliot, “On the theory of corrugated plane surfaces,” IRE Trans. Antennas Propag. 2(2), 71–81 (1954).
    [Crossref]
  10. R. W. Hougardy and R. C. Hansen, “Scanning surface wave antennas-oblique surface waves over a corrugated conductor,” IRE Trans. Antennas Propag. 6(4), 370–376 (1958).
    [Crossref]
  11. C. H. Walter, “Surface-wave Luneberg lens antennas,” IRE Trans. Antennas Propag. 8(5), 508–515 (1960).
    [Crossref]
  12. J. T. Bolljahn, “Synthesis of modulated corrugated surface-wave structures,” IRE Trans. Antennas Propag. 9(3), 236–241 (1961).
    [Crossref]
  13. C. C. Wang and E. T. Kornhauser, “Propagation on modulated corrugated rods,” IRE Microw. Theory Technol. 10(3), 161–165 (1962).
    [Crossref]
  14. C. H. Walter, Travelling Wave Antennas (McGRaw-Hill, 1965).
  15. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14(26), 13021–13029 (2006).
    [Crossref] [PubMed]
  16. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
    [Crossref] [PubMed]
  17. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
    [Crossref] [PubMed]
  18. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
    [Crossref] [PubMed]
  19. A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
    [Crossref]
  20. T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
    [Crossref]
  21. X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
    [Crossref]
  22. X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
    [Crossref]
  23. B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
    [Crossref] [PubMed]
  24. H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
    [Crossref]
  25. Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
    [Crossref] [PubMed]
  26. L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
    [Crossref] [PubMed]
  27. J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
    [Crossref] [PubMed]
  28. J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
    [Crossref] [PubMed]
  29. A. H. Panaretos and D. H. Werner, “Spoof plasmon radiation using sinusoidally modulated corrugated reactance surfaces,” Opt. Express 24(3), 2443–2456 (2016).
  30. A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag. 7(5), 201–208 (1959).
    [Crossref]
  31. A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally modulated reactance surface,” IEEE Trans. Antenn. Propag. 59(6), 2087–2096 (2011).
    [Crossref]
  32. G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antenn. Propag. 59(12), 4436–4444 (2011).
    [Crossref]
  33. S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10(1), 1499–1502 (2011).
    [Crossref]
  34. A. J. Martinez-Ros, J. L. Gomez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
    [Crossref]
  35. S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
    [Crossref]
  36. M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally-modulated graphene leaky-wave antenna for electronic beam-scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
    [Crossref]
  37. I. Ohtera, “Focusing properties of a microwave radiator utilizing a slotted rectangular waveguide,” IEEE Trans. Antenn. Propag. 38(1), 12–124 (1990).
    [Crossref]
  38. P. Burghignoli, F. Frezza, A. Galli, and G. Schettini, “Synthesis of broadbeam patterns through leaky-wave antennas with rectilinear geometry,” IEEE Antennas Wirel. Propag. Lett. 2(1), 136–139 (2003).
    [Crossref]
  39. J. L. Gomez-Tornero, F. Quesada-Pereira, A. Alvarez-Melcon, G. Goussetis, A. Weily, and Y. Guo, “Frequency steerable two dimensional focusing using rectilinear leaky-wave lenses,” IEEE Trans. Antenn. Propag. 59(2), 407–415 (2011).
    [Crossref]
  40. J. Gomez-Tornero, A. Weily, and Y. Guo, “Rectilinear leaky-wave antennas with broad beam patterns using hybrid printed-circuit waveguides,” IEEE Trans. Antenn. Propag. 59(11), 3999–4007 (2011).
    [Crossref]
  41. J.-L. Gomez-Tornero, “Unusual tapering of leaky-wave radiators and their applications,” in Proc. 5th Eur. Conf. Antennas Propag. (EUCAP, 2011), pp. 821–824.
  42. A. Martínez-Ros, J. Gómez-Tornero, F. Clemente-Fernández, and J. Monzó-Cabrera, “Microwave near-field focusing properties of width-tapered microstrip leaky-wave antenna,” IEEE Trans. Antenn. Propag. 61(6), 2981–2990 (2013).
    [Crossref]
  43. J. L. Gomez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields. Part I: concept, design and analysis theory,” IEEE Trans. Antenn. Propag. 61(7), 3475–3485 (2013).
    [Crossref]
  44. A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
    [Crossref]
  45. R. F. Harrington, Time-Harmonic Electormagnetic Fields (Wiley-IEEE, 2001).
  46. L. B. Felsen, “Real spectra, complex spectra, compact spectra,” J. Opt. Soc. Am. A 3(4), 486–496 (1986).
    [Crossref]
  47. A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook, 4th ed., J. L. Volakis, ed. (McGraw-Hill, 2007).
  48. J. W. Sherman, “Properties of focused apertures in the Fresnel region,” IRE Trans. Antennas Propag. 10(4), 399–408 (1962).
    [Crossref]

