Abstract

The ever increasing demand for bandwidth in wireless communication systems will inevitably lead to the extension of operating frequencies toward the terahertz (THz) band known as the ‘THz gap’. Towards closing this gap, we present a multi-level amplitude shift keying (ASK) terahertz wireless communication system using terahertz spatial light modulators (SLM) instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. The fundamental principle behind this higher efficiency is the conversion of a noisy voltage domain signal to a noise-free binary spatial pattern for effective amplitude modulation of a free-space THz carrier wave. Spatial modulation is achieved using an an active metamaterial array embedded with pseudomorphic high-electron mobility (pHEMT) designed in a consumer-grade galium-arsenide (GaAs) integrated circuit process which enables electronic control of its THz transmissivity. Each array is assembled as individually controllable tiles for transmissive terahertz spatial modulation. Using the experimental data from our metamaterial based modulator, we show that a four-level ASK digital communication system has two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR) using spatial light modulation compared to voltage controlled modulation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High speed terahertz modulation from metamaterials with embedded high electron mobility transistors

David Shrekenhamer, Saroj Rout, Andrew C. Strikwerda, Chris Bingham, Richard D. Averitt, Sameer Sonkusale, and Willie J. Padilla
Opt. Express 19(10) 9968-9975 (2011)

High performance metamaterials-high electron mobility transistors integrated terahertz modulator

Zhen Zhou, Siqi Wang, Yue Yu, Yongli Chen, and Lishuang Feng
Opt. Express 25(15) 17832-17840 (2017)

Polarization-independent active metamaterial for high-frequency terahertz modulation

Oliver Paul, Christian Imhof, Bert Lägel, Sandra Wolff, Jan Heinrich, Sven Höfling, Alfred Forchel, Remigius Zengerle, René Beigang, and Marco Rahm
Opt. Express 17(2) 819-827 (2009)

References

  • View by:
  • |
  • |
  • |

  1. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahz. Waves 32, 143–171 (2011).
    [Crossref]
  2. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Mag. Antennas Propag. 49, 24–39 (2007).
    [Crossref]
  3. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).
    [Crossref]
  4. G. P. Williams, “Filling the THz gap – high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
    [Crossref]
  5. W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE J. Photonics 1, 99–118 (2009).
    [Crossref]
  6. T. M. Korter and D. F. Plusquellic, “Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared,” Chem. Phys. Lett. 385, 45–51 (2004).
    [Crossref]
  7. N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
    [Crossref]
  8. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003).
    [Crossref] [PubMed]
  9. R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Investigative Dermatology 120, 72–78 (2003).
    [Crossref]
  10. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
    [Crossref]
  11. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
    [Crossref] [PubMed]
  12. D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19, 9968–9975 (2011).
    [Crossref] [PubMed]
  13. H. Haas and S. McLaughlin, Next Generation Mobile Access Technologies: Implementing TDD (Cambridge University, 2007).
  14. D. Schurig, J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
    [Crossref]
  15. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
    [Crossref]
  16. B. J. Arritt, D. R. Smith, and T. Khraishi, “Equivalent circuit analysis of metamaterial strain-dependent effective medium parameters,” J. Appl. Phys. 109, 073512 (2011).
    [Crossref]
  17. R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606 (2007).
    [Crossref]
  18. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  19. E. Batke and D. Heitmann, “Rapid-scan fourier transform spectroscopy of 2-D space charge layers in semiconductors,” Infrared Phys. 24, 189–197 (1984).
    [Crossref]
  20. P.-C. Chao, M. Shur, R. Tiberio, K. Duh, P. Smith, J. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1-um gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).
    [Crossref]
  21. Toptica Terascan 1550, http://www.toptica.com
  22. A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Gusten, and M. Gruninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
    [Crossref]
  23. L. Couch, Digital & Analog Communication Systems (Pearson Education, 2008).
  24. M. C. Jeruchim, “Techniques for estimating the bit error rate in the simulation of digital communication systems,” IEEE J. Selected Areas in Commun. 2, 153–170 (1984).
    [Crossref]
  25. H. Chen, L. Ran, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 024915 (2006).
    [Crossref]
  26. J. Wang, S. Qu, Z. Xu, J. Zhang, H. Ma, Y. Yang, and C. Gu, “Broadband planar left-handed metamaterials using split-ring resonator pairs,” Photonics and Nanostructures - Fundamentals and Applications 7, 108–113 (2009).
    [Crossref]
  27. J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
    [Crossref]
  28. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
    [Crossref] [PubMed]
  29. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
    [Crossref]
  30. P. J. Burke, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “High frequency conductivity of the high-mobility two-dimensional electron gas,” Appl. Phys. Lett. 76, 745 (2000).
    [Crossref]
  31. T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits” (Cambridge University, 2004).

