Abstract

While conventional optical trapping techniques can trap objects with submicron dimensions, the underlying limits imposed by the diffraction of light generally restrict their use to larger or higher refractive index particles. As the index and diameter decrease, the trapping difficulty rapidly increases; hence, the power requirements for stable trapping become so large as to quickly denature the trapped objects in such diffraction-limited systems. Here, we present an evanescent field-based device capable of confining low index nanoscale particles using modest optical powers as low as 1.2 mW, with additional applications in the field of cold atom trapping. Our experiment uses a nanostructured optical micro-nanofiber to trap 200 nm, low index contrast, fluorescent particles within the structured region, thereby overcoming diffraction limitations. We analyze the trapping potential of this device both experimentally and theoretically, and show how strong optical traps are achieved with low input powers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Selective particle trapping and optical binding in the evanescent field of an optical nanofiber

M. C. Frawley, I. Gusachenko, V. G. Truong, M. Sergides, and S. Nic Chormaic
Opt. Express 22(13) 16322-16334 (2014)

Shaping the evanescent field of optical nanofibers for cold atom trapping

C.F. Phelan, T. Hennessy, and Th. Busch
Opt. Express 21(22) 27093-27101 (2013)

Mass-manufacturable polymer microfluidic device for dual fiber optical trapping

Diane De Coster, Heidi Ottevaere, Michael Vervaeke, Jürgen Van Erps, Manly Callewaert, Pieter Wuytens, Stephen H. Simpson, Simon Hanna, Wim De Malsche, and Hugo Thienpont
Opt. Express 23(24) 30991-31009 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Kepler, De cometis libelli tres. (1619).
  2. A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40, 729–732 (1978).
    [Crossref]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref] [PubMed]
  4. O. M. Maragó, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
    [Crossref]
  5. M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
    [Crossref]
  6. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-q photonic double-heterostructure nanocavity,” Nature Mat. 4, 207–210 (2005).
    [Crossref]
  7. P. Jing, J. Wu, G. W. Liu, E. G. Keeler, S. H. Pun, and L. Y. Lin, “Photonic crystal optical tweezers with high efficiency for live biological samples and viability characterization,” Sci. Rep. 6, 19924 (2016).
    [Crossref] [PubMed]
  8. A. Zehtabi-Oskuie, J. G. Bergeron, and R. Gordon, “Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres,” Sci. Rep. 2, 966 (2012).
    [Crossref]
  9. A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14, 853–856 (2014).
    [Crossref] [PubMed]
  10. P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Exp. 14, 9197–9202 (2006).
    [Crossref]
  11. M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nature Nanotech. 9, 448–452 (2014).
    [Crossref]
  12. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [Crossref] [PubMed]
  13. J. Hoffman, S. Ravets, J. Grover, P. Solano, P. Kordell, J. Wong-Campos, L. Orozco, and S. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
    [Crossref]
  14. M. Ploschner, T. Cizmar, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
    [Crossref] [PubMed]
  15. O. Brzobohatỳ, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
    [Crossref]
  16. M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. De Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nature Nanotech. 8, 175–179 (2013).
    [Crossref]
  17. A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat Photon 6, 469–473 (2012). .
    [Crossref]
  18. M. Daly, V. G. Truong, C. Phelan, K. Deasy, and S. Nic Chormaic, “Nanostructured optical nanofibres for atom trapping,” New J. Phys. 16, 053052 (2014).
    [Crossref]
  19. M. Daly, V. G. Truong, and S. Nic Chormaic, “Submicron particle manipulation using slotted tapered optical fibers,” in Proceedings of SPIE 9548 Optical Trapping and Optical Micromanipulation XII, (2015), pp. 954812.
  20. M. Daly, V. G. Truong, and S. Nic Chormaic, “Nanostructured tapered optical fibers for particle trapping,” in Proceedings of SPIE 9507 Micro-structured and Specialty Optical Fibres IV, (2015), pp. 95070E–95070E6.
  21. H. Xin and B. Li, “Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber,” Opt. Exp. 19, 13285–13290 (2011).
    [Crossref]
  22. A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. Nic Chormaic, “Higher order microfibre modes for dielectric particle trapping and propulsion,” Sci. Rep. 5, 9077 (2015).
    [Crossref] [PubMed]
  23. I. Gusachenko, V. G. Truong, M. C. Frawley, and S. Nic Chormaic, “Optical nanofiber integrated into optical tweezers for in situ fiber probing and optical binding studies,” Photonics 2, 795 (2015).
    [Crossref]
  24. T. Nieddu, V. Gokhroo, and S. Nic Chormaic, “Optical nanofibres and neutral atoms,” Journal of Optics 18, 053001 (2016).
    [Crossref]
  25. S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro-and nanoparticles on tapered optical fibers,” J. Quant Spectrosc. Radiat. Transf. 113, 2512–2520 (2012).
    [Crossref]
  26. Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2, e64 (2013).
    [Crossref]
  27. G. S. Murugan, M. Belal, C. Grivas, M. Ding, J. S. Wilkinson, and G. Brambilla, “An optical fiber optofluidic particle aspirator,” Appl. Phys. Lett. 105, 101103 (2014).
    [Crossref]
  28. M. C. Frawley, I. Gusachenko, V. G. Truong, M. Sergides, and S. Nic Chormaic, “Selective particle trapping and optical binding in the evanescent field of an optical nanofiber,” Opt. Exp. 22, 16322–16334 (2014).
    [Crossref]
  29. C. Cheng, X. Xu, H. Lei, and B. Li, “Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded pmma nanofiber,” Sci. Rep. 6, 20433 (2016).
    [Crossref] [PubMed]
  30. R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113, 143601 (2014).
    [Crossref] [PubMed]
  31. J. Knight, G. Cheung, F. Jacques, and T. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [Crossref] [PubMed]
  32. R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nature Commun. 5, 5713 (2014).
    [Crossref]
  33. J.-B. Béguin, E. Bookjans, S. Christensen, H. Sørensen, J. Müller, E. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
    [Crossref]
  34. S. Kato and T. Aoki, “Strong coupling between a trapped single atom and an all-fiber cavity,” Phys. Rev. Lett. 115, 093603 (2015).
    [Crossref] [PubMed]
  35. R. Kumar, V. Gokhroo, K. Deasy, and S. Nic Chormaic, “Autler-townes splitting via frequency up-conversion at ultralow-power levels in cold rb 87 atoms using an optical nanofiber,” Phys. Rev. A 91, 053842 (2015).
    [Crossref]
  36. A. Watkins, V. B. Tiwari, J. M. Ward, K. Deasy, and S. Nic Chormaic, “Observation of zeeman shift in the rubidium d2 line using an optical nanofiber in vapor,” in Proceedings of “8th Ibero American Optics Meeting/11th Latin American Meeting on Optics, Lasers, and Applications,” (International Society for Optics and Photonics, 2013), paper 87850S.
  37. D. Jones, J. Franson, and T. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
    [Crossref]
  38. H. Xin, R. Xu, and B. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2, 818 (2012).
    [Crossref] [PubMed]
  39. L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 355–360 (2010).
    [Crossref] [PubMed]
  40. A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
    [Crossref] [PubMed]
  41. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nature Phys. 5, 915–919 (2009).
    [Crossref]
  42. P. Jones, O. Maragó, and G. Volpe, Optical Tweezers: Principles and Applications(Cambridge University Press, 2015).
    [Crossref]
  43. T. Ĉiẑmár, M. Ŝiler, M. Ŝerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Physical Review B 74, 035105 (2006). PRB.
    [Crossref]
  44. J. Ward, A. Maimaiti, V. H. Le, and S. Nic Chormaic, “Contributed review: Optical micro-and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
    [Crossref]
  45. M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt. 50, 2594–2600 (2011).
    [Crossref] [PubMed]
  46. I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979).
    [Crossref]
  47. A. van der Horst and N. R. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Exp. 18, 7670–7677 (2010).
    [Crossref]
  48. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
    [Crossref]
  49. É. Roldán, Irreversibility and Dissipation in Microscopic Systems (Springer, 2014).
  50. R. Kumar, V. Gokhroo, and S. Nic Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface,” New J. Phys. 17, 123012 (2015).
    [Crossref]
  51. D. Chang, J. I. Cirac, and H. Kimble, “Self-organization of atoms along a nanophotonic waveguide,” Phys. Rev. Lett. 110, 113606 (2013).
    [Crossref] [PubMed]