2016 (1)

2015 (5)

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
[Crossref] [PubMed]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
[Crossref]

2014 (3)

M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally-modulated graphene leaky-wave antenna for electronic beam-scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

2013 (6)

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

A. Martínez-Ros, J. Gómez-Tornero, F. Clemente-Fernández, and J. Monzó-Cabrera, “Microwave near-field focusing properties of width-tapered microstrip leaky-wave antenna,” IEEE Trans. Antenn. Propag. 61(6), 2981–2990 (2013).
[Crossref]

J. L. Gomez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields. Part I: concept, design and analysis theory,” IEEE Trans. Antenn. Propag. 61(7), 3475–3485 (2013).
[Crossref]

A. J. Martinez-Ros, J. L. Gomez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
[Crossref]

S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
[Crossref]

2011 (6)

A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally modulated reactance surface,” IEEE Trans. Antenn. Propag. 59(6), 2087–2096 (2011).
[Crossref]

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antenn. Propag. 59(12), 4436–4444 (2011).
[Crossref]

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10(1), 1499–1502 (2011).
[Crossref]

J. L. Gomez-Tornero, F. Quesada-Pereira, A. Alvarez-Melcon, G. Goussetis, A. Weily, and Y. Guo, “Frequency steerable two dimensional focusing using rectilinear leaky-wave lenses,” IEEE Trans. Antenn. Propag. 59(2), 407–415 (2011).
[Crossref]

J. Gomez-Tornero, A. Weily, and Y. Guo, “Rectilinear leaky-wave antennas with broad beam patterns using hybrid printed-circuit waveguides,” IEEE Trans. Antenn. Propag. 59(11), 3999–4007 (2011).
[Crossref]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

2010 (2)

2009 (2)

2008 (1)

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).

2006 (2)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14(26), 13021–13029 (2006).
[Crossref] [PubMed]

2005 (3)

F. J. de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
[Crossref]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2003 (1)

P. Burghignoli, F. Frezza, A. Galli, and G. Schettini, “Synthesis of broadbeam patterns through leaky-wave antennas with rectilinear geometry,” IEEE Antennas Wirel. Propag. Lett. 2(1), 136–139 (2003).
[Crossref]

1990 (1)

I. Ohtera, “Focusing properties of a microwave radiator utilizing a slotted rectangular waveguide,” IEEE Trans. Antenn. Propag. 38(1), 12–124 (1990).
[Crossref]

1986 (1)

1962 (2)

J. W. Sherman, “Properties of focused apertures in the Fresnel region,” IRE Trans. Antennas Propag. 10(4), 399–408 (1962).
[Crossref]

C. C. Wang and E. T. Kornhauser, “Propagation on modulated corrugated rods,” IRE Microw. Theory Technol. 10(3), 161–165 (1962).
[Crossref]

1961 (1)