2011 (3)

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahz. Waves 32, 143–171 (2011).
[Crossref]

B. J. Arritt, D. R. Smith, and T. Khraishi, “Equivalent circuit analysis of metamaterial strain-dependent effective medium parameters,” J. Appl. Phys. 109, 073512 (2011).
[Crossref]

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19, 9968–9975 (2011).
[Crossref] [PubMed]

2010 (2)

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Gusten, and M. Gruninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).
[Crossref]

2009 (3)

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE J. Photonics 1, 99–118 (2009).
[Crossref]

J. Wang, S. Qu, Z. Xu, J. Zhang, H. Ma, Y. Yang, and C. Gu, “Broadband planar left-handed metamaterials using split-ring resonator pairs,” Photonics and Nanostructures - Fundamentals and Applications 7, 108–113 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

2007 (3)

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606 (2007).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Mag. Antennas Propag. 49, 24–39 (2007).
[Crossref]

2006 (4)

G. P. Williams, “Filling the THz gap – high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
[Crossref]

D. Schurig, J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

H. Chen, L. Ran, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 024915 (2006).
[Crossref]

2005 (2)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[Crossref]

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

2004 (1)

T. M. Korter and D. F. Plusquellic, “Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared,” Chem. Phys. Lett. 385, 45–51 (2004).
[Crossref]

2003 (2)

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003).
[Crossref] [PubMed]

R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Investigative Dermatology 120, 72–78 (2003).
[Crossref]

2000 (2)

P. J. Burke, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “High frequency conductivity of the high-mobility two-dimensional electron gas,” Appl. Phys. Lett. 76, 745 (2000).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

1999 (1)

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

1989 (1)

P.-C. Chao, M. Shur, R. Tiberio, K. Duh, P. Smith, J. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1-um gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).
[Crossref]

1984 (2)

E. Batke and D. Heitmann, “Rapid-scan fourier transform spectroscopy of 2-D space charge layers in semiconductors,” Infrared Phys. 24, 189–197 (1984).
[Crossref]

M. C. Jeruchim, “Techniques for estimating the bit error rate in the simulation of digital communication systems,” IEEE J. Selected Areas in Commun. 2, 153–170 (1984).
[Crossref]

Abbott, D.

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE J. Photonics 1, 99–118 (2009).
[Crossref]

Arnone, D. D.

R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Investigative Dermatology 120, 72–78 (2003).
[Crossref]

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

Arritt, B. J.

B. J. Arritt, D. R. Smith, and T. Khraishi, “Equivalent circuit analysis of metamaterial strain-dependent effective medium parameters,” J. Appl. Phys. 109, 073512 (2011).
[Crossref]

Averitt, R. D.

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19, 9968–9975 (2011).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

Ballingall, J.

P.-C. Chao, M. Shur, R. Tiberio, K. Duh, P. Smith, J. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1-um gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).
[Crossref]

Batke, E.

E. Batke and D. Heitmann, “Rapid-scan fourier transform spectroscopy of 2-D space charge layers in semiconductors,” Infrared Phys. 24, 189–197 (1984).
[Crossref]

Bingham, C.

Burke, P. J.

P. J. Burke, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “High frequency conductivity of the high-mobility two-dimensional electron gas,” Appl. Phys. Lett. 76, 745 (2000).
[Crossref]

Chao, P.-C.

P.-C. Chao, M. Shur, R. Tiberio, K. Duh, P. Smith, J. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1-um gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).
[Crossref]

Chen, H.

H. Chen, L. Ran, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 024915 (2006).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

Cole, B. E.

R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Investigative Dermatology 120, 72–78 (2003).
[Crossref]

Couch, L.

L. Couch, Digital & Analog Communication Systems (Pearson Education, 2008).

Cui, T. J.

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606 (2007).
[Crossref]

Deninger, A.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Gusten, and M. Gruninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Duh, K.

P.-C. Chao, M. Shur, R. Tiberio, K. Duh, P. Smith, J. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1-um gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).
[Crossref]

Eisenstein, J. P.

