Abstract

An X-band optically-steered phased array radar is developed to demonstrate high resolution multi-target detection. The beam forming is implemented based on wavelength-swept true time delay (TTD) technique. The beam forming system has a wide direction tuning range of ± 54 degree, low magnitude ripple of ± 0.5 dB and small delay error of 0.13 ps/nm. To further verify performance of the proposed optically-steered phased array radar, three experiments are then carried out to implement the single and multiple target detection. A linearly chirped X-band microwave signal is used as radar signal which is finally compressed at the receiver to improve the detection accuracy. The ranging resolution for multi-target detection is up to 2 cm within the measuring distance over 4 m and the azimuth angle error is less than 4 degree.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution phased array radar imaging by photonics-based broadband digital beamforming

Bindong Gao, Fangzheng Zhang, Ermao Zhao, Daocheng Zhang, and Shilong Pan
Opt. Express 27(9) 13194-13203 (2019)

A prototype high-speed optically-steered X-band phased array antenna

Pengfei Wu, Suning Tang, and Daniel E. Raible
Opt. Express 21(26) 32599-32604 (2013)

Photonic dual RF beam reception of an X band phased array antenna using a photonic crystal fiber-based true-time-delay beamformer

Harish Subbaraman, Maggie Yihong Chen, and Ray T. Chen
Appl. Opt. 47(34) 6448-6452 (2008)

References

  • View by:
  • |
  • |
  • |

  1. C. P. Lai and R. M. Narayanan, “Ultrawideband random noise radar design for through-wall surveillance,” IEEE Trans. Aerosp. Electron. Syst. 46(4), 1716–1730 (2010).
    [Crossref]
  2. Y. Li, A. Rashidinejad, J. M. Wun, D. E. Leaird, J. W. Shi, and A. M. Weiner, “Photonic generation of W-band arbitrary waveforms with high time-bandwidth products enabling 3.9 mm range resolution,” Optica 1(6), 446–453 (2014).
    [Crossref]
  3. W. Li, W. T. Wang, and N. Zhu, “Photonic generation of radio-Frequency waveforms based on dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 6(3), 5500608 (2014).
    [Crossref]
  4. M. Li, C. Wang, W. Li, and J. P. Yao, “An unbalanced temporal pulse-shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Tech. 58(11), 2968–2975 (2010).
    [Crossref]
  5. M. Li, Y. Han, S. L. Pan, and J. P. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photonics Technol. Lett. 23(11), 715–717 (2011).
    [Crossref]
  6. M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically pumped linearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
    [Crossref]
  7. M. Li, J. Azaña, N. H. Zhu, and J. P. Yao, “Recent progresses on optical arbitrary waveform generation,” Frontiers Optoelectron. 7(3), 359–375 (2014).
    [Crossref]
  8. H. Gao, C. Lei, M. Chen, F. Xing, H. Chen, and S. Xie, “A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio,” Opt. Express 21(20), 23107–23115 (2013).
    [Crossref] [PubMed]
  9. J. Capmany and D. Novak, “Microwave photonics combines two words,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  10. L. Venema, “Photonics technologies,” Nat. Insight 424, 809 (2003).
  11. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  12. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref]
  13. M. Li, J. Azaña, and J. P. Yao, “Special topic: all-optical signal processing preface,” Chin. Sci. Bull. 59(22), 2647–2648 (2014).
    [Crossref]
  14. N. Riza, “An acoustooptic-phased-array antenna beamformer for multiple simultaneous beam generation,” IEEE Photonics Technol. Lett. 4(7), 807–809 (1992).
    [Crossref]
  15. I. Yetik and A. Nehorai, “Beamforming using the fractional Fourier transform,” IEEE Trans. Signal Process. 51(6), 1663–1668 (2003).
    [Crossref]
  16. O. Raz, S. Barzilay, R. Rotman, and M. Tur, “Submicrosecond scan-angle switching photonic beamformer with flat RF response in the C and X bands,” J. Lightwave Technol. 26(15), 2774–2781 (2008).
    [Crossref]
  17. H. Subbaraman, M. Y. Chen, and R. T. Chen, “Photonic crystal fiber-based true-time-delay beamformer for multiple RF beam transmission and reception of an X-band phased-array antenna,” J. Lightwave Technol. 26(15), 2803–2809 (2008).
    [Crossref]
  18. H. Jeon and H. Lee, “Photonic true-time delay for phased-array antenna system using dispersion compensation module and a multiwavelength fiber laser,” J. Opt. Soc. Korea 18(4), 406–413 (2014).
    [Crossref]
  19. P. Wu, S. Tang, and D. E. Raible, “A prototype high-speed optically-steered X-band phased array antenna,” Opt. Express 21(26), 32599–32604 (2013).
    [Crossref] [PubMed]
  20. A. L. Yu, W. W. Zou, S. G. Li, and J. P. Chen, “A multi-channel multi-bit programmable photonic beamformer based on cascaded DWDM,” IEEE Photonics J. 6(4), 7902310 (2014).
  21. O. Raz, R. Rotman, and M. Tur, “Wavelength-controlled photonic true time delay for wide-band applications,” IEEE Photonics Technol. Lett. 17(5), 1076–1078 (2005).
    [Crossref]
  22. X. Ye, F. Zhang, and S. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express 23(8), 10002–10008 (2015).
    [Crossref] [PubMed]
  23. Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42(13), 2273–2277 (2003).
    [Crossref] [PubMed]
  24. C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time-delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
    [Crossref]
  25. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
    [Crossref]
  26. S. Mano and T. Katagi, “A method for measuring amplitude and phase of each radiating element of a phased array antenna,” Electron. Commun. 64(5), 58–64 (1982).
    [Crossref]
  27. D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).
  28. W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
    [Crossref] [PubMed]
  29. F. Zhang, X. Ge, B. Gao, and S. Pan, “Phase-coded microwave signal generation based on a single electro-optical modulator and its application in accurate distance measurement,” Opt. Express 23(17), 21867–21874 (2015).
    [Crossref] [PubMed]
  30. J. Zheng, H. Wang, J. Fu, L. Wei, S. Pan, L. Wang, J. Liu, and N. Zhu, “Fiber-distributed ultra-wideband noise radar with steerable power spectrum and colorless base station,” Opt. Express 22(5), 4896–4907 (2014).
    [Crossref] [PubMed]