2016 (3)

P. Jing, J. Wu, G. W. Liu, E. G. Keeler, S. H. Pun, and L. Y. Lin, “Photonic crystal optical tweezers with high efficiency for live biological samples and viability characterization,” Sci. Rep. 6, 19924 (2016).
[Crossref] [PubMed]

T. Nieddu, V. Gokhroo, and S. Nic Chormaic, “Optical nanofibres and neutral atoms,” Journal of Optics 18, 053001 (2016).
[Crossref]

C. Cheng, X. Xu, H. Lei, and B. Li, “Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded pmma nanofiber,” Sci. Rep. 6, 20433 (2016).
[Crossref] [PubMed]

2015 (8)

S. Kato and T. Aoki, “Strong coupling between a trapped single atom and an all-fiber cavity,” Phys. Rev. Lett. 115, 093603 (2015).
[Crossref] [PubMed]

R. Kumar, V. Gokhroo, K. Deasy, and S. Nic Chormaic, “Autler-townes splitting via frequency up-conversion at ultralow-power levels in cold rb 87 atoms using an optical nanofiber,” Phys. Rev. A 91, 053842 (2015).
[Crossref]

D. Jones, J. Franson, and T. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
[Crossref]

M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
[Crossref]

O. Brzobohatỳ, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref]

A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. Nic Chormaic, “Higher order microfibre modes for dielectric particle trapping and propulsion,” Sci. Rep. 5, 9077 (2015).
[Crossref] [PubMed]

I. Gusachenko, V. G. Truong, M. C. Frawley, and S. Nic Chormaic, “Optical nanofiber integrated into optical tweezers for in situ fiber probing and optical binding studies,” Photonics 2, 795 (2015).
[Crossref]

R. Kumar, V. Gokhroo, and S. Nic Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface,” New J. Phys. 17, 123012 (2015).
[Crossref]

2014 (10)

G. S. Murugan, M. Belal, C. Grivas, M. Ding, J. S. Wilkinson, and G. Brambilla, “An optical fiber optofluidic particle aspirator,” Appl. Phys. Lett. 105, 101103 (2014).
[Crossref]

M. C. Frawley, I. Gusachenko, V. G. Truong, M. Sergides, and S. Nic Chormaic, “Selective particle trapping and optical binding in the evanescent field of an optical nanofiber,” Opt. Exp. 22, 16322–16334 (2014).
[Crossref]

J. Ward, A. Maimaiti, V. H. Le, and S. Nic Chormaic, “Contributed review: Optical micro-and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

M. Daly, V. G. Truong, C. Phelan, K. Deasy, and S. Nic Chormaic, “Nanostructured optical nanofibres for atom trapping,” New J. Phys. 16, 053052 (2014).
[Crossref]

J. Hoffman, S. Ravets, J. Grover, P. Solano, P. Kordell, J. Wong-Campos, L. Orozco, and S. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14, 853–856 (2014).
[Crossref] [PubMed]

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nature Nanotech. 9, 448–452 (2014).
[Crossref]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113, 143601 (2014).
[Crossref] [PubMed]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nature Commun. 5, 5713 (2014).
[Crossref]

J.-B. Béguin, E. Bookjans, S. Christensen, H. Sørensen, J. Müller, E. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

2013 (4)

O. M. Maragó, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
[Crossref]

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2, e64 (2013).
[Crossref]

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. De Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nature Nanotech. 8, 175–179 (2013).
[Crossref]

D. Chang, J. I. Cirac, and H. Kimble, “Self-organization of atoms along a nanophotonic waveguide,” Phys. Rev. Lett. 110, 113606 (2013).
[Crossref] [PubMed]

2012 (5)

A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat Photon 6, 469–473 (2012). .
[Crossref]

M. Ploschner, T. Cizmar, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
[Crossref] [PubMed]

A. Zehtabi-Oskuie, J. G. Bergeron, and R. Gordon, “Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres,” Sci. Rep. 2, 966 (2012).
[Crossref]

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro-and nanoparticles on tapered optical fibers,” J. Quant Spectrosc. Radiat. Transf. 113, 2512–2520 (2012).
[Crossref]

H. Xin, R. Xu, and B. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2, 818 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (2)

A. van der Horst and N. R. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Exp. 18, 7670–7677 (2010).
[Crossref]

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 355–360 (2010).
[Crossref] [PubMed]

2009 (2)

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nature Phys. 5, 915–919 (2009).
[Crossref]

2006 (2)

T. Ĉiẑmár, M. Ŝiler, M. Ŝerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Physical Review B 74, 035105 (2006). PRB.
[Crossref]

P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Exp. 14, 9197–9202 (2006).
[Crossref]

2005 (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-q photonic double-heterostructure nanocavity,” Nature Mat. 4, 207–210 (2005).
[Crossref]

2004 (1)

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

1997 (1)

1986 (1)

1979 (1)

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979).
[Crossref]

1978 (1)

A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40, 729–732 (1978).
[Crossref]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-q photonic double-heterostructure nanocavity,” Nature Mat. 4, 207–210 (2005).
[Crossref]

Albrecht, B.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nature Commun. 5, 5713 (2014).
[Crossref]

Anderson, P. A.