P. J. Burke, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “High frequency conductivity of the high-mobility two-dimensional electron gas,” Appl. Phys. Lett. 76, 745 (2000).
[Crossref]

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).
[Crossref]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Gruninger, M.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Gusten, and M. Gruninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Grzegorczyk, T. M.

H. Chen, L. Ran, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 024915 (2006).
[Crossref]

Gu, C.

J. Wang, S. Qu, Z. Xu, J. Zhang, H. Ma, Y. Yang, and C. Gu, “Broadband planar left-handed metamaterials using split-ring resonator pairs,” Photonics and Nanostructures - Fundamentals and Applications 7, 108–113 (2009).
[Crossref]

Gusten, R.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Gusten, and M. Gruninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Haas, H.

H. Haas and S. McLaughlin, Next Generation Mobile Access Technologies: Implementing TDD (Cambridge University, 2007).

Heitmann, D.

E. Batke and D. Heitmann, “Rapid-scan fourier transform spectroscopy of 2-D space charge layers in semiconductors,” Infrared Phys. 24, 189–197 (1984).
[Crossref]

Hemberger, J.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Gusten, and M. Gruninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

Ho, P.

P.-C. Chao, M. Shur, R. Tiberio, K. Duh, P. Smith, J. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1-um gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).
[Crossref]

Holden, A.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Huang, D.

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606 (2007).
[Crossref]

Huangfu, J.

H. Chen, L. Ran, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 024915 (2006).
[Crossref]

Hwang, J.-S.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Inoue, H.

Jabra, A.

P.-C. Chao, M. Shur, R. Tiberio, K. Duh, P. Smith, J. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1-um gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Jeruchim, M. C.

M. C. Jeruchim, “Techniques for estimating the bit error rate in the simulation of digital communication systems,” IEEE J. Selected Areas in Commun. 2, 153–170 (1984).
[Crossref]

Karpowicz, N.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Kawase, K.

Khraishi, T.

B. J. Arritt, D. R. Smith, and T. Khraishi, “Equivalent circuit analysis of metamaterial strain-dependent effective medium parameters,” J. Appl. Phys. 109, 073512 (2011).
[Crossref]

Kleine-Ostmann, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahz. Waves 32, 143–171 (2011).
[Crossref]

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Mag. Antennas Propag. 49, 24–39 (2007).
[Crossref]

Koch, M.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Mag. Antennas Propag. 49, 24–39 (2007).
[Crossref]

Kong, J. A.

H. Chen, L. Ran, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 024915 (2006).
[Crossref]

Korter, T. M.

T. M. Korter and D. F. Plusquellic, “Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared,” Chem. Phys. Lett. 385, 45–51 (2004).
[Crossref]

Krumbholz, N.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Mag. Antennas Propag. 49, 24–39 (2007).
[Crossref]

Kurner, T.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Mag. Antennas Propag. 49, 24–39 (2007).
[Crossref]

Lee, M.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

Lee, T. H.

T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits” (Cambridge University, 2004).

Lin, K.-I.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Linfield, E. H.

R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Investigative Dermatology 120, 72–78 (2003).
[Crossref]

Liu, R.

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606 (2007).
[Crossref]

Ma, H.

J. Wang, S. Qu, Z. Xu, J. Zhang, H. Ma, Y. Yang, and C. Gu, “Broadband planar left-handed metamaterials using split-ring resonator pairs,” Photonics and Nanostructures - Fundamentals and Applications 7, 108–113 (2009).
[Crossref]

Mayorga, I. C.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Gusten, and M. Gruninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

McLaughlin, S.

H. Haas and S. McLaughlin, Next Generation Mobile Access Technologies: Implementing TDD (Cambridge University, 2007).

Mittleman, D.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Mag. Antennas Propag. 49, 24–39 (2007).
[Crossref]

Mock, J.

D. Schurig, J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
[Crossref]

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).
[Crossref]

Nagatsuma, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahz. Waves 32, 143–171 (2011).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Ogawa, Y.

Padilla, W. J.

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19, 9968–9975 (2011).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Pendry, J.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Pepper, M.

R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Investigative Dermatology 120, 72–78 (2003).
[Crossref]

Pfeiffer, L. N.

