Abstract

We frequency stabilize the output of a miniature stimulated Brillouin scattering (SBS) laser to rubidium atoms in a microfabricated cell to realize a laser system with frequency stability at the 10−11 level over seven decades in averaging time. In addition, our system has the advantages of robustness, low cost and the potential for integration that would lead to still further miniaturization. The SBS laser operating at 1560 nm exhibits a spectral linewidth of 820 Hz, but its frequency drifts over a few MHz on the 1 hour timescale. By locking the second harmonic of the SBS laser to the Rb reference, we reduce this drift by a factor of 103 to the level of a few kHz over the course of an hour. For our combined SBS and Rb laser system, we measure a frequency noise of 4 × 104 Hz2/Hz at 10 Hz offset frequency which rapidly rolls off to a level of 0.2 Hz2/Hz at 100 kHz offset. The corresponding Allan deviation is ≤2 × 10−11 for averaging times spanning 10−4 to 103 s. By optically dividing the signal of the laser down to microwave frequencies, we generate an RF signal at 2 GHz with phase noise at the level of −76 dBc/Hz and −140 dBc/Hz at offset frequencies of 10 Hz and 10 kHz, respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stability transfer at 1.5  μm for metrological applications using a commercial optical cavity

Amine Chaouche Ramdane, Pierre Grüning, Vincent Roncin, and Frédéric Du-Burck
Appl. Opt. 56(1) 8-14 (2017)

Compact stabilized semiconductor laser for frequency metrology

Wei Liang, Vladimir S. Ilchenko, Danny Eliyahu, Elijah Dale, Anatoliy A. Savchenkov, David Seidel, Andrey B. Matsko, and Lute Maleki
Appl. Opt. 54(11) 3353-3359 (2015)

Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation

J. Davila-Rodriguez, F. N. Baynes, A. D. Ludlow, T. M. Fortier, H. Leopardi, S. A. Diddams, and F. Quinlan
Opt. Lett. 42(7) 1277-1280 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  2. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  3. I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74(6), 063806 (2006).
    [Crossref]
  4. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
    [Crossref] [PubMed]
  5. S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechnical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3(3), 031003 (2013).
    [Crossref]
  6. P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102(22), 221119 (2013).
    [Crossref]
  7. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  8. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
    [Crossref] [PubMed]
  9. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20(18), 20170–20180 (2012).
    [Crossref] [PubMed]
  10. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  11. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
    [Crossref]
  12. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34(7), 878–880 (2009).
    [Crossref] [PubMed]
  13. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109(23), 233901 (2012).
    [Crossref] [PubMed]
  14. W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
    [Crossref] [PubMed]
  15. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
    [Crossref] [PubMed]
  16. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
    [Crossref]
  17. W. Loh, A. A. S. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2(3), 225–232 (2015).
    [Crossref]
  18. T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid raman laser,” IEEE J. Quantum Electron. 47(3), 320–326 (2011).
    [Crossref]
  19. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19(15), 14233–14239 (2011).
    [Crossref] [PubMed]
  20. W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
    [Crossref]
  21. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7−8), 393–397 (1989).
    [Crossref]
  22. F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
    [Crossref]
  23. V. S. Il’chenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whisepring gallery microresonators,” Laser Phys. 2(6), 1004–1009 (1992).
  24. D. V. Strekalov, R. J. Thompson, L. M. Baumgartel, I. S. Grudinin, and N. Yu, “Temperature measurement and stabilization in a birefringent whispering gallery mode resonator,” Opt. Express 19(15), 14495–14501 (2011).
    [Crossref] [PubMed]
  25. I. Fescenko, J. Alnis, A. Schliesser, C. Y. Wang, T. J. Kippenberg, and T. W. Hänsch, “Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator,” Opt. Express 20(17), 19185–19193 (2012).
    [Crossref] [PubMed]
  26. W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
    [Crossref] [PubMed]
  27. F. Hong, J. Ishikawa, Z. Bi, J. Zhang, K. Seta, A. Onae, J. Yoda, and H. Matsumoto, “Portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50(2), 486–489 (2001).
    [Crossref]
  28. C. Affolderbach and G. Mileti, “A compact, frequency stabilized laser head for optical pumping in space Rb clocks,” Proc. IEEE FCS109−111 (2003).
    [Crossref]
  29. R. Matthey and F. Gruet, “Stéphane Schilt, and G. Mileti, “Compact rubidium-stabilized multi-frequency reference source in the 1.55-µm region,” Opt. Lett. 40(11), 2576–2579 (2015).
    [Crossref] [PubMed]
  30. L. Maleki, A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, and D. Seidel, “All-optical integrated rubidium atomic clock,” Proc. IEEE FCS (2011).
  31. S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
    [Crossref]
  32. W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54(11), 3353–3359 (2015).
    [Crossref] [PubMed]
  33. S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
    [Crossref]
  34. S. A. Knappe, H. G. Robinson, and L. Hollberg, “Microfabricated saturated absorption laser spectrometer,” Opt. Express 15(10), 6293–6299 (2007).
    [Crossref] [PubMed]
  35. F. Gruet, F. Vecchio, C. Affolderbach, Y. Pétremand, N. F. de Rooij, T. Maeder, and G. Mileti, “A miniature frequency-stabilized VCSEL system emitting at 795 nm based on LTCC modules,” Opt. Lasers Eng. 51(8), 1023–1027 (2013).
    [Crossref]
  36. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
    [Crossref]
  37. W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
    [Crossref]
  38. J. Ye, J. L. Hall, and S. A. Diddams, “Precision phase control of an ultrawide-bandwidth femtosecond laser: a network of ultrastable frequency marks across the visible spectrum,” Opt. Lett. 25(22), 1675–1677 (2000).
    [Crossref] [PubMed]
  39. S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
    [Crossref]
  40. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
    [Crossref]
  41. R. W. Boyd, Nonlinear Optics (Elsevier, 2008).
  42. K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett. 37(7), 1157–1159 (2012).
    [Crossref] [PubMed]
  43. K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
    [Crossref]
  44. A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapor microcell for chip scale atomic frequency standard,” Electron. Lett. 43(5), 279–280 (2007).
    [Crossref]
  45. J. Ye, S. Swartz, P. Jungner, and J. L. Hall, “Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state,” Opt. Lett. 21(16), 1280–1282 (1996).
    [Crossref] [PubMed]
  46. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2(9), 1527–1533 (1985).
    [Crossref]
  47. H. Shen, L. Li, J. Bi, J. Wang, and L. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92(6), 063809 (2015).
    [Crossref]
  48. K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Self-referencing a continuous-wave laser with electro-optic modulation,” arXiv:1507.06344 (2015).
  49. M. L. Gorodetsky and I. S. Grudinin, “Fundamental thermal fluctuations in microspheres,” J. Opt. Soc. Am. B 21(4), 697–705 (2004).
    [Crossref]
  50. A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24(6), 1324–1335 (2007).
    [Crossref]
  51. D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27(3), 352–372 (1991).
    [Crossref]
  52. J. D. Jost, T. Herr, C. Lecaplain, V. Brasch, M. H. Pfeiffer, and T. J. Kippenberg, “Counting the cycles of light using a self-references optical microresonator,” Optica 2(8), 706–711 (2015).
    [Crossref]
  53. P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase coherent link of an atomic clock to a self-referenced microresonator frequency comb,” arXiv:1511.08103 (2015).

2016 (1)

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

2015 (6)

2014 (2)

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
[Crossref]

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

2013 (5)

F. Gruet, F. Vecchio, C. Affolderbach, Y. Pétremand, N. F. de Rooij, T. Maeder, and G. Mileti, “A miniature frequency-stabilized VCSEL system emitting at 795 nm based on LTCC modules,” Opt. Lasers Eng. 51(8), 1023–1027 (2013).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechnical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3(3), 031003 (2013).
[Crossref]

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102(22), 221119 (2013).
[Crossref]

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

2012 (5)

2011 (6)

D. V. Strekalov, R. J. Thompson, L. M. Baumgartel, I. S. Grudinin, and N. Yu, “Temperature measurement and stabilization in a birefringent whispering gallery mode resonator,” Opt. Express 19(15), 14495–14501 (2011).
[Crossref] [PubMed]

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid raman laser,” IEEE J. Quantum Electron. 47(3), 320–326 (2011).
[Crossref]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19(15), 14233–14239 (2011).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

2009 (2)

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34(7), 878–880 (2009).
[Crossref] [PubMed]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (5)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24(6), 1324–1335 (2007).
[Crossref]