J. T. Bolljahn, “Synthesis of modulated corrugated surface-wave structures,” IRE Trans. Antennas Propag. 9(3), 236–241 (1961).
[Crossref]

1960 (1)

C. H. Walter, “Surface-wave Luneberg lens antennas,” IRE Trans. Antennas Propag. 8(5), 508–515 (1960).
[Crossref]

1959 (1)

A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag. 7(5), 201–208 (1959).
[Crossref]

1958 (1)

R. W. Hougardy and R. C. Hansen, “Scanning surface wave antennas-oblique surface waves over a corrugated conductor,” IRE Trans. Antennas Propag. 6(4), 370–376 (1958).
[Crossref]

1954 (1)

R. S. Elliot, “On the theory of corrugated plane surfaces,” IRE Trans. Antennas Propag. 2(2), 71–81 (1954).
[Crossref]

1951 (1)

W. Rotman, “A study of single-surface corrugated guides,” IRE Trans. Antennas Propag. 39(8), 952–959 (1951).

Agrafiotis, S.

Alvarez-Melcon, A.

J. L. Gomez-Tornero, F. Quesada-Pereira, A. Alvarez-Melcon, G. Goussetis, A. Weily, and Y. Guo, “Frequency steerable two dimensional focusing using rectilinear leaky-wave lenses,” IEEE Trans. Antenn. Propag. 59(2), 407–415 (2011).
[Crossref]

Andrews, S. R.

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Antar, Y. M. M.

S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
[Crossref]

Beruete, M.

Blanco, D.

J. L. Gomez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields. Part I: concept, design and analysis theory,” IEEE Trans. Antenn. Propag. 61(7), 3475–3485 (2013).
[Crossref]

Bolljahn, J. T.

J. T. Bolljahn, “Synthesis of modulated corrugated surface-wave structures,” IRE Trans. Antennas Propag. 9(3), 236–241 (1961).
[Crossref]

Bosiljevac, M.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10(1), 1499–1502 (2011).
[Crossref]

Burghignoli, P.

P. Burghignoli, F. Frezza, A. Galli, and G. Schettini, “Synthesis of broadbeam patterns through leaky-wave antennas with rectilinear geometry,” IEEE Antennas Wirel. Propag. Lett. 2(1), 136–139 (2003).
[Crossref]

Caminita, F.

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antenn. Propag. 59(12), 4436–4444 (2011).
[Crossref]

Casaletti, M.

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antenn. Propag. 59(12), 4436–4444 (2011).
[Crossref]

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10(1), 1499–1502 (2011).
[Crossref]

Chai, L.

Chen, Y.

Cheng, Q.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Clemente-Fernández, F.

A. Martínez-Ros, J. Gómez-Tornero, F. Clemente-Fernández, and J. Monzó-Cabrera, “Microwave near-field focusing properties of width-tapered microstrip leaky-wave antenna,” IEEE Trans. Antenn. Propag. 61(6), 2981–2990 (2013).
[Crossref]

Cui, T. J.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

de Abajo, F. J.

F. J. de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[Crossref] [PubMed]

Du, C.-H.

L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
[Crossref] [PubMed]

Durach, M.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

Elliot, R. S.

R. S. Elliot, “On the theory of corrugated plane surfaces,” IRE Trans. Antennas Propag. 2(2), 71–81 (1954).
[Crossref]

Esquius-Morote, M.

M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally-modulated graphene leaky-wave antenna for electronic beam-scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Falcone, F.

Felsen, L. B.

Fernandez-Dominguez, A. I.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).

Fernández-Domínguez, A. I.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

Freundorfer, Al. P.

S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
[Crossref]

Frezza, F.

P. Burghignoli, F. Frezza, A. Galli, and G. Schettini, “Synthesis of broadbeam patterns through leaky-wave antennas with rectilinear geometry,” IEEE Antennas Wirel. Propag. Lett. 2(1), 136–139 (2003).
[Crossref]

Galli, A.

