Abstract

We report for the first time on tapering inhibited coupling (IC) hypocycloid-core shape Kagome hollow-core photonic crystal fibers whilst maintaining their delicate core-contour negative curvature with a down-ratio as large as 2.4. The transmission loss of down-tapered sections reaches a figure as low as 0.07 dB at 1550 nm. The tapered IC fibers are also spliced to standard SMF with a total insertion loss of 0.48 dB. These results show that all-fiber photonic microcells with the ultra-low loss hypocycloid core-contour Kagome fibers is now possible.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y.Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid
Opt. Express 21(23) 28597-28608 (2013)

Pressure-assisted low-loss fusion splicing between photonic crystal fiber and single-mode fiber

Tao Zhu, Fufeng Xiao, Laicai Xu, Min Liu, Ming Deng, and Kin Seng Chiang
Opt. Express 20(22) 24465-24471 (2012)

Modal content in hypocycloid Kagomé hollow core photonic crystal fibers

Thomas D. Bradley, Natalie V. Wheeler, Gregory T. Jasion, David Gray, John Hayes, Marcelo Alonso Gouveia, Seyed R. Sandoghchi, Yong Chen, Francesco Poletti, David Richardson, and Marco Petrovich
Opt. Express 24(14) 15798-15812 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  2. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. adiabaticity criteria,” IEEE Proc. J: Optoelectron. 138(5), 343–354 (1991).
  3. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010), paper CPDB4.
    [Crossref]
  4. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
    [Crossref] [PubMed]
  5. T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gérôme, and F. Benabid, “Optical properties of low loss (70dB/km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31(16), 3052–3055 (2013).
    [Crossref]
  6. B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39(21), 6245–6248 (2014).
    [Crossref] [PubMed]
  7. M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: Cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
    [Crossref] [PubMed]
  8. A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
    [Crossref]
  9. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  10. F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
    [Crossref]
  11. X. M. Zheng, B. Debord, M. Albarbi, L. Vincetti, F. Gerome, and F. Benabid, “Splicing tapered inhibited-coupling hypocycloid-core Kagome fiber to SMF fibers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2015), paper STu1N.1.
  12. N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35(11), 1875–1877 (2010).
    [Crossref] [PubMed]
  13. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
    [Crossref]
  14. L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Opt. Commun. 283(6), 979–984 (2010).
    [Crossref]

2014 (1)

2013 (3)

2012 (2)

2011 (1)

F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

2010 (2)

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

1992 (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. adiabaticity criteria,” IEEE Proc. J: Optoelectron. 138(5), 343–354 (1991).

Alharbi, M.

B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39(21), 6245–6248 (2014).
[Crossref] [PubMed]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: Cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref] [PubMed]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gérôme, and F. Benabid, “Optical properties of low loss (70dB/km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31(16), 3052–3055 (2013).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

Baumgart, B.

Beaudou, B.

Benabid, F.

B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39(21), 6245–6248 (2014).
[Crossref] [PubMed]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gérôme, and F. Benabid, “Optical properties of low loss (70dB/km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31(16), 3052–3055 (2013).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[Crossref] [PubMed]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: Cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35(11), 1875–1877 (2010).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Benoît, A.

Birks, T. A.

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. adiabaticity criteria,” IEEE Proc. J: Optoelectron. 138(5), 343–354 (1991).

Blondy, J.-M.

Bradley, T.

Bradley, T. D.

Campbell, N.

Corwin, K. L.

Couny, F.

N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35(11), 1875–1877 (2010).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Dadashzadeh, N.

Debord, B.

Dontabactouny, M.

Fourcade-Dutin, C.

Gérôme, F.

Ghosh, D.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. adiabaticity criteria,” IEEE Proc. J: Optoelectron. 138(5), 343–354 (1991).

Grogan, M. D. W.

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. adiabaticity criteria,” IEEE Proc. J: Optoelectron. 138(5), 343–354 (1991).

Jones, A. M.

Knight, J. C.

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. adiabaticity criteria,” IEEE Proc. J: Optoelectron. 138(5), 343–354 (1991).

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

Light, P. S.

N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35(11), 1875–1877 (2010).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. adiabaticity criteria,” IEEE Proc. J: Optoelectron. 138(5), 343–354 (1991).

Mao, C.

Nampoothiri, A. V. V.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Roberts, J. P.

F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Rudolph, W.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. adiabaticity criteria,” IEEE Proc. J: Optoelectron. 138(5), 343–354 (1991).

Vincetti, L.

Wadsworth, W. J.

Wang, Y.

Wang, Y. Y.

Washburn, B. R.

Wheeler, N. V.

Yu, F.

IEEE Proc. J: Optoelectron. (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. adiabaticity criteria,” IEEE Proc. J: Optoelectron. 138(5), 343–354 (1991).

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

Opt. Commun. (1)

L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Opt. Commun. 283(6), 979–984 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Science (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Other (2)

X. M. Zheng, B. Debord, M. Albarbi, L. Vincetti, F. Gerome, and F. Benabid, “Splicing tapered inhibited-coupling hypocycloid-core Kagome fiber to SMF fibers,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2015), paper STu1N.1.

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010), paper CPDB4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Experimental evolution of the taper section of fiber with length; (b) Cross section of un-tapered and (c) tapered IC Kagome HC-PCF fiber at the waist region with an outer (inner) diameter respectively of 300 µm (63.4 µm, MFD of 42.7 µm) and 125 μm (26.4 µm, MFD of 17.7 µm). In inset: zoom in of the core-contour showing the preservation of the curvature shape before and after the tapering. A definition of d and r is given to deduce the b parameter.
Fig. 2
Fig. 2 Measured transmission spectra of 3 m long HC-PCF with a tapered section from an outer-diameter of 300 µm to 200 µm with a full length of 4 cm (TL = 15 mm and waist section length of 10 mm) (blue curve) and of the cut-back at the start of the tapered section (red curve). Full taper loss spectrum (brown curve).
Fig. 3
Fig. 3 (a) Evolution of the loss at 1550 nm of several independent whole tapered fibers for three different DR (300 µm to 200 µm: green line, 300 µm to 150 µm: blue line and 300 µm to 125 µm: red line) and for different TL (5 mm, 10 mm, 15 mm and 20 mm) and (b) for only the down-tapered fiber section; (c) Evolution of the near field for two tapers differentiated by different TL, referred by 1 (TL = 5 mm and DR = 300/125) and 2 (TL = 20 mm and DR = 300/125) recorded by launching 1550 nm laser source.
Fig. 4
Fig. 4 Show the measured splicing transmission spectrum of tapered Kagome-SMF (blue line), the cutback (red line) and the insertion loss spectrum (black line) for the two sides launching. (a) Light is injected from 300 µm-OD Kagome section by a SMF; (b) Light is injected from SMF to the 125 µm-OD Kagomé section. In inset the images of the splice are shown.

Metrics