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapor microcell for chip scale atomic frequency standard,” Electron. Lett. 43(5), 279–280 (2007).
[Crossref]

S. A. Knappe, H. G. Robinson, and L. Hollberg, “Microfabricated saturated absorption laser spectrometer,” Opt. Express 15(10), 6293–6299 (2007).
[Crossref] [PubMed]

2006 (1)

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74(6), 063806 (2006).
[Crossref]

2004 (3)

2003 (3)

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2001 (1)

F. Hong, J. Ishikawa, Z. Bi, J. Zhang, K. Seta, A. Onae, J. Yoda, and H. Matsumoto, “Portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50(2), 486–489 (2001).
[Crossref]

2000 (1)

1998 (1)

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[Crossref]

1996 (1)

1992 (1)

V. S. Il’chenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whisepring gallery microresonators,” Laser Phys. 2(6), 1004–1009 (1992).

1991 (1)

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27(3), 352–372 (1991).
[Crossref]

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7−8), 393–397 (1989).
[Crossref]

1985 (1)

Affolderbach, C.

F. Gruet, F. Vecchio, C. Affolderbach, Y. Pétremand, N. F. de Rooij, T. Maeder, and G. Mileti, “A miniature frequency-stabilized VCSEL system emitting at 795 nm based on LTCC modules,” Opt. Lasers Eng. 51(8), 1023–1027 (2013).
[Crossref]

C. Affolderbach and G. Mileti, “A compact, frequency stabilized laser head for optical pumping in space Rb clocks,” Proc. IEEE FCS109−111 (2003).
[Crossref]

Alnis, J.

Anstie, J. D.

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Armani, D. K.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Bartels, A.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Baumgartel, L. M.

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Baynes, F. N.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

W. Loh, A. A. S. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2(3), 225–232 (2015).
[Crossref]

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

Beausoleil, R. G.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27(3), 352–372 (1991).
[Crossref]

Becker, J.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

Beha, K.

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Besnard, P.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett. 37(7), 1157–1159 (2012).
[Crossref] [PubMed]

Beugnot, J. C.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapor microcell for chip scale atomic frequency standard,” Electron. Lett. 43(5), 279–280 (2007).
[Crossref]

Bi, J.

H. Shen, L. Li, J. Bi, J. Wang, and L. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92(6), 063809 (2015).
[Crossref]

Bi, Z.

F. Hong, J. Ishikawa, Z. Bi, J. Zhang, K. Seta, A. Onae, J. Yoda, and H. Matsumoto, “Portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50(2), 486–489 (2001).
[Crossref]

Bize, S.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7−8), 393–397 (1989).
[Crossref]

Brasch, V.

Brilland, L.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett. 37(7), 1157–1159 (2012).
[Crossref] [PubMed]

Campbell, G.

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

Carmon, T.

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid raman laser,” IEEE J. Quantum Electron. 47(3), 320–326 (2011).
[Crossref]

Chen, L.

H. Shen, L. Li, J. Bi, J. Wang, and L. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92(6), 063809 (2015).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Chen, T.

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109(23), 233901 (2012).
[Crossref] [PubMed]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20(18), 20170–20180 (2012).
[Crossref] [PubMed]

Coillet, A.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

Cole, D. C.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

W. Loh, A. A. S. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2(3), 225–232 (2015).
[Crossref]

Conkey, D. B.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Curtis, E. A.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Dale, E.

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

de Rooij, N. F.

F. Gruet, F. Vecchio, C. Affolderbach, Y. Pétremand, N. F. de Rooij, T. Maeder, and G. Mileti, “A miniature frequency-stabilized VCSEL system emitting at 795 nm based on LTCC modules,” Opt. Lasers Eng. 51(8), 1023–1027 (2013).
[Crossref]

Del’Haye, P.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
[Crossref]

S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechnical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3(3), 031003 (2013).
[Crossref]

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102(22), 221119 (2013).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Diddams, S. A.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

W. Loh, A. A. S. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2(3), 225–232 (2015).
[Crossref]

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
[Crossref]

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102(22), 221119 (2013).
[Crossref]

S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechnical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3(3), 031003 (2013).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

J. Ye, J. L. Hall, and S. A. Diddams, “Precision phase control of an ultrawide-bandwidth femtosecond laser: a network of ultrastable frequency marks across the visible spectrum,” Opt. Lett. 25(22), 1675–1677 (2000).
[Crossref] [PubMed]

Douahi, A.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapor microcell for chip scale atomic frequency standard,” Electron. Lett. 43(5), 279–280 (2007).
[Crossref]

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Dziuban, J.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapor microcell for chip scale atomic frequency standard,” Electron. Lett. 43(5), 279–280 (2007).
[Crossref]

Eliyahu, D.