2016 (1)

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (8)

A. L. Yu, W. W. Zou, S. G. Li, and J. P. Chen, “A multi-channel multi-bit programmable photonic beamformer based on cascaded DWDM,” IEEE Photonics J. 6(4), 7902310 (2014).

J. Zheng, H. Wang, J. Fu, L. Wei, S. Pan, L. Wang, J. Liu, and N. Zhu, “Fiber-distributed ultra-wideband noise radar with steerable power spectrum and colorless base station,” Opt. Express 22(5), 4896–4907 (2014).
[Crossref] [PubMed]

Y. Li, A. Rashidinejad, J. M. Wun, D. E. Leaird, J. W. Shi, and A. M. Weiner, “Photonic generation of W-band arbitrary waveforms with high time-bandwidth products enabling 3.9 mm range resolution,” Optica 1(6), 446–453 (2014).
[Crossref]

W. Li, W. T. Wang, and N. Zhu, “Photonic generation of radio-Frequency waveforms based on dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 6(3), 5500608 (2014).
[Crossref]

M. Li, J. Azaña, N. H. Zhu, and J. P. Yao, “Recent progresses on optical arbitrary waveform generation,” Frontiers Optoelectron. 7(3), 359–375 (2014).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

M. Li, J. Azaña, and J. P. Yao, “Special topic: all-optical signal processing preface,” Chin. Sci. Bull. 59(22), 2647–2648 (2014).
[Crossref]

H. Jeon and H. Lee, “Photonic true-time delay for phased-array antenna system using dispersion compensation module and a multiwavelength fiber laser,” J. Opt. Soc. Korea 18(4), 406–413 (2014).
[Crossref]

2013 (3)

2012 (1)

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).