P. Burghignoli, F. Frezza, A. Galli, and G. Schettini, “Synthesis of broadbeam patterns through leaky-wave antennas with rectilinear geometry,” IEEE Antennas Wirel. Propag. Lett. 2(1), 136–139 (2003).
[Crossref]

Gao, X.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Garcia-Vidal, F. J.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Gómez-Díaz, J. S.

M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally-modulated graphene leaky-wave antenna for electronic beam-scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

Gomez-Tornero, J.

J. Gomez-Tornero, A. Weily, and Y. Guo, “Rectilinear leaky-wave antennas with broad beam patterns using hybrid printed-circuit waveguides,” IEEE Trans. Antenn. Propag. 59(11), 3999–4007 (2011).
[Crossref]

Gomez-Tornero, J. L.

A. J. Martinez-Ros, J. L. Gomez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
[Crossref]

J. L. Gomez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields. Part I: concept, design and analysis theory,” IEEE Trans. Antenn. Propag. 61(7), 3475–3485 (2013).
[Crossref]

J. L. Gomez-Tornero, F. Quesada-Pereira, A. Alvarez-Melcon, G. Goussetis, A. Weily, and Y. Guo, “Frequency steerable two dimensional focusing using rectilinear leaky-wave lenses,” IEEE Trans. Antenn. Propag. 59(2), 407–415 (2011).
[Crossref]

Gomez-Tornero, J.-L.

J.-L. Gomez-Tornero, “Unusual tapering of leaky-wave radiators and their applications,” in Proc. 5th Eur. Conf. Antennas Propag. (EUCAP, 2011), pp. 821–824.

Gómez-Tornero, J.

A. Martínez-Ros, J. Gómez-Tornero, F. Clemente-Fernández, and J. Monzó-Cabrera, “Microwave near-field focusing properties of width-tapered microstrip leaky-wave antenna,” IEEE Trans. Antenn. Propag. 61(6), 2981–2990 (2013).
[Crossref]

Gómez-Tornero, J. L.

A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
[Crossref]

Goussetis, G.

A. J. Martinez-Ros, J. L. Gomez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
[Crossref]

J. L. Gomez-Tornero, F. Quesada-Pereira, A. Alvarez-Melcon, G. Goussetis, A. Weily, and Y. Guo, “Frequency steerable two dimensional focusing using rectilinear leaky-wave lenses,” IEEE Trans. Antenn. Propag. 59(2), 407–415 (2011).
[Crossref]

Grbic, A.

A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally modulated reactance surface,” IEEE Trans. Antenn. Propag. 59(6), 2087–2096 (2011).
[Crossref]

Guo, Y.

J. L. Gomez-Tornero, F. Quesada-Pereira, A. Alvarez-Melcon, G. Goussetis, A. Weily, and Y. Guo, “Frequency steerable two dimensional focusing using rectilinear leaky-wave lenses,” IEEE Trans. Antenn. Propag. 59(2), 407–415 (2011).
[Crossref]

J. Gomez-Tornero, A. Weily, and Y. Guo, “Rectilinear leaky-wave antennas with broad beam patterns using hybrid printed-circuit waveguides,” IEEE Trans. Antenn. Propag. 59(11), 3999–4007 (2011).
[Crossref]

Hansen, R. C.

R. W. Hougardy and R. C. Hansen, “Scanning surface wave antennas-oblique surface waves over a corrugated conductor,” IRE Trans. Antennas Propag. 6(4), 370–376 (1958).
[Crossref]

Hessel, A.

A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag. 7(5), 201–208 (1959).
[Crossref]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Hou, J.

J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

Hougardy, R. W.

R. W. Hougardy and R. C. Hansen, “Scanning surface wave antennas-oblique surface waves over a corrugated conductor,” IRE Trans. Antennas Propag. 6(4), 370–376 (1958).
[Crossref]

Hu, M.