W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54(11), 3353–3359 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

L. Maleki, A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, and D. Seidel, “All-optical integrated rubidium atomic clock,” Proc. IEEE FCS (2011).

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Fescenko, I.

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Foster, M. A.

Fresnel, S.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

Gaeta, A. L.

Giordano, V.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapor microcell for chip scale atomic frequency standard,” Electron. Lett. 43(5), 279–280 (2007).
[Crossref]

Gorecki, C.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapor microcell for chip scale atomic frequency standard,” Electron. Lett. 43(5), 279–280 (2007).
[Crossref]

Gorodetskii, M. L.

V. S. Il’chenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whisepring gallery microresonators,” Laser Phys. 2(6), 1004–1009 (1992).

Gorodetsky, M. L.

M. L. Gorodetsky and I. S. Grudinin, “Fundamental thermal fluctuations in microspheres,” J. Opt. Soc. Am. B 21(4), 697–705 (2004).
[Crossref]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7−8), 393–397 (1989).
[Crossref]

Green, A. A. S.

Grudinin, I. S.

Gruet, F.

R. Matthey and F. Gruet, “Stéphane Schilt, and G. Mileti, “Compact rubidium-stabilized multi-frequency reference source in the 1.55-µm region,” Opt. Lett. 40(11), 2576–2579 (2015).
[Crossref] [PubMed]

F. Gruet, F. Vecchio, C. Affolderbach, Y. Pétremand, N. F. de Rooij, T. Maeder, and G. Mileti, “A miniature frequency-stabilized VCSEL system emitting at 795 nm based on LTCC modules,” Opt. Lasers Eng. 51(8), 1023–1027 (2013).
[Crossref]

Guerandel, S.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapor microcell for chip scale atomic frequency standard,” Electron. Lett. 43(5), 279–280 (2007).
[Crossref]

Hall, J. L.

Hänsch, T. W.

Hare, J.

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[Crossref]

Haroche, S.

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[Crossref]

Hawkins, A. R.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Herr, T.

Hjelme, D. R.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27(3), 352–372 (1991).
[Crossref]

Hollberg, L.

S. A. Knappe, H. G. Robinson, and L. Hollberg, “Microfabricated saturated absorption laser spectrometer,” Opt. Express 15(10), 6293–6299 (2007).
[Crossref] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Hong, F.

F. Hong, J. Ishikawa, Z. Bi, J. Zhang, K. Seta, A. Onae, J. Yoda, and H. Matsumoto, “Portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50(2), 486–489 (2001).
[Crossref]

Il’chenko, V. S.

V. S. Il’chenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whisepring gallery microresonators,” Laser Phys. 2(6), 1004–1009 (1992).

Ilchenko, V. S.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54(11), 3353–3359 (2015).
[Crossref] [PubMed]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74(6), 063806 (2006).
[Crossref]

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[Crossref]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7−8), 393–397 (1989).
[Crossref]

L. Maleki, A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, and D. Seidel, “All-optical integrated rubidium atomic clock,” Proc. IEEE FCS (2011).

Ishikawa, J.

F. Hong, J. Ishikawa, Z. Bi, J. Zhang, K. Seta, A. Onae, J. Yoda, and H. Matsumoto, “Portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50(2), 486–489 (2001).
[Crossref]

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Jost, J. D.

Jungner, P.

Kippenberg, T. J.

J. D. Jost, T. Herr, C. Lecaplain, V. Brasch, M. H. Pfeiffer, and T. J. Kippenberg, “Counting the cycles of light using a self-references optical microresonator,” Optica 2(8), 706–711 (2015).
[Crossref]

I. Fescenko, J. Alnis, A. Schliesser, C. Y. Wang, T. J. Kippenberg, and T. W. Hänsch, “Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator,” Opt. Express 20(17), 19185–19193 (2012).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Kitching, J.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

Knappe, S.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

Knappe, S. A.

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Kuzucu, O.

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Lecaplain, C.

Lee, H.