P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Exp. 14, 9197–9202 (2006).
[Crossref]

Aoki, T.

S. Kato and T. Aoki, “Strong coupling between a trapped single atom and an all-fiber cavity,” Phys. Rev. Lett. 115, 093603 (2015).
[Crossref] [PubMed]

Appel, J.

J.-B. Béguin, E. Bookjans, S. Christensen, H. Sørensen, J. Müller, E. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Asano, T.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-q photonic double-heterostructure nanocavity,” Nature Mat. 4, 207–210 (2005).
[Crossref]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Ashkin, A.

Astratov, V. N.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2, e64 (2013).
[Crossref]

Béguin, J.-B.

J.-B. Béguin, E. Bookjans, S. Christensen, H. Sørensen, J. Müller, E. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Belal, M.

G. S. Murugan, M. Belal, C. Grivas, M. Ding, J. S. Wilkinson, and G. Brambilla, “An optical fiber optofluidic particle aspirator,” Appl. Phys. Lett. 105, 101103 (2014).
[Crossref]

Bergeron, J. G.

A. Zehtabi-Oskuie, J. G. Bergeron, and R. Gordon, “Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres,” Sci. Rep. 2, 966 (2012).
[Crossref]

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

Birks, T.

Bjorkholm, J. E.

Bookjans, E.

J.-B. Béguin, E. Bookjans, S. Christensen, H. Sørensen, J. Müller, E. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Brambilla, G.

G. S. Murugan, M. Belal, C. Grivas, M. Ding, J. S. Wilkinson, and G. Brambilla, “An optical fiber optofluidic particle aspirator,” Appl. Phys. Lett. 105, 101103 (2014).
[Crossref]

Brevik, I.

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979).
[Crossref]

Brown, L. J.

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. De Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nature Nanotech. 8, 175–179 (2013).
[Crossref]

Brzobohat?, O.

O. Brzobohatỳ, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref]

Carnegie, D.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2, e64 (2013).
[Crossref]

Chang, D.

D. Chang, J. I. Cirac, and H. Kimble, “Self-organization of atoms along a nanophotonic waveguide,” Phys. Rev. Lett. 110, 113606 (2013).
[Crossref] [PubMed]

Cheng, C.

C. Cheng, X. Xu, H. Lei, and B. Li, “Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded pmma nanofiber,” Sci. Rep. 6, 20433 (2016).
[Crossref] [PubMed]

Cheung, G.

Christensen, S.

J.-B. Béguin, E. Bookjans, S. Christensen, H. Sørensen, J. Müller, E. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Chu, S.

Chvátal, L.

O. Brzobohatỳ, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref]

Ci?már, T.

T. Ĉiẑmár, M. Ŝiler, M. Ŝerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Physical Review B 74, 035105 (2006). PRB.
[Crossref]

Cirac, J. I.

D. Chang, J. I. Cirac, and H. Kimble, “Self-organization of atoms along a nanophotonic waveguide,” Phys. Rev. Lett. 110, 113606 (2013).
[Crossref] [PubMed]

Cizmar, T.

M. Ploschner, T. Cizmar, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
[Crossref] [PubMed]

Daly, M.

M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
[Crossref]

M. Daly, V. G. Truong, C. Phelan, K. Deasy, and S. Nic Chormaic, “Nanostructured optical nanofibres for atom trapping,” New J. Phys. 16, 053052 (2014).
[Crossref]

M. Daly, V. G. Truong, and S. Nic Chormaic, “Submicron particle manipulation using slotted tapered optical fibers,” in Proceedings of SPIE 9548 Optical Trapping and Optical Micromanipulation XII, (2015), pp. 954812.

M. Daly, V. G. Truong, and S. Nic Chormaic, “Nanostructured tapered optical fibers for particle trapping,” in Proceedings of SPIE 9507 Micro-structured and Specialty Optical Fibres IV, (2015), pp. 95070E–95070E6.

De Abajo, F. J. G.

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. De Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nature Nanotech. 8, 175–179 (2013).
[Crossref]

Deasy, K.

R. Kumar, V. Gokhroo, K. Deasy, and S. Nic Chormaic, “Autler-townes splitting via frequency up-conversion at ultralow-power levels in cold rb 87 atoms using an optical nanofiber,” Phys. Rev. A 91, 053842 (2015).
[Crossref]

M. Daly, V. G. Truong, C. Phelan, K. Deasy, and S. Nic Chormaic, “Nanostructured optical nanofibres for atom trapping,” New J. Phys. 16, 053052 (2014).
[Crossref]

A. Watkins, V. B. Tiwari, J. M. Ward, K. Deasy, and S. Nic Chormaic, “Observation of zeeman shift in the rubidium d2 line using an optical nanofiber in vapor,” in Proceedings of “8th Ibero American Optics Meeting/11th Latin American Meeting on Optics, Lasers, and Applications,” (International Society for Optics and Photonics, 2013), paper 87850S.

Demirors, A. F.

A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat Photon 6, 469–473 (2012). .
[Crossref]

Dholakia, K.

M. Ploschner, T. Cizmar, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
[Crossref] [PubMed]

T. Ĉiẑmár, M. Ŝiler, M. Ŝerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Physical Review B 74, 035105 (2006). PRB.
[Crossref]

Di Falco, A.

M. Ploschner, T. Cizmar, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
[Crossref] [PubMed]

Ding, M.

G. S. Murugan, M. Belal, C. Grivas, M. Ding, J. S. Wilkinson, and G. Brambilla, “An optical fiber optofluidic particle aspirator,” Appl. Phys. Lett. 105, 101103 (2014).
[Crossref]

Dziedzic, J. M.

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nature Phys. 5, 915–919 (2009).
[Crossref]

Erickson, D.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

Ferrari, A. C.

O. M. Maragó, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
[Crossref]

Flyvbjerg, H.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

Forde, N. R.

A. van der Horst and N. R. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Exp. 18, 7670–7677 (2010).
[Crossref]

Forties, R. A.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nature Nanotech. 9, 448–452 (2014).
[Crossref]

Franson, J.

D. Jones, J. Franson, and T. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
[Crossref]

Frawley, M. C.