P. J. Burke, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “High frequency conductivity of the high-mobility two-dimensional electron gas,” Appl. Phys. Lett. 76, 745 (2000).
[Crossref]

Piesiewicz, R.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Mag. Antennas Propag. 49, 24–39 (2007).
[Crossref]

Plusquellic, D. F.

T. M. Korter and D. F. Plusquellic, “Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared,” Chem. Phys. Lett. 385, 45–51 (2004).
[Crossref]

Pye, R. J.

R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Investigative Dermatology 120, 72–78 (2003).
[Crossref]

Qu, S.

J. Wang, S. Qu, Z. Xu, J. Zhang, H. Ma, Y. Yang, and C. Gu, “Broadband planar left-handed metamaterials using split-ring resonator pairs,” Photonics and Nanostructures - Fundamentals and Applications 7, 108–113 (2009).
[Crossref]

Ramakrishna, S. A.

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[Crossref]

Ran, L.

H. Chen, L. Ran, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 024915 (2006).
[Crossref]

Robbins, D.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Roggenbuck, A.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Gusten, and M. Gruninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Rout, S.

Schmitz, H.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Gusten, and M. Gruninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Schoebel, J.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Mag. Antennas Propag. 49, 24–39 (2007).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
[Crossref]

Shrekenhamer, D.

Shur, M.

P.-C. Chao, M. Shur, R. Tiberio, K. Duh, P. Smith, J. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1-um gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).
[Crossref]

Smith, D. R.

B. J. Arritt, D. R. Smith, and T. Khraishi, “Equivalent circuit analysis of metamaterial strain-dependent effective medium parameters,” J. Appl. Phys. 109, 073512 (2011).
[Crossref]

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606 (2007).
[Crossref]

D. Schurig, J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Smith, P.

P.-C. Chao, M. Shur, R. Tiberio, K. Duh, P. Smith, J. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1-um gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).
[Crossref]

Sonkusale, S.

Spielman, I. B.

P. J. Burke, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “High frequency conductivity of the high-mobility two-dimensional electron gas,” Appl. Phys. Lett. 76, 745 (2000).
[Crossref]

Stewart, W.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Strikwerda, A. C.

Taylor, A. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Tiberio, R.

P.-C. Chao, M. Shur, R. Tiberio, K. Duh, P. Smith, J. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1-um gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Wallace, V. P.

R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Investigative Dermatology 120, 72–78 (2003).
[Crossref]

Wang, J.

J. Wang, S. Qu, Z. Xu, J. Zhang, H. Ma, Y. Yang, and C. Gu, “Broadband planar left-handed metamaterials using split-ring resonator pairs,” Photonics and Nanostructures - Fundamentals and Applications 7, 108–113 (2009).
[Crossref]

Watanabe, Y.

West, K. W.

P. J. Burke, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “High frequency conductivity of the high-mobility two-dimensional electron gas,” Appl. Phys. Lett. 76, 745 (2000).
[Crossref]

Williams, G. P.

G. P. Williams, “Filling the THz gap – high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
[Crossref]

Withayachumnankul, W.

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE J. Photonics 1, 99–118 (2009).
[Crossref]

Woodward, R. M.

R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Investigative Dermatology 120, 72–78 (2003).
[Crossref]

Xu, J.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Xu, Z.

J. Wang, S. Qu, Z. Xu, J. Zhang, H. Ma, Y. Yang, and C. Gu, “Broadband planar left-handed metamaterials using split-ring resonator pairs,” Photonics and Nanostructures - Fundamentals and Applications 7, 108–113 (2009).
[Crossref]

Yang, Y.

J. Wang, S. Qu, Z. Xu, J. Zhang, H. Ma, Y. Yang, and C. Gu, “Broadband planar left-handed metamaterials using split-ring resonator pairs,” Photonics and Nanostructures - Fundamentals and Applications 7, 108–113 (2009).
[Crossref]

Zhang, C.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Zhang, J.

J. Wang, S. Qu, Z. Xu, J. Zhang, H. Ma, Y. Yang, and C. Gu, “Broadband planar left-handed metamaterials using split-ring resonator pairs,” Photonics and Nanostructures - Fundamentals and Applications 7, 108–113 (2009).
[Crossref]

Zhang, X.-C.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Zhao, B.