Lefèvre-Seguin, V.

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[Crossref]

Léguillon, Y.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett. 37(7), 1157–1159 (2012).
[Crossref] [PubMed]

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Levy, J. S.

Li, J.

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20(18), 20170–20180 (2012).
[Crossref] [PubMed]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109(23), 233901 (2012).
[Crossref] [PubMed]

Li, L.

H. Shen, L. Li, J. Bi, J. Wang, and L. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92(6), 063809 (2015).
[Crossref]

Liang, W.

W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54(11), 3353–3359 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

L. Maleki, A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, and D. Seidel, “All-optical integrated rubidium atomic clock,” Proc. IEEE FCS (2011).

Liew, L.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

Lipson, M.

Loh, W.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

W. Loh, A. A. S. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2(3), 225–232 (2015).
[Crossref]

Lu, T.

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid raman laser,” IEEE J. Quantum Electron. 47(3), 320–326 (2011).
[Crossref]

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Luiten, A. N.

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

Maeder, T.

F. Gruet, F. Vecchio, C. Affolderbach, Y. Pétremand, N. F. de Rooij, T. Maeder, and G. Mileti, “A miniature frequency-stabilized VCSEL system emitting at 795 nm based on LTCC modules,” Opt. Lasers Eng. 51(8), 1023–1027 (2013).
[Crossref]

Maillote, H.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapor microcell for chip scale atomic frequency standard,” Electron. Lett. 43(5), 279–280 (2007).
[Crossref]

Maleki, L.

W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54(11), 3353–3359 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
[Crossref] [PubMed]

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34(7), 878–880 (2009).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24(6), 1324–1335 (2007).
[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74(6), 063806 (2006).
[Crossref]

L. Maleki, A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, and D. Seidel, “All-optical integrated rubidium atomic clock,” Proc. IEEE FCS (2011).

Matsko, A. B.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54(11), 3353–3359 (2015).
[Crossref] [PubMed]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24(6), 1324–1335 (2007).
[Crossref]

L. Maleki, A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, and D. Seidel, “All-optical integrated rubidium atomic clock,” Proc. IEEE FCS (2011).

Matsumoto, H.

F. Hong, J. Ishikawa, Z. Bi, J. Zhang, K. Seta, A. Onae, J. Yoda, and H. Matsumoto, “Portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50(2), 486–489 (2001).
[Crossref]

Matthey, R.

Méchin, D.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett. 37(7), 1157–1159 (2012).
[Crossref] [PubMed]

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Mickelson, A. R.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27(3), 352–372 (1991).
[Crossref]

Mileti, G.

F. Gruet, F. Vecchio, C. Affolderbach, Y. Pétremand, N. F. de Rooij, T. Maeder, and G. Mileti, “A miniature frequency-stabilized VCSEL system emitting at 795 nm based on LTCC modules,” Opt. Lasers Eng. 51(8), 1023–1027 (2013).
[Crossref]

C. Affolderbach and G. Mileti, “A compact, frequency stabilized laser head for optical pumping in space Rb clocks,” Proc. IEEE FCS109−111 (2003).
[Crossref]

Min, B.

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid raman laser,” IEEE J. Quantum Electron. 47(3), 320–326 (2011).
[Crossref]

Molin, S.

Moraja, M.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapor microcell for chip scale atomic frequency standard,” Electron. Lett. 43(5), 279–280 (2007).
[Crossref]

Moreland, J.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

Nieradko, L.

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapor microcell for chip scale atomic frequency standard,” Electron. Lett. 43(5), 279–280 (2007).
[Crossref]

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Onae, A.

F. Hong, J. Ishikawa, Z. Bi, J. Zhang, K. Seta, A. Onae, J. Yoda, and H. Matsumoto, “Portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50(2), 486–489 (2001).
[Crossref]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Papp, S. B.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

W. Loh, A. A. S. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2(3), 225–232 (2015).
[Crossref]

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
[Crossref]

S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechnical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3(3), 031003 (2013).
[Crossref]

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102(22), 221119 (2013).
[Crossref]

Pétremand, Y.

F. Gruet, F. Vecchio, C. Affolderbach, Y. Pétremand, N. F. de Rooij, T. Maeder, and G. Mileti, “A miniature frequency-stabilized VCSEL system emitting at 795 nm based on LTCC modules,” Opt. Lasers Eng. 51(8), 1023–1027 (2013).
[Crossref]

Pfeiffer, M. H.