I. Gusachenko, V. G. Truong, M. C. Frawley, and S. Nic Chormaic, “Optical nanofiber integrated into optical tweezers for in situ fiber probing and optical binding studies,” Photonics 2, 795 (2015).
[Crossref]

M. C. Frawley, I. Gusachenko, V. G. Truong, M. Sergides, and S. Nic Chormaic, “Selective particle trapping and optical binding in the evanescent field of an optical nanofiber,” Opt. Exp. 22, 16322–16334 (2014).
[Crossref]

Fulbright, R. M.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nature Nanotech. 9, 448–452 (2014).
[Crossref]

Garcés-Chávez, V.

T. Ĉiẑmár, M. Ŝiler, M. Ŝerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Physical Review B 74, 035105 (2006). PRB.
[Crossref]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Geiselmann, M.

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. De Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nature Nanotech. 8, 175–179 (2013).
[Crossref]

Gokhroo, V.

T. Nieddu, V. Gokhroo, and S. Nic Chormaic, “Optical nanofibres and neutral atoms,” Journal of Optics 18, 053001 (2016).
[Crossref]

R. Kumar, V. Gokhroo, K. Deasy, and S. Nic Chormaic, “Autler-townes splitting via frequency up-conversion at ultralow-power levels in cold rb 87 atoms using an optical nanofiber,” Phys. Rev. A 91, 053842 (2015).
[Crossref]

R. Kumar, V. Gokhroo, and S. Nic Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface,” New J. Phys. 17, 123012 (2015).
[Crossref]

Gordon, R.

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14, 853–856 (2014).
[Crossref] [PubMed]

A. Zehtabi-Oskuie, J. G. Bergeron, and R. Gordon, “Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres,” Sci. Rep. 2, 966 (2012).
[Crossref]

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 355–360 (2010).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nature Phys. 5, 915–919 (2009).
[Crossref]

Grivas, C.

G. S. Murugan, M. Belal, C. Grivas, M. Ding, J. S. Wilkinson, and G. Brambilla, “An optical fiber optofluidic particle aspirator,” Appl. Phys. Lett. 105, 101103 (2014).
[Crossref]

Grover, J.

J. Hoffman, S. Ravets, J. Grover, P. Solano, P. Kordell, J. Wong-Campos, L. Orozco, and S. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

Gucciardi, P. G.

O. M. Maragó, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
[Crossref]

Gusachenko, I.

A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. Nic Chormaic, “Higher order microfibre modes for dielectric particle trapping and propulsion,” Sci. Rep. 5, 9077 (2015).
[Crossref] [PubMed]

I. Gusachenko, V. G. Truong, M. C. Frawley, and S. Nic Chormaic, “Optical nanofiber integrated into optical tweezers for in situ fiber probing and optical binding studies,” Photonics 2, 795 (2015).
[Crossref]

M. C. Frawley, I. Gusachenko, V. G. Truong, M. Sergides, and S. Nic Chormaic, “Selective particle trapping and optical binding in the evanescent field of an optical nanofiber,” Opt. Exp. 22, 16322–16334 (2014).
[Crossref]

Hakuta, K.

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113, 143601 (2014).
[Crossref] [PubMed]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Hlubina, P.

Hoffman, J.

J. Hoffman, S. Ravets, J. Grover, P. Solano, P. Kordell, J. Wong-Campos, L. Orozco, and S. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

Hollenbach, U.

Houyou, A.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 355–360 (2010).
[Crossref] [PubMed]

Inman, J. T.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nature Nanotech. 9, 448–452 (2014).
[Crossref]

Jacques, F.

Jannasch, A.

A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat Photon 6, 469–473 (2012). .
[Crossref]

Jing, P.

P. Jing, J. Wu, G. W. Liu, E. G. Keeler, S. H. Pun, and L. Y. Lin, “Photonic crystal optical tweezers with high efficiency for live biological samples and viability characterization,” Sci. Rep. 6, 19924 (2016).
[Crossref] [PubMed]

Jones, D.

D. Jones, J. Franson, and T. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
[Crossref]

Jones, P.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro-and nanoparticles on tapered optical fibers,” J. Quant Spectrosc. Radiat. Transf. 113, 2512–2520 (2012).
[Crossref]

P. Jones, O. Maragó, and G. Volpe, Optical Tweezers: Principles and Applications(Cambridge University Press, 2015).
[Crossref]

Jones, P. H.

O. M. Maragó, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
[Crossref]

Juan, M. L.

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. De Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nature Nanotech. 8, 175–179 (2013).
[Crossref]

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 355–360 (2010).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nature Phys. 5, 915–919 (2009).
[Crossref]

Karásek, V.

O. Brzobohatỳ, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref]

Karczewska, E.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro-and nanoparticles on tapered optical fibers,” J. Quant Spectrosc. Radiat. Transf. 113, 2512–2520 (2012).
[Crossref]

Kato, S.

S. Kato and T. Aoki, “Strong coupling between a trapped single atom and an all-fiber cavity,” Phys. Rev. Lett. 115, 093603 (2015).
[Crossref] [PubMed]

Keeler, E. G.

P. Jing, J. Wu, G. W. Liu, E. G. Keeler, S. H. Pun, and L. Y. Lin, “Photonic crystal optical tweezers with high efficiency for live biological samples and viability characterization,” Sci. Rep. 6, 19924 (2016).
[Crossref] [PubMed]

Kepler, J.

J. Kepler, De cometis libelli tres. (1619).

Kimble, H.

D. Chang, J. I. Cirac, and H. Kimble, “Self-organization of atoms along a nanophotonic waveguide,” Phys. Rev. Lett. 110, 113606 (2013).
[Crossref] [PubMed]

Klug, M.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

Knight, J.

Koppens, F.

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. De Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nature Nanotech. 8, 175–179 (2013).
[Crossref]

Kordell, P.

J. Hoffman, S. Ravets, J. Grover, P. Solano, P. Kordell, J. Wong-Campos, L. Orozco, and S. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

Kotnala, A.

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14, 853–856 (2014).
[Crossref] [PubMed]

Kumar, R.

R. Kumar, V. Gokhroo, K. Deasy, and S. Nic Chormaic, “Autler-townes splitting via frequency up-conversion at ultralow-power levels in cold rb 87 atoms using an optical nanofiber,” Phys. Rev. A 91, 053842 (2015).
[Crossref]

R. Kumar, V. Gokhroo, and S. Nic Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface,” New J. Phys. 17, 123012 (2015).
[Crossref]

Le, V. H.

J. Ward, A. Maimaiti, V. H. Le, and S. Nic Chormaic, “Contributed review: Optical micro-and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

Lei, H.

C. Cheng, X. Xu, H. Lei, and B. Li, “Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded pmma nanofiber,” Sci. Rep. 6, 20433 (2016).
[Crossref] [PubMed]

Li, B.