2011 (2)

M. Li, Y. Han, S. L. Pan, and J. P. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photonics Technol. Lett. 23(11), 715–717 (2011).
[Crossref]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically pumped linearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

2010 (2)

M. Li, C. Wang, W. Li, and J. P. Yao, “An unbalanced temporal pulse-shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Tech. 58(11), 2968–2975 (2010).
[Crossref]

C. P. Lai and R. M. Narayanan, “Ultrawideband random noise radar design for through-wall surveillance,” IEEE Trans. Aerosp. Electron. Syst. 46(4), 1716–1730 (2010).
[Crossref]

2009 (1)

2008 (2)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two words,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2005 (1)

O. Raz, R. Rotman, and M. Tur, “Wavelength-controlled photonic true time delay for wide-band applications,” IEEE Photonics Technol. Lett. 17(5), 1076–1078 (2005).
[Crossref]

2003 (3)

Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42(13), 2273–2277 (2003).
[Crossref] [PubMed]

I. Yetik and A. Nehorai, “Beamforming using the fractional Fourier transform,” IEEE Trans. Signal Process. 51(6), 1663–1668 (2003).
[Crossref]

L. Venema, “Photonics technologies,” Nat. Insight 424, 809 (2003).

1992 (1)

N. Riza, “An acoustooptic-phased-array antenna beamformer for multiple simultaneous beam generation,” IEEE Photonics Technol. Lett. 4(7), 807–809 (1992).
[Crossref]

1991 (1)

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

1982 (1)

S. Mano and T. Katagi, “A method for measuring amplitude and phase of each radiating element of a phased array antenna,” Electron. Commun. 64(5), 58–64 (1982).
[Crossref]

Azaña, J.

M. Li, J. Azaña, N. H. Zhu, and J. P. Yao, “Recent progresses on optical arbitrary waveform generation,” Frontiers Optoelectron. 7(3), 359–375 (2014).
[Crossref]

M. Li, J. Azaña, and J. P. Yao, “Special topic: all-optical signal processing preface,” Chin. Sci. Bull. 59(22), 2647–2648 (2014).
[Crossref]

Barzilay, S.

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Bernstein, N.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two words,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Chen, H.

Chen, J.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Chen, J. P.

A. L. Yu, W. W. Zou, S. G. Li, and J. P. Chen, “A multi-channel multi-bit programmable photonic beamformer based on cascaded DWDM,” IEEE Photonics J. 6(4), 7902310 (2014).

Chen, M.

Chen, M. Y.

Chen, R. T.

Cui, Y.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Fan, C.

C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time-delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
[Crossref]

Fu, J.

Gao, B.

Gao, H.

Gao, X. L.

C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time-delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
[Crossref]

Ge, X.

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Grodensky, D.

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).

Gu, W. Y.

C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time-delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
[Crossref]

Han, Y.

M. Li, Y. Han, S. L. Pan, and J. P. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photonics Technol. Lett. 23(11), 715–717 (2011).
[Crossref]

Huang, S. G.

C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time-delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
[Crossref]

Jeon, H.

Katagi, T.

S. Mano and T. Katagi, “A method for measuring amplitude and phase of each radiating element of a phased array antenna,” Electron. Commun. 64(5), 58–64 (1982).
[Crossref]

Kravitz, D.

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Lai, C. P.

C. P. Lai and R. M. Narayanan, “Ultrawideband random noise radar design for through-wall surveillance,” IEEE Trans. Aerosp. Electron. Syst. 46(4), 1716–1730 (2010).
[Crossref]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Leaird, D. E.

Lee, H.

Lee, J. J.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Lei, C.

Li, M.

M. Li, J. Azaña, and J. P. Yao, “Special topic: all-optical signal processing preface,” Chin. Sci. Bull. 59(22), 2647–2648 (2014).
[Crossref]

M. Li, J. Azaña, N. H. Zhu, and J. P. Yao, “Recent progresses on optical arbitrary waveform generation,” Frontiers Optoelectron. 7(3), 359–375 (2014).
[Crossref]

M. Li, Y. Han, S. L. Pan, and J. P. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photonics Technol. Lett. 23(11), 715–717 (2011).
[Crossref]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically pumped linearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

M. Li, C. Wang, W. Li, and J. P. Yao, “An unbalanced temporal pulse-shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Tech. 58(11), 2968–2975 (2010).
[Crossref]

Li, S. G.