Quinlan, F.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Quinlan, F. J.

Raimond, J. M.

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[Crossref]

Ramond, T. M.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Robinson, H. G.

Roch, J. F.

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[Crossref]

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Saha, K.

Savchenkov, A. A.

W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54(11), 3353–3359 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24(6), 1324–1335 (2007).
[Crossref]

L. Maleki, A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, and D. Seidel, “All-optical integrated rubidium atomic clock,” Proc. IEEE FCS (2011).

Schliesser, A.

I. Fescenko, J. Alnis, A. Schliesser, C. Y. Wang, T. J. Kippenberg, and T. W. Hänsch, “Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator,” Opt. Express 20(17), 19185–19193 (2012).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Schmidt, H.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Schwindt, P. D. D.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

Seidel, D.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, D. Eliyahu, E. Dale, A. A. Savchenkov, D. Seidel, A. B. Matsko, and L. Maleki, “Compact stabilized semiconductor laser for frequency metrology,” Appl. Opt. 54(11), 3353–3359 (2015).
[Crossref] [PubMed]

L. Maleki, A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, and D. Seidel, “All-optical integrated rubidium atomic clock,” Proc. IEEE FCS (2011).

Seta, K.

F. Hong, J. Ishikawa, Z. Bi, J. Zhang, K. Seta, A. Onae, J. Yoda, and H. Matsumoto, “Portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50(2), 486–489 (2001).
[Crossref]

Shah, V.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

Shen, H.

H. Shen, L. Li, J. Bi, J. Wang, and L. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92(6), 063809 (2015).
[Crossref]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Stace, T. M.

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

Strekalov, D. V.

Swartz, S.

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Thompson, R. J.

Toupin, P.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett. 37(7), 1157–1159 (2012).
[Crossref] [PubMed]

Tow, K. H.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett. 37(7), 1157–1159 (2012).
[Crossref] [PubMed]

Trégoat, D.

Treussart, F.

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[Crossref]

Troles, J.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett. 37(7), 1157–1159 (2012).
[Crossref] [PubMed]

Turner, A. C.

Vahala, K. J.

W. Loh, A. A. S. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2(3), 225–232 (2015).
[Crossref]

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10–14 (2014).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20(18), 20170–20180 (2012).
[Crossref] [PubMed]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109(23), 233901 (2012).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29(11), 1224–1226 (2004).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Vecchio, F.

F. Gruet, F. Vecchio, C. Affolderbach, Y. Pétremand, N. F. de Rooij, T. Maeder, and G. Mileti, “A miniature frequency-stabilized VCSEL system emitting at 795 nm based on LTCC modules,” Opt. Lasers Eng. 51(8), 1023–1027 (2013).
[Crossref]

Wang, C. Y.

Wang, J.

H. Shen, L. Li, J. Bi, J. Wang, and L. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92(6), 063809 (2015).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Weiner, A. M.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

Weng, W.

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Wong, N. C.

Wu, B.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Yang, L.

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid raman laser,” IEEE J. Quantum Electron. 47(3), 320–326 (2011).
[Crossref]

Yang, W.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Ye, J.

Yin, D.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

Yoda, J.

F. Hong, J. Ishikawa, Z. Bi, J. Zhang, K. Seta, A. Onae, J. Yoda, and H. Matsumoto, “Portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50(2), 486–489 (2001).
[Crossref]

Yu, N.

Zhang, J.

F. Hong, J. Ishikawa, Z. Bi, J. Zhang, K. Seta, A. Onae, J. Yoda, and H. Matsumoto, “Portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50(2), 486–489 (2001).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004).
[Crossref]

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102(22), 221119 (2013).
[Crossref]

Electron. Lett. (1)

A. Douahi, L. Nieradko, J. C. Beugnot, J. Dziuban, H. Maillote, S. Guerandel, M. Moraja, C. Gorecki, and V. Giordano, “Vapor microcell for chip scale atomic frequency standard,” Electron. Lett. 43(5), 279–280 (2007).
[Crossref]

Eur. Phys. J. D (1)

F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Lu, L. Yang, T. Carmon, and B. Min, “A narrow-linewidth on-chip toroid raman laser,” IEEE J. Quantum Electron. 47(3), 320–326 (2011).
[Crossref]

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27(3), 352–372 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide Brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

F. Hong, J. Ishikawa, Z. Bi, J. Zhang, K. Seta, A. Onae, J. Yoda, and H. Matsumoto, “Portable I2-stabilized Nd:YAG laser for international comparisons,” IEEE Trans. Instrum. Meas. 50(2), 486–489 (2001).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Phys. (1)

V. S. Il’chenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whisepring gallery microresonators,” Laser Phys. 2(6), 1004–1009 (1992).