C. Cheng, X. Xu, H. Lei, and B. Li, “Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded pmma nanofiber,” Sci. Rep. 6, 20433 (2016).
[Crossref] [PubMed]

H. Xin, R. Xu, and B. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2, 818 (2012).
[Crossref] [PubMed]

H. Xin and B. Li, “Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber,” Opt. Exp. 19, 13285–13290 (2011).
[Crossref]

Li, Y.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2, e64 (2013).
[Crossref]

Lin, J.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nature Nanotech. 9, 448–452 (2014).
[Crossref]

Lin, L. Y.

P. Jing, J. Wu, G. W. Liu, E. G. Keeler, S. H. Pun, and L. Y. Lin, “Photonic crystal optical tweezers with high efficiency for live biological samples and viability characterization,” Sci. Rep. 6, 19924 (2016).
[Crossref] [PubMed]

Lipson, M.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nature Nanotech. 9, 448–452 (2014).
[Crossref]

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Exp. 14, 9197–9202 (2006).
[Crossref]

Liu, G. W.

P. Jing, J. Wu, G. W. Liu, E. G. Keeler, S. H. Pun, and L. Y. Lin, “Photonic crystal optical tweezers with high efficiency for live biological samples and viability characterization,” Sci. Rep. 6, 19924 (2016).
[Crossref] [PubMed]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Maimaiti, A.

A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. Nic Chormaic, “Higher order microfibre modes for dielectric particle trapping and propulsion,” Sci. Rep. 5, 9077 (2015).
[Crossref] [PubMed]

J. Ward, A. Maimaiti, V. H. Le, and S. Nic Chormaic, “Contributed review: Optical micro-and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

Maragó, O.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro-and nanoparticles on tapered optical fibers,” J. Quant Spectrosc. Radiat. Transf. 113, 2512–2520 (2012).
[Crossref]

P. Jones, O. Maragó, and G. Volpe, Optical Tweezers: Principles and Applications(Cambridge University Press, 2015).
[Crossref]

Maragó, O. M.

O. M. Maragó, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
[Crossref]

Maslov, A. V.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2, e64 (2013).
[Crossref]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Mazilu, M.

M. Ploschner, T. Cizmar, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
[Crossref] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Mika, F.

O. Brzobohatỳ, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref]

Mitsch, R.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nature Commun. 5, 5713 (2014).
[Crossref]

Mohr, J.

Moore, S. D.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

Müller, J.

J.-B. Béguin, E. Bookjans, S. Christensen, H. Sørensen, J. Müller, E. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Murugan, G. S.

G. S. Murugan, M. Belal, C. Grivas, M. Ding, J. S. Wilkinson, and G. Brambilla, “An optical fiber optofluidic particle aspirator,” Appl. Phys. Lett. 105, 101103 (2014).
[Crossref]

Napiorkowski, M.

Nayak, K. P.

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113, 143601 (2014).
[Crossref] [PubMed]

Neumann, L.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 355–360 (2010).
[Crossref] [PubMed]

Nic Chormaic, S.

T. Nieddu, V. Gokhroo, and S. Nic Chormaic, “Optical nanofibres and neutral atoms,” Journal of Optics 18, 053001 (2016).
[Crossref]

A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. Nic Chormaic, “Higher order microfibre modes for dielectric particle trapping and propulsion,” Sci. Rep. 5, 9077 (2015).
[Crossref] [PubMed]

I. Gusachenko, V. G. Truong, M. C. Frawley, and S. Nic Chormaic, “Optical nanofiber integrated into optical tweezers for in situ fiber probing and optical binding studies,” Photonics 2, 795 (2015).
[Crossref]

M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
[Crossref]

R. Kumar, V. Gokhroo, K. Deasy, and S. Nic Chormaic, “Autler-townes splitting via frequency up-conversion at ultralow-power levels in cold rb 87 atoms using an optical nanofiber,” Phys. Rev. A 91, 053842 (2015).
[Crossref]

R. Kumar, V. Gokhroo, and S. Nic Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface,” New J. Phys. 17, 123012 (2015).
[Crossref]

M. Daly, V. G. Truong, C. Phelan, K. Deasy, and S. Nic Chormaic, “Nanostructured optical nanofibres for atom trapping,” New J. Phys. 16, 053052 (2014).
[Crossref]

M. C. Frawley, I. Gusachenko, V. G. Truong, M. Sergides, and S. Nic Chormaic, “Selective particle trapping and optical binding in the evanescent field of an optical nanofiber,” Opt. Exp. 22, 16322–16334 (2014).
[Crossref]

J. Ward, A. Maimaiti, V. H. Le, and S. Nic Chormaic, “Contributed review: Optical micro-and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

M. Daly, V. G. Truong, and S. Nic Chormaic, “Submicron particle manipulation using slotted tapered optical fibers,” in Proceedings of SPIE 9548 Optical Trapping and Optical Micromanipulation XII, (2015), pp. 954812.

M. Daly, V. G. Truong, and S. Nic Chormaic, “Nanostructured tapered optical fibers for particle trapping,” in Proceedings of SPIE 9507 Micro-structured and Specialty Optical Fibres IV, (2015), pp. 95070E–95070E6.

A. Watkins, V. B. Tiwari, J. M. Ward, K. Deasy, and S. Nic Chormaic, “Observation of zeeman shift in the rubidium d2 line using an optical nanofiber in vapor,” in Proceedings of “8th Ibero American Optics Meeting/11th Latin American Meeting on Optics, Lasers, and Applications,” (International Society for Optics and Photonics, 2013), paper 87850S.

Nieddu, T.

T. Nieddu, V. Gokhroo, and S. Nic Chormaic, “Optical nanofibres and neutral atoms,” Journal of Optics 18, 053001 (2016).
[Crossref]

Noda, S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-q photonic double-heterostructure nanocavity,” Nature Mat. 4, 207–210 (2005).
[Crossref]

Orozco, L.

J. Hoffman, S. Ravets, J. Grover, P. Solano, P. Kordell, J. Wong-Campos, L. Orozco, and S. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

Pang, Y.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 355–360 (2010).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nature Phys. 5, 915–919 (2009).
[Crossref]

Paták, A.

O. Brzobohatỳ, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref]

Patel, R.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro-and nanoparticles on tapered optical fibers,” J. Quant Spectrosc. Radiat. Transf. 113, 2512–2520 (2012).
[Crossref]

Phelan, C.

M. Daly, V. G. Truong, C. Phelan, K. Deasy, and S. Nic Chormaic, “Nanostructured optical nanofibres for atom trapping,” New J. Phys. 16, 053052 (2014).
[Crossref]

Pittman, T.

D. Jones, J. Franson, and T. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
[Crossref]

Ploschner, M.