Huang, C.-P.

L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
[Crossref] [PubMed]

Jiang, T.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Jiang, W. X.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Kong, L.-B.

L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
[Crossref] [PubMed]

Kornhauser, E. T.

C. C. Wang and E. T. Kornhauser, “Propagation on modulated corrugated rods,” IRE Microw. Theory Technol. 10(3), 161–165 (1962).
[Crossref]

Li, L.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Li, Y.

Liao, Z.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Liu, P.-K.

L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
[Crossref] [PubMed]

Llombart, N.

J. L. Gomez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields. Part I: concept, design and analysis theory,” IEEE Trans. Antenn. Propag. 61(7), 3475–3485 (2013).
[Crossref]

Lo, W. C.

J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[Crossref] [PubMed]

Losada, V.

A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
[Crossref]

Luo, Y.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

Ma, H. F.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Maci, S.

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antenn. Propag. 59(12), 4436–4444 (2011).
[Crossref]

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10(1), 1499–1502 (2011).
[Crossref]

Maier, S. A.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[Crossref] [PubMed]

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Martin-Cano, D.

Martinez-Ros, A. J.

A. J. Martinez-Ros, J. L. Gomez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
[Crossref]

Martínez-Ros, A.

A. Martínez-Ros, J. Gómez-Tornero, F. Clemente-Fernández, and J. Monzó-Cabrera, “Microwave near-field focusing properties of width-tapered microstrip leaky-wave antenna,” IEEE Trans. Antenn. Propag. 61(6), 2981–2990 (2013).
[Crossref]

Martínez-Ros, A. J.

A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
[Crossref]

Martin-Moreno, L.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).

Martín-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Matekovits, L.

S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
[Crossref]

Medina, F.

A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
[Crossref]

Mesa, F.

A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
[Crossref]

Minatti, G.

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antenn. Propag. 59(12), 4436–4444 (2011).
[Crossref]

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10(1), 1499–1502 (2011).
[Crossref]

Monzó-Cabrera, J.

A. Martínez-Ros, J. Gómez-Tornero, F. Clemente-Fernández, and J. Monzó-Cabrera, “Microwave near-field focusing properties of width-tapered microstrip leaky-wave antenna,” IEEE Trans. Antenn. Propag. 61(6), 2981–2990 (2013).
[Crossref]

Moreno, E.

Navarro-Cía, M.

Nesterov, M. L.

Ohtera, I.

I. Ohtera, “Focusing properties of a microwave radiator utilizing a slotted rectangular waveguide,” IEEE Trans. Antenn. Propag. 38(1), 12–124 (1990).
[Crossref]

Oliner, A. A.

A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag. 7(5), 201–208 (1959).
[Crossref]

Orefice, M.

S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
[Crossref]

Pan, B. C.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Panaretos, A. H.

Patel, A. M.

A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally modulated reactance surface,” IEEE Trans. Antenn. Propag. 59(6), 2087–2096 (2011).
[Crossref]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Perruisseau-Carrier, J.

M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally-modulated graphene leaky-wave antenna for electronic beam-scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

Podilchak, S. K.

S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
[Crossref]

Quesada-Pereira, F.

J. L. Gomez-Tornero, F. Quesada-Pereira, A. Alvarez-Melcon, G. Goussetis, A. Weily, and Y. Guo, “Frequency steerable two dimensional focusing using rectilinear leaky-wave lenses,” IEEE Trans. Antenn. Propag. 59(2), 407–415 (2011).
[Crossref]

Rajo-Iglesias, E.

J. L. Gomez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields. Part I: concept, design and analysis theory,” IEEE Trans. Antenn. Propag. 61(7), 3475–3485 (2013).
[Crossref]

Ran, L.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Ren, J.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

Rotman, W.

W. Rotman, “A study of single-surface corrugated guides,” IRE Trans. Antennas Propag. 39(8), 952–959 (1951).

Ruan, Z.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Rusina, A.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

Sáenz, J. J.