Nat. Commun. (1)

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

Nat. Photonics (4)

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Nature (3)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New J. Phys. 18(4), 045001 (2016).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (1)

F. Gruet, F. Vecchio, C. Affolderbach, Y. Pétremand, N. F. de Rooij, T. Maeder, and G. Mileti, “A miniature frequency-stabilized VCSEL system emitting at 795 nm based on LTCC modules,” Opt. Lasers Eng. 51(8), 1023–1027 (2013).
[Crossref]

Opt. Lett. (6)

Optica (3)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7−8), 393–397 (1989).
[Crossref]

Phys. Rev. A (2)

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74(6), 063806 (2006).
[Crossref]

H. Shen, L. Li, J. Bi, J. Wang, and L. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92(6), 063809 (2015).
[Crossref]

Phys. Rev. Lett. (3)

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109(23), 233901 (2012).
[Crossref] [PubMed]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
[Crossref] [PubMed]

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechnical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3(3), 031003 (2013).
[Crossref]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Other (5)

C. Affolderbach and G. Mileti, “A compact, frequency stabilized laser head for optical pumping in space Rb clocks,” Proc. IEEE FCS109−111 (2003).
[Crossref]

L. Maleki, A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, and D. Seidel, “All-optical integrated rubidium atomic clock,” Proc. IEEE FCS (2011).

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Self-referencing a continuous-wave laser with electro-optic modulation,” arXiv:1507.06344 (2015).

R. W. Boyd, Nonlinear Optics (Elsevier, 2008).

P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Yang, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Phase coherent link of an atomic clock to a self-referenced microresonator frequency comb,” arXiv:1511.08103 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 System diagram of the combined laser consisting of a SBS laser locked to a miniature rubidium cell.
Fig. 2
Fig. 2 Characterization of the SBS laser. (a) Photograph of the SBS microrod resonator coupled to a tapered fiber. The microrod diameter is 6 mm. (b) Spectrometer resolution-limited measurement of the SBS laser optical spectrum showing 2.5 mW SBS output power. (c) Plot of the microrod mode at 1560 nm under low optical pump powers indicating a mode linewidth of 6.3 MHz. (d) Frequency response characterizing the ability to tune the SBS laser frequency via modulation of the optical power. The bandwidth of the response is 4.5 Hz.
Fig. 3
Fig. 3 Characterization of the Rb reference cell. (a) Schematic and photograph of the 5 mm × 7 mm Rb cell. The windows are anodically bonded to the silicon frame. The photograph shows the cell with a thermistor epoxied to its base. (b) 780 nm saturated absorption spectrum and error signal of 85Rb taken by scanning the pump laser across the F = 3 manifold. (c) Spectroscopic error signal with 32-point averaging generated by scanning the SBS laser over the F = 3 to F’ = 3,4 85Rb D2 transition. The SBS laser was locked to this transition for all work described in this paper.
Fig. 4
Fig. 4 Measurements of the combined SBS and Rb laser system. (a) Frequency noise of the pump laser (blue), SBS laser (red), and SBS laser locked to Rb (black). (b) 1-hour time record of the free-running (upper) and Rb-locked (lower) SBS laser. Both sets of data are offset from the nominal optical frequency of ~192 THz. (c) Allan deviation of the free-running and locked SBS laser.
Fig. 5
Fig. 5 Optical frequency division of SBS and Rb laser signal down to 2 GHz. (a) Diagram of the system used for phase-noise measurement of the divided SBS signal. (b) Phase-noise spectrum of the SBS/Rb laser system divided down to 2 GHz. The phase noise of the quartz-referenced measurement system (green dashed line) is provided. The expected phase noise resulting from ideal division of the frequency noise (gray line) is also indicated.

Tables (1)

Tables Icon

Table 1 Frequency stability analysis of the combined SBS and Rb laser system.

Metrics