M. Ploschner, T. Cizmar, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
[Crossref] [PubMed]

Pokorná, Z.

O. Brzobohatỳ, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref]

Polzik, E.

J.-B. Béguin, E. Bookjans, S. Christensen, H. Sørensen, J. Müller, E. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Pun, S. H.

P. Jing, J. Wu, G. W. Liu, E. G. Keeler, S. H. Pun, and L. Y. Lin, “Photonic crystal optical tweezers with high efficiency for live biological samples and viability characterization,” Sci. Rep. 6, 19924 (2016).
[Crossref] [PubMed]

Quidant, R.

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. De Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nature Nanotech. 8, 175–179 (2013).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nature Phys. 5, 915–919 (2009).
[Crossref]

Rafailov, E.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2, e64 (2013).
[Crossref]

Rauschenbeutel, A.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nature Commun. 5, 5713 (2014).
[Crossref]

Ravets, S.

J. Hoffman, S. Ravets, J. Grover, P. Solano, P. Kordell, J. Wong-Campos, L. Orozco, and S. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

Renger, J.

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. De Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nature Nanotech. 8, 175–179 (2013).
[Crossref]

Roldán, É.

É. Roldán, Irreversibility and Dissipation in Microscopic Systems (Springer, 2014).

Rolston, S.

J. Hoffman, S. Ravets, J. Grover, P. Solano, P. Kordell, J. Wong-Campos, L. Orozco, and S. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

Sadgrove, M.

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113, 143601 (2014).
[Crossref] [PubMed]

Saraf, S. N.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nature Nanotech. 9, 448–452 (2014).
[Crossref]

Say, J. M.

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. De Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nature Nanotech. 8, 175–179 (2013).
[Crossref]

Sayrin, C.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nature Commun. 5, 5713 (2014).
[Crossref]

Schaffer, E.

A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat Photon 6, 469–473 (2012). .
[Crossref]

Schmidt, B. S.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Exp. 14, 9197–9202 (2006).
[Crossref]

Schneeweiss, P.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nature Commun. 5, 5713 (2014).
[Crossref]

Sergides, M.

M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
[Crossref]

A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. Nic Chormaic, “Higher order microfibre modes for dielectric particle trapping and propulsion,” Sci. Rep. 5, 9077 (2015).
[Crossref] [PubMed]

M. C. Frawley, I. Gusachenko, V. G. Truong, M. Sergides, and S. Nic Chormaic, “Selective particle trapping and optical binding in the evanescent field of an optical nanofiber,” Opt. Exp. 22, 16322–16334 (2014).
[Crossref]

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro-and nanoparticles on tapered optical fibers,” J. Quant Spectrosc. Radiat. Transf. 113, 2512–2520 (2012).
[Crossref]

Serý, M.

T. Ĉiẑmár, M. Ŝiler, M. Ŝerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Physical Review B 74, 035105 (2006). PRB.
[Crossref]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Sieber, H.

Siler, M.

T. Ĉiẑmár, M. Ŝiler, M. Ŝerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Physical Review B 74, 035105 (2006). PRB.
[Crossref]

Šiler, M.

O. Brzobohatỳ, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref]

Skelton, S.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro-and nanoparticles on tapered optical fibers,” J. Quant Spectrosc. Radiat. Transf. 113, 2512–2520 (2012).
[Crossref]

Solano, P.

J. Hoffman, S. Ravets, J. Grover, P. Solano, P. Kordell, J. Wong-Campos, L. Orozco, and S. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

Soltani, M.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nature Nanotech. 9, 448–452 (2014).
[Crossref]

Song, B.-S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-q photonic double-heterostructure nanocavity,” Nature Mat. 4, 207–210 (2005).
[Crossref]

Sørensen, H.

J.-B. Béguin, E. Bookjans, S. Christensen, H. Sørensen, J. Müller, E. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Svitelskiy, O. V.

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2, e64 (2013).
[Crossref]

Szczurowski, M.

Tiwari, V. B.

A. Watkins, V. B. Tiwari, J. M. Ward, K. Deasy, and S. Nic Chormaic, “Observation of zeeman shift in the rubidium d2 line using an optical nanofiber in vapor,” in Proceedings of “8th Ibero American Optics Meeting/11th Latin American Meeting on Optics, Lasers, and Applications,” (International Society for Optics and Photonics, 2013), paper 87850S.

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Trojek, J.

O. Brzobohatỳ, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref]

Truong, V. G.

I. Gusachenko, V. G. Truong, M. C. Frawley, and S. Nic Chormaic, “Optical nanofiber integrated into optical tweezers for in situ fiber probing and optical binding studies,” Photonics 2, 795 (2015).
[Crossref]

A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. Nic Chormaic, “Higher order microfibre modes for dielectric particle trapping and propulsion,” Sci. Rep. 5, 9077 (2015).
[Crossref] [PubMed]

M. C. Frawley, I. Gusachenko, V. G. Truong, M. Sergides, and S. Nic Chormaic, “Selective particle trapping and optical binding in the evanescent field of an optical nanofiber,” Opt. Exp. 22, 16322–16334 (2014).
[Crossref]

M. Daly, V. G. Truong, C. Phelan, K. Deasy, and S. Nic Chormaic, “Nanostructured optical nanofibres for atom trapping,” New J. Phys. 16, 053052 (2014).
[Crossref]

M. Daly, V. G. Truong, and S. Nic Chormaic, “Nanostructured tapered optical fibers for particle trapping,” in Proceedings of SPIE 9507 Micro-structured and Specialty Optical Fibres IV, (2015), pp. 95070E–95070E6.

M. Daly, V. G. Truong, and S. Nic Chormaic, “Submicron particle manipulation using slotted tapered optical fibers,” in Proceedings of SPIE 9548 Optical Trapping and Optical Micromanipulation XII, (2015), pp. 954812.

Urbanczyk, W.

van Blaaderen, A.

A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat Photon 6, 469–473 (2012). .
[Crossref]

van der Horst, A.

A. van der Horst and N. R. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Exp. 18, 7670–7677 (2010).
[Crossref]

van Hulst, N. F.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 355–360 (2010).
[Crossref] [PubMed]

van Oostrum, P. D. J.

A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat Photon 6, 469–473 (2012). .
[Crossref]

Volpe, G.

O. M. Maragó, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
[Crossref]

P. Jones, O. Maragó, and G. Volpe, Optical Tweezers: Principles and Applications(Cambridge University Press, 2015).
[Crossref]

Wang, M. D.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nature Nanotech. 9, 448–452 (2014).
[Crossref]

Ward, J.

J. Ward, A. Maimaiti, V. H. Le, and S. Nic Chormaic, “Contributed review: Optical micro-and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

Ward, J. M.