F. J. de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[Crossref] [PubMed]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Schettini, G.

P. Burghignoli, F. Frezza, A. Galli, and G. Schettini, “Synthesis of broadbeam patterns through leaky-wave antennas with rectilinear geometry,” IEEE Antennas Wirel. Propag. Lett. 2(1), 136–139 (2003).
[Crossref]

Shen, J. Q.

J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

Shen, L.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Shen, X.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Sherman, J. W.

J. W. Sherman, “Properties of focused apertures in the Fresnel region,” IRE Trans. Antennas Propag. 10(4), 399–408 (1962).
[Crossref]

Shi, J. H.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Song, Z.

Sorolla, M.

Stockman, M. I.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

Walter, C. H.

C. H. Walter, “Surface-wave Luneberg lens antennas,” IRE Trans. Antennas Propag. 8(5), 508–515 (1960).
[Crossref]

Wang, C. C.

C. C. Wang and E. T. Kornhauser, “Propagation on modulated corrugated rods,” IRE Microw. Theory Technol. 10(3), 161–165 (1962).
[Crossref]

Wang, C. Y.

Weily, A.

J. L. Gomez-Tornero, F. Quesada-Pereira, A. Alvarez-Melcon, G. Goussetis, A. Weily, and Y. Guo, “Frequency steerable two dimensional focusing using rectilinear leaky-wave lenses,” IEEE Trans. Antenn. Propag. 59(2), 407–415 (2011).
[Crossref]

J. Gomez-Tornero, A. Weily, and Y. Guo, “Rectilinear leaky-wave antennas with broad beam patterns using hybrid printed-circuit waveguides,” IEEE Trans. Antenn. Propag. 59(11), 3999–4007 (2011).
[Crossref]

Werner, D. H.

Wu, C. J.

J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

Wu, J. J.

J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Xing, Q.

Yang, T. J.

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Yin, J. Y.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

Yin, X.-G.

L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
[Crossref] [PubMed]

Zhang, H. C.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

Zhang, Z.

Zhao, J.

Appl. Phys. Lett. (3)

T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys., A Mater. Sci. Process. 100(2), 375–378 (2010).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10(1), 1499–1502 (2011).
[Crossref]

P. Burghignoli, F. Frezza, A. Galli, and G. Schettini, “Synthesis of broadbeam patterns through leaky-wave antennas with rectilinear geometry,” IEEE Antennas Wirel. Propag. Lett. 2(1), 136–139 (2003).
[Crossref]

IEEE Trans. Antenn. Propag. (11)

J. L. Gomez-Tornero, F. Quesada-Pereira, A. Alvarez-Melcon, G. Goussetis, A. Weily, and Y. Guo, “Frequency steerable two dimensional focusing using rectilinear leaky-wave lenses,” IEEE Trans. Antenn. Propag. 59(2), 407–415 (2011).
[Crossref]

J. Gomez-Tornero, A. Weily, and Y. Guo, “Rectilinear leaky-wave antennas with broad beam patterns using hybrid printed-circuit waveguides,” IEEE Trans. Antenn. Propag. 59(11), 3999–4007 (2011).
[Crossref]

A. J. Martinez-Ros, J. L. Gomez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
[Crossref]

S. K. Podilchak, L. Matekovits, Al. P. Freundorfer, Y. M. M. Antar, and M. Orefice, “Controlled leaky wave radiation from a planar configuration of width-modulated microstrip lines,” IEEE Trans. Antenn. Propag. 61(10), 4957–4972 (2013).
[Crossref]

A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally modulated reactance surface,” IEEE Trans. Antenn. Propag. 59(6), 2087–2096 (2011).
[Crossref]

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral leaky-wave antennas based on modulated surface impedance,” IEEE Trans. Antenn. Propag. 59(12), 4436–4444 (2011).
[Crossref]

A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE Trans. Antenn. Propag. 14(6), 1515–1521 (2008).