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606 (2007).
[Crossref]

Zhong, H.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

D. Schurig, J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
[Crossref]

P. J. Burke, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “High frequency conductivity of the high-mobility two-dimensional electron gas,” Appl. Phys. Lett. 76, 745 (2000).
[Crossref]

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[Crossref]

Chem. Phys. Lett. (1)

T. M. Korter and D. F. Plusquellic, “Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared,” Chem. Phys. Lett. 385, 45–51 (2004).
[Crossref]

IEEE J. Photonics (1)

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE J. Photonics 1, 99–118 (2009).
[Crossref]

IEEE J. Selected Areas in Commun. (1)

M. C. Jeruchim, “Techniques for estimating the bit error rate in the simulation of digital communication systems,” IEEE J. Selected Areas in Commun. 2, 153–170 (1984).
[Crossref]

IEEE Mag. Antennas Propag. (1)

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Mag. Antennas Propag. 49, 24–39 (2007).
[Crossref]

IEEE Trans. Electron Dev. (1)

P.-C. Chao, M. Shur, R. Tiberio, K. Duh, P. Smith, J. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1-um gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Infrared Phys. (1)

E. Batke and D. Heitmann, “Rapid-scan fourier transform spectroscopy of 2-D space charge layers in semiconductors,” Infrared Phys. 24, 189–197 (1984).
[Crossref]

J. Appl. Phys. (3)

B. J. Arritt, D. R. Smith, and T. Khraishi, “Equivalent circuit analysis of metamaterial strain-dependent effective medium parameters,” J. Appl. Phys. 109, 073512 (2011).
[Crossref]

H. Chen, L. Ran, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 024915 (2006).
[Crossref]

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).
[Crossref]

J. Infrared Millim. Terahz. Waves (1)

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahz. Waves 32, 143–171 (2011).
[Crossref]

J. Investigative Dermatology (1)

R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Investigative Dermatology 120, 72–78 (2003).
[Crossref]

Nat. Photonics (1)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

New J. Phys. (1)

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Gusten, and M. Gruninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Opt. Express (2)

Photonics and Nanostructures - Fundamentals and Applications (1)

J. Wang, S. Qu, Z. Xu, J. Zhang, H. Ma, Y. Yang, and C. Gu, “Broadband planar left-handed metamaterials using split-ring resonator pairs,” Photonics and Nanostructures - Fundamentals and Applications 7, 108–113 (2009).
[Crossref]

Phys. Rev. B (1)

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

Phys. Rev. E (1)

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606 (2007).
[Crossref]

Phys. Rev. Lett. (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Rep. Prog. Phys. (2)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[Crossref]

G. P. Williams, “Filling the THz gap – high power sources and applications,” Rep. Prog. Phys. 69, 301–326 (2006).
[Crossref]

Other (5)

T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits” (Cambridge University, 2004).

L. Couch, Digital & Analog Communication Systems (Pearson Education, 2008).

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

H. Haas and S. McLaughlin, Next Generation Mobile Access Technologies: Implementing TDD (Cambridge University, 2007).

Toptica Terascan 1550, http://www.toptica.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Block diagram of a terahertz wireless communication system using multi-level amplitude shift keying (ASK) modulation

Fig. 2
Fig. 2

Design and fabrication details (a) Metamaterial element based on electric-LC (ELC) resonator, patterned using the top 2.1μm thick gold metal. A pseudomorphic high-electron mobility transistor (pHEMT) is placed underneath each split gap with their source and drain connected to each side of the split gap. The gate-to-source/drain voltage (VGS) controls the channel charge (2-DEG) between the split gap, thus electronically controlling the damping frequency. (b) An equivalent circuit of the HEMT-embedded metamaterial element, where the resistor-inductor (inside the dashed box) represents the Drude model of the HEMT switch at the operating frequency of 0.45 THz when VGS = 0V. (c) Close-up diagram of the split-gap shows the placement of the HEMT device with it’s drain and source connected to both ends of the split gap capacitor. (d) The 4-tile THz spatial light modulator (SLM) is arranged as an 2×2 array. Each tile is controlled by an external voltage source (0–1V) to control the transmission of the incident THz wave.