A. Watkins, V. B. Tiwari, J. M. Ward, K. Deasy, and S. Nic Chormaic, “Observation of zeeman shift in the rubidium d2 line using an optical nanofiber in vapor,” in Proceedings of “8th Ibero American Optics Meeting/11th Latin American Meeting on Optics, Lasers, and Applications,” (International Society for Optics and Photonics, 2013), paper 87850S.

Watkins, A.

A. Watkins, V. B. Tiwari, J. M. Ward, K. Deasy, and S. Nic Chormaic, “Observation of zeeman shift in the rubidium d2 line using an optical nanofiber in vapor,” in Proceedings of “8th Ibero American Optics Meeting/11th Latin American Meeting on Optics, Lasers, and Applications,” (International Society for Optics and Photonics, 2013), paper 87850S.

Wilkinson, J. S.

G. S. Murugan, M. Belal, C. Grivas, M. Ding, J. S. Wilkinson, and G. Brambilla, “An optical fiber optofluidic particle aspirator,” Appl. Phys. Lett. 105, 101103 (2014).
[Crossref]

Wong-Campos, J.

J. Hoffman, S. Ravets, J. Grover, P. Solano, P. Kordell, J. Wong-Campos, L. Orozco, and S. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

Wu, J.

P. Jing, J. Wu, G. W. Liu, E. G. Keeler, S. H. Pun, and L. Y. Lin, “Photonic crystal optical tweezers with high efficiency for live biological samples and viability characterization,” Sci. Rep. 6, 19924 (2016).
[Crossref] [PubMed]

Xin, H.

H. Xin, R. Xu, and B. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2, 818 (2012).
[Crossref] [PubMed]

H. Xin and B. Li, “Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber,” Opt. Exp. 19, 13285–13290 (2011).
[Crossref]

Xu, R.

H. Xin, R. Xu, and B. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2, 818 (2012).
[Crossref] [PubMed]

Xu, X.

C. Cheng, X. Xu, H. Lei, and B. Li, “Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded pmma nanofiber,” Sci. Rep. 6, 20433 (2016).
[Crossref] [PubMed]

Yalla, R.

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113, 143601 (2014).
[Crossref] [PubMed]

Yang, A. H.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

Zehtabi-Oskuie, A.

A. Zehtabi-Oskuie, J. G. Bergeron, and R. Gordon, “Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres,” Sci. Rep. 2, 966 (2012).
[Crossref]

Zemánek, P.

O. Brzobohatỳ, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref]

T. Ĉiẑmár, M. Ŝiler, M. Ŝerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Physical Review B 74, 035105 (2006). PRB.
[Crossref]

AIP Adv. (1)

J. Hoffman, S. Ravets, J. Grover, P. Solano, P. Kordell, J. Wong-Campos, L. Orozco, and S. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. S. Murugan, M. Belal, C. Grivas, M. Ding, J. S. Wilkinson, and G. Brambilla, “An optical fiber optofluidic particle aspirator,” Appl. Phys. Lett. 105, 101103 (2014).
[Crossref]

J. Quant Spectrosc. Radiat. Transf. (1)

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro-and nanoparticles on tapered optical fibers,” J. Quant Spectrosc. Radiat. Transf. 113, 2512–2520 (2012).
[Crossref]

Journal of Optics (1)

T. Nieddu, V. Gokhroo, and S. Nic Chormaic, “Optical nanofibres and neutral atoms,” Journal of Optics 18, 053001 (2016).
[Crossref]

Laser Photon. Rev. (1)

M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photon. Rev. 9, 309–329 (2015).
[Crossref]

Light: Sci. Appl. (1)

Y. Li, O. V. Svitelskiy, A. V. Maslov, D. Carnegie, E. Rafailov, and V. N. Astratov, “Giant resonant light forces in microspherical photonics,” Light: Sci. Appl. 2, e64 (2013).
[Crossref]

Nano Lett. (3)

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11, 355–360 (2010).
[Crossref] [PubMed]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14, 853–856 (2014).
[Crossref] [PubMed]

M. Ploschner, T. Cizmar, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
[Crossref] [PubMed]

Nat Photon (1)

A. Jannasch, A. F. Demirors, P. D. J. van Oostrum, A. van Blaaderen, and E. Schaffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat Photon 6, 469–473 (2012). .
[Crossref]

Nature (2)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref] [PubMed]

Nature Commun. (1)

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nature Commun. 5, 5713 (2014).
[Crossref]

Nature Mat. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-q photonic double-heterostructure nanocavity,” Nature Mat. 4, 207–210 (2005).
[Crossref]

Nature Nanotech. (3)

O. M. Maragó, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nature Nanotech. 8, 807–819 (2013).
[Crossref]

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nature Nanotech. 9, 448–452 (2014).
[Crossref]

M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. De Abajo, F. Koppens, and R. Quidant, “Three-dimensional optical manipulation of a single electron spin,” Nature Nanotech. 8, 175–179 (2013).
[Crossref]

Nature Phys. (1)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nature Phys. 5, 915–919 (2009).
[Crossref]

New J. Phys. (2)

M. Daly, V. G. Truong, C. Phelan, K. Deasy, and S. Nic Chormaic, “Nanostructured optical nanofibres for atom trapping,” New J. Phys. 16, 053052 (2014).
[Crossref]

R. Kumar, V. Gokhroo, and S. Nic Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface,” New J. Phys. 17, 123012 (2015).
[Crossref]

Opt. Exp. (4)

A. van der Horst and N. R. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Exp. 18, 7670–7677 (2010).
[Crossref]

P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Exp. 14, 9197–9202 (2006).
[Crossref]

M. C. Frawley, I. Gusachenko, V. G. Truong, M. Sergides, and S. Nic Chormaic, “Selective particle trapping and optical binding in the evanescent field of an optical nanofiber,” Opt. Exp. 22, 16322–16334 (2014).
[Crossref]

H. Xin and B. Li, “Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber,” Opt. Exp. 19, 13285–13290 (2011).
[Crossref]

Opt. Lett. (2)

Photonics (1)

I. Gusachenko, V. G. Truong, M. C. Frawley, and S. Nic Chormaic, “Optical nanofiber integrated into optical tweezers for in situ fiber probing and optical binding studies,” Photonics 2, 795 (2015).
[Crossref]

Phys. Rep. (1)

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979).
[Crossref]

Phys. Rev. A (2)

D. Jones, J. Franson, and T. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
[Crossref]

R. Kumar, V. Gokhroo, K. Deasy, and S. Nic Chormaic, “Autler-townes splitting via frequency up-conversion at ultralow-power levels in cold rb 87 atoms using an optical nanofiber,” Phys. Rev. A 91, 053842 (2015).
[Crossref]