A. Martínez-Ros, J. Gómez-Tornero, F. Clemente-Fernández, and J. Monzó-Cabrera, “Microwave near-field focusing properties of width-tapered microstrip leaky-wave antenna,” IEEE Trans. Antenn. Propag. 61(6), 2981–2990 (2013).
[Crossref]

J. L. Gomez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields. Part I: concept, design and analysis theory,” IEEE Trans. Antenn. Propag. 61(7), 3475–3485 (2013).
[Crossref]

A. J. Martínez-Ros, J. L. Gómez-Tornero, V. Losada, F. Mesa, and F. Medina, “Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis,” IEEE Trans. Antenn. Propag. 63(3), 1022–1031 (2015).
[Crossref]

I. Ohtera, “Focusing properties of a microwave radiator utilizing a slotted rectangular waveguide,” IEEE Trans. Antenn. Propag. 38(1), 12–124 (1990).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

M. Esquius-Morote, J. S. Gómez-Díaz, and J. Perruisseau-Carrier, “Sinusoidally-modulated graphene leaky-wave antenna for electronic beam-scanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

IRE Microw. Theory Technol. (1)

C. C. Wang and E. T. Kornhauser, “Propagation on modulated corrugated rods,” IRE Microw. Theory Technol. 10(3), 161–165 (1962).
[Crossref]

IRE Trans. Antennas Propag. (7)

W. Rotman, “A study of single-surface corrugated guides,” IRE Trans. Antennas Propag. 39(8), 952–959 (1951).

R. S. Elliot, “On the theory of corrugated plane surfaces,” IRE Trans. Antennas Propag. 2(2), 71–81 (1954).
[Crossref]

R. W. Hougardy and R. C. Hansen, “Scanning surface wave antennas-oblique surface waves over a corrugated conductor,” IRE Trans. Antennas Propag. 6(4), 370–376 (1958).
[Crossref]

C. H. Walter, “Surface-wave Luneberg lens antennas,” IRE Trans. Antennas Propag. 8(5), 508–515 (1960).
[Crossref]

J. T. Bolljahn, “Synthesis of modulated corrugated surface-wave structures,” IRE Trans. Antennas Propag. 9(3), 236–241 (1961).
[Crossref]

A. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag. 7(5), 201–208 (1959).
[Crossref]

J. W. Sherman, “Properties of focused apertures in the Fresnel region,” IRE Trans. Antennas Propag. 10(4), 399–408 (1962).
[Crossref]

J. Opt. A (1)

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Opt. Express (5)

Phys. Rev. Lett. (3)

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[Crossref] [PubMed]

F. J. de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[Crossref] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Sci. Rep. (4)

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

L.-B. Kong, C.-P. Huang, C.-H. Du, P.-K. Liu, and X.-G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5, 8772 (2015).
[Crossref] [PubMed]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure,” Sci. Rep. 5, 8165 (2015).
[Crossref] [PubMed]

J. J. Wu, C. J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

Science (2)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Other (5)

C. H. Walter, Travelling Wave Antennas (McGRaw-Hill, 1965).

C. C. Cutler, Electromagnetic Waves Guided by Corrugated Conducting Surfaces (Bell Telephone Lab, 1944).

J.-L. Gomez-Tornero, “Unusual tapering of leaky-wave radiators and their applications,” in Proc. 5th Eur. Conf. Antennas Propag. (EUCAP, 2011), pp. 821–824.

A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook, 4th ed., J. L. Volakis, ed. (McGraw-Hill, 2007).