Fig. 3
Fig. 3

Experimental setup for terahertz characterization. Schematic diagram of the continuous-wave (cw) terahertz setup for characterizing the metamaterial SLM. The magnified picture of the metamaterial is shown in the inset and the yellow overlay shows the geometry of each unit cell. A fiber-coupled photo-conductive antenna generates the THz wave from laser beat signal that is collimated and focused by a pair of Off-Axis Parabolic Mirrors (OAPMs). The metamaterial SLM is placed at the focal point and the single-pixel THz detector is placed right behind the SLM. The receiver photocurrent is first amplified by a programmable gain amplifier (PGA) and then lock-in detected by a custom FPGA

Fig. 4
Fig. 4

Characterization of the metamaterial for voltage controlled modulation. (a) Family of transmission spectra from 447-455 GHz using the envelope of the detected photocurrent Iph,VGS0 (f), as the gate-to-source voltage (VGS) of all the embedded HEMTS is varied from 0V to −1V in steps of −0.25V. (b) Family of differential transmission spectra (ΔIph,VGS0(f)) for VGS swept from −0.125V to −1V with respect to the reference spectra of maximum transmission i.e. all the metamaterials are “off” (Iph,0V(f)). (c) From the envelope photocurrent of the differential transmission spectra at 450.2 GHz in (b), a continuous relation between VGS and ΔIph is extracted using a 3rd-order polynomial. Using this relation, VGS values are derived for discrete steps of |ΔIph| ≈ 0.4nA. These VGS values are used to simulate the 4-level ASK digital communication system.

Fig. 5
Fig. 5

Characterization of the 4-tile (2×2) SLM. (a) Family of transmission spectra from 447–455 GHz using the envelope of the detected photocurrent, IphN(f), as the elements are turned ”on” and ”off” sequentially in clockwise and anti-clockwise direction. (b) Family of the differential transmission spectra (ΔIphN(f)) with reference spectra, Iph0(f), i.e. the condition for maximum transmission when all the metamaterials are “off” (Iph0(f) = Iph[VGS = 0V for all elements]). (c) From the envelope photocurrent of the differential transmission spectra at 450.2 GHz in (b), ΔIphN(f0) is plotted as function of number of spatial elements ”on”. These ΔIphN are used in the system simulation model.

Fig. 6
Fig. 6

System model for analysis and simulation of symbol error rate (SER) for a multilevel amplitude modulation THz communication system. The Voltage Modulator maps 2-bits from the input bit stream to a gate-to-source voltage (VGS) for the terahertz modulator based on the inset table that is derived from the characterization data in Fig. 4. Similarly, the spatial light modulator maps 2-bits from the input bit stream to a spatial map for the terahertz modulator based on the inset table that is derived from the characterization data in Fig. 5. Transmit voltage noise (σN,TX) represents the accumulative electronic noise in the transmit circuitry referred at the output of the Voltage Modulator. Receive noise (σN,RX) represents the accumulative noise in the terahertz channel and the electronic noise in the demodulator referred at the input of the demodulator. Both the noise sources are modeled as Additive White Gaussian Noise (AWGN).

Fig. 7
Fig. 7

Symbol error rate (SER) simulation results. (a) The calculated and simulated SER for voltage and spatial light modulation as function of the transmit SNR. (b) The calculated and simulated SER for voltage and spatial light modulation as function of the receive SNR

Fig. 8
Fig. 8

The absorbtion plot [imaginary part of the dispersion Eq. (1)] for VGS = 0V, f0 = 0.55 THz, Γe = 0.15 THz (green) and VGS = −1V, f0 = 0.5 THz, Γe = 0.025 THz (blue)

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ε ¯ ( f ) = ε f p 2 f 2 f 0 2 + i Γ e f
f 0 = 1 2 π L M M C M M
Γ e = 1 2 π R LOSS L M M
σ 2 D ( ω ) = σ 0 1 + i ω τ
Φ I ( V ) = 0.02 0.41 V 0.4 V 2 0.6 V 3
BER = P e = 1 2 erfc ( V P σ 0 2 )
SER = P e 1 2 erfc ( γ 1 K k = 1 K | Φ I ( V GSk ) Δ I phk , th | 2 ( Φ I 2 ( σ N , T X ) + σ N , R X 2 ) )
C M M = ε SiN 3 2 π ln ( 2 α H s ) W
L M M = μ 0 l 2 π [ ln ( 2 l b ) + 1 2 + b 3 l + b 2 24 l 2 ]
R LOSS = 1 σ P δ
Γ e = 1 2 π R LOSS L M M
Y HEMT = 1 R HEMT + i ω L HEMT
L HEMT = τ σ 0 and , R HEMT = 1 σ 0
f 0 = 1 2 π L E C M M
Γ e = 2 π ( f 0 ) 2 L E R E

Metrics