Phys. Rev. Lett. (5)

J.-B. Béguin, E. Bookjans, S. Christensen, H. Sørensen, J. Müller, E. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

S. Kato and T. Aoki, “Strong coupling between a trapped single atom and an all-fiber cavity,” Phys. Rev. Lett. 115, 093603 (2015).
[Crossref] [PubMed]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113, 143601 (2014).
[Crossref] [PubMed]

D. Chang, J. I. Cirac, and H. Kimble, “Self-organization of atoms along a nanophotonic waveguide,” Phys. Rev. Lett. 110, 113606 (2013).
[Crossref] [PubMed]

A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40, 729–732 (1978).
[Crossref]

Physical Review B (1)

T. Ĉiẑmár, M. Ŝiler, M. Ŝerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Physical Review B 74, 035105 (2006). PRB.
[Crossref]

Rev. Sci. Instrum. (2)

J. Ward, A. Maimaiti, V. H. Le, and S. Nic Chormaic, “Contributed review: Optical micro-and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

Sci. Rep. (6)

H. Xin, R. Xu, and B. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2, 818 (2012).
[Crossref] [PubMed]

A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. Nic Chormaic, “Higher order microfibre modes for dielectric particle trapping and propulsion,” Sci. Rep. 5, 9077 (2015).
[Crossref] [PubMed]

C. Cheng, X. Xu, H. Lei, and B. Li, “Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded pmma nanofiber,” Sci. Rep. 6, 20433 (2016).
[Crossref] [PubMed]

P. Jing, J. Wu, G. W. Liu, E. G. Keeler, S. H. Pun, and L. Y. Lin, “Photonic crystal optical tweezers with high efficiency for live biological samples and viability characterization,” Sci. Rep. 6, 19924 (2016).
[Crossref] [PubMed]

A. Zehtabi-Oskuie, J. G. Bergeron, and R. Gordon, “Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres,” Sci. Rep. 2, 966 (2012).
[Crossref]

O. Brzobohatỳ, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref]

Other (6)

M. Daly, V. G. Truong, and S. Nic Chormaic, “Submicron particle manipulation using slotted tapered optical fibers,” in Proceedings of SPIE 9548 Optical Trapping and Optical Micromanipulation XII, (2015), pp. 954812.

M. Daly, V. G. Truong, and S. Nic Chormaic, “Nanostructured tapered optical fibers for particle trapping,” in Proceedings of SPIE 9507 Micro-structured and Specialty Optical Fibres IV, (2015), pp. 95070E–95070E6.

A. Watkins, V. B. Tiwari, J. M. Ward, K. Deasy, and S. Nic Chormaic, “Observation of zeeman shift in the rubidium d2 line using an optical nanofiber in vapor,” in Proceedings of “8th Ibero American Optics Meeting/11th Latin American Meeting on Optics, Lasers, and Applications,” (International Society for Optics and Photonics, 2013), paper 87850S.

P. Jones, O. Maragó, and G. Volpe, Optical Tweezers: Principles and Applications(Cambridge University Press, 2015).
[Crossref]

É. Roldán, Irreversibility and Dissipation in Microscopic Systems (Springer, 2014).

J. Kepler, De cometis libelli tres. (1619).

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (2828 KB)      Supplementary video
» Visualization 2: MP4 (4318 KB)      Supplementary video

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a): Representation of the slotted tapered optical fiber (STOF) in a solution of red fluorescent silica nanoparticles. A 63x immersion lens is used to image the system. (b): A schematic showing the STOF section of the optical fiber with the fundamental fiber mode (i) seen at either side of the cavity region and the fundamental STOF mode (ii) at the center. (c) and (d) show typical electric field norm along a line cutting through the origin along y for polarizations parallel to and perpendicular to the slot wall, respectively. The field within the slot can be up to 1.7 times higher than the field at the outer fiber surfaces although variations in the STOF dimensions can drastically alter this. The origin is taken to be at the center of the slot.

Fig. 2
Fig. 2

Optical setup used to trap nanoparticles. 980 nm light from a Ti:sapphire laser is passed through a polarizing beam splitter to split the beam while providing some initial control over the power balance. From here the beams are passed through polarization control optics and finally fiber coupled to the STOF. Transmission data is collected via a photodiode

Fig. 3
Fig. 3

(a): Results of FDTD analysis showing a cross-section of the STOF. The mode evolves from the fundamental mode of the MNF to the fundamental mode of the STOF at the center and back to the fundamental mode of the MNF with little loss. (b): Electric field intensity within the 10 µm × 300 nm slot in a 1.4 µm diameter MNF. The field increases in strength near the slot walls. (c): 1D plot of the electric field across the center of the STOF to show the variation in the field as a function of the distance along the cavity. The field stabilizes at the center of the cavity.

Fig. 4
Fig. 4

(a): Forces on a 200 nm particle moving perpendicularly between the upper and lower walls of a STOF as determined using optical fields from FDTD and FEM calculations and Eqn. 2, compared to a perturbative approach using the optical fields of the cavity in the absence of a particle as modeled using the FEM. 1 W of power was used in all simulations. (b): Longitudinal trapping force for two orthogonal polarization states showing the increased trapping forces for the vertical polarization state.

Fig. 5
Fig. 5

(a) SEM image of a STOF. (b): Microscope image of a trapped fluorescent particle with an outline of the STOF for clarity (see Visualization 1 and Visualization 2). (c) and (d) show SEM images of the fiber after the experiment was performed. Particles can be seen inside the slot was well as on the surface. (e): Particle position versus time along the z-axis of the STOF. The particle is seen to spend most of its time near the slot center. Each pixel was found to correspond to a 100 nm × 100 nm area and Gaussian fits to the particle center enable high resolution tracking. (f): Histogram of the particle positions given in (e) showing bunching at regular intervals.

Fig. 6
Fig. 6

(a) Power spectrum density of the tranmitted signal for 5 mW of trapping power. A corner frequency of 0.6 Hz is measured.(b) Autocorrelation signals at 2 mW, 5 mW and 10 mW. The observed decrease in the slope of the autocorrelation signal at different powers indicates a linear increase in trap strength with power as is expected. (c) Plot of the Spring constant as determined using the autocorrelation measurement vs. the power in the trapping beams. The subsequent plot is linear with respect to power as predicted.

Tables (1)

Tables Icon

Table 1 Trap ’Stiffnesses’ for Varying Input powers as determined from FDTD analysis

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F M S T = S ( T . n ) d a .
F m i n = 1 4 ε 0 V E . E ε r d V ,
F d i p o l e = 1 2 α E 2 ,

Metrics