R. F. Harrington, Time-Harmonic Electormagnetic Fields (Wiley-IEEE, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Planar corrugated surface. (b) Normalized input impedance of a corrugated surface with T = 0.5 mm and G + T = 2 mm at 9 GHz as a function of tooth length. (c) Transverse wavenumber along the corrugated surface from (b) as a function of tooth length.
Fig. 2
Fig. 2 Dispersion properties of three different realizations of a sinusoidally modulated reactance surface. (a) Propagation constant associated with the n = −1 Floquet mode. (b) Attenuation factor.
Fig. 3
Fig. 3 2D aperture antenna exhibiting focusing radiation properties.
Fig. 4
Fig. 4 Dispersion properties of a SMRS at 9 GHz with p = 30 mm as a function of the modulation factor M and the normalized mean reactance Xu/Z0. (a) Propagation constant of the n = −1 Floquet mode. (b) Attenuation factor.
Fig. 5
Fig. 5 (a) Propagation constant and attenuation factor variation along the LWL. (b) Radiating angle variation of the leaky wave mode along the LWL. (c) Ray-optics representation of the LWL radiation and focusing effect.
Fig. 6
Fig. 6 (a) Non-uniform reactance profile along the lens. WG denotes a non-radiating waveguide section. LWA denotes a uniform leaky wave antenna section. LWL denotes the actual leaky wave lens. (b) Teeth length variation along the lens system.
Fig. 7
Fig. 7 (a) CAD model of the computational domain defined to full wave simulate the lens performance. (b) Detailed view of Port #1. (c) Detailed view of Port #2.
Fig. 8
Fig. 8 (a) Electric field distribution. (b) Distribution of the complex magnitude of the electric field. (c) Complex amplitude of the electric field along a horizontal cut that crosses through the focal point. (d) Complex amplitude of the electric field along a vertical cut that crosses through the focal point. (e) Reflection and Transmission performance. (f) Normalized far-field intensity.
Fig. 9
Fig. 9 (a) Electric field distribution. (b) Distribution of the complex magnitude of the electric field. (c) Complex amplitude of the electric field along a horizontal cut that crosses through the focal point. (d) Complex amplitude of the electric field along a vertical cut that crosses through the focal point. (e) Reflection and Transmission performance. (f) Normalized far-field intensity.
Fig. 10
Fig. 10 (a) Ray-optics representation of the radiation produced by the LWL and LWA sections. (b) Propagation constant and attenuation factor variation along the LWL and LWA sections. (c) Current amplitude along the LWL and LWA sections. (d) Current phase along the LWL and LWA sections.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Z = E y H x =j Z 0 G G+T tan( k 0 l )=j X s
Z + Z =0j Z 0 G G+T tan( k 0 l )+ k z ω ε 0 =0
Z(y)=j X u [ 1+Msin( 2πy p ) ]
D(n,0) 1 D(n,+1) 1 D(n,+2) 1 D(n,1) 1 D(n,2) =0
D(n,m) 2 M [ 1 j X u 1 ( γ k 0 + 2π(nm) k 0 p ) 2 ]
κ= β u + 2πn p jα= β n jα
k 0 sin( θ s )= β u + 2nπ p
K(y)=| K(y) | e jψ( y )
γ( y )=β( y )jα( y )
ψ( y )= 0 y β( y )d y β( y )= dψ( y ) dy
sinθ(y)= β( y ) k 0 = y F y ( y F y ) 2 + z F 2
α(y)= 1 2 | K(y) | 2 1 η 0 L | K( y ) | 2 d y 0 y | K( y ) | 2 d y
| K(y) |= 1 [ ( y F y ) 2 + z F 2 ] 1 4 = 1 ρ
α(y)= 1 2ρ [ ( 1 η 1 )sin h 1 ( y F z F )+ 1 η sin h 1 ( L y F z F )sin h 1 ( y y F z F ) ] 1
Z(y)=j X u (y)[ 1+M(y)sin( 2πy p ) ]
U( θ )=G( θ ) 0 L | K( y ) | e jψ( y ) e jk y sin( θ ) d y
| K( y ) | 2 =α( y ) e 2 0 y α( y )d y

Metrics