A. L. Yu, W. W. Zou, S. G. Li, and J. P. Chen, “A multi-channel multi-bit programmable photonic beamformer based on cascaded DWDM,” IEEE Photonics J. 6(4), 7902310 (2014).

Li, W.

W. Li, W. T. Wang, and N. Zhu, “Photonic generation of radio-Frequency waveforms based on dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 6(3), 5500608 (2014).
[Crossref]

M. Li, C. Wang, W. Li, and J. P. Yao, “An unbalanced temporal pulse-shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Tech. 58(11), 2968–2975 (2010).
[Crossref]

Li, Y.

Liu, J.

Liu, Y.

Long, X.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Mano, S.

S. Mano and T. Katagi, “A method for measuring amplitude and phase of each radiating element of a phased array antenna,” Electron. Commun. 64(5), 58–64 (1982).
[Crossref]

Narayanan, R. M.

C. P. Lai and R. M. Narayanan, “Ultrawideband random noise radar design for through-wall surveillance,” IEEE Trans. Aerosp. Electron. Syst. 46(4), 1716–1730 (2010).
[Crossref]

Nehorai, A.

I. Yetik and A. Nehorai, “Beamforming using the fractional Fourier transform,” IEEE Trans. Signal Process. 51(6), 1663–1668 (2003).
[Crossref]

Newberg, I. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Ng, W.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two words,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Pan, S.

Pan, S. L.

M. Li, Y. Han, S. L. Pan, and J. P. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photonics Technol. Lett. 23(11), 715–717 (2011).
[Crossref]

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Raible, D. E.

Rashidinejad, A.

Raz, O.

O. Raz, S. Barzilay, R. Rotman, and M. Tur, “Submicrosecond scan-angle switching photonic beamformer with flat RF response in the C and X bands,” J. Lightwave Technol. 26(15), 2774–2781 (2008).
[Crossref]

O. Raz, R. Rotman, and M. Tur, “Wavelength-controlled photonic true time delay for wide-band applications,” IEEE Photonics Technol. Lett. 17(5), 1076–1078 (2005).
[Crossref]

Riza, N.

N. Riza, “An acoustooptic-phased-array antenna beamformer for multiple simultaneous beam generation,” IEEE Photonics Technol. Lett. 4(7), 807–809 (1992).
[Crossref]

Rotman, R.

O. Raz, S. Barzilay, R. Rotman, and M. Tur, “Submicrosecond scan-angle switching photonic beamformer with flat RF response in the C and X bands,” J. Lightwave Technol. 26(15), 2774–2781 (2008).
[Crossref]

O. Raz, R. Rotman, and M. Tur, “Wavelength-controlled photonic true time delay for wide-band applications,” IEEE Photonics Technol. Lett. 17(5), 1076–1078 (2005).
[Crossref]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Shi, J. W.

Subbaraman, H.

Tang, S.

Tangonan, G. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Tur, M.

O. Raz, S. Barzilay, R. Rotman, and M. Tur, “Submicrosecond scan-angle switching photonic beamformer with flat RF response in the C and X bands,” J. Lightwave Technol. 26(15), 2774–2781 (2008).
[Crossref]

O. Raz, R. Rotman, and M. Tur, “Wavelength-controlled photonic true time delay for wide-band applications,” IEEE Photonics Technol. Lett. 17(5), 1076–1078 (2005).
[Crossref]

Venema, L.

L. Venema, “Photonics technologies,” Nat. Insight 424, 809 (2003).

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Walston, A. A.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Wang, C.

M. Li, C. Wang, W. Li, and J. P. Yao, “An unbalanced temporal pulse-shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Tech. 58(11), 2968–2975 (2010).
[Crossref]

Wang, H.

Wang, L.

Wang, W. T.

W. Li, W. T. Wang, and N. Zhu, “Photonic generation of radio-Frequency waveforms based on dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 6(3), 5500608 (2014).
[Crossref]

Wei, L.

Weiner, A. M.

Wu, P.

Wun, J. M.

Xie, S.

Xing, F.

Yang, J.

Yao, J.

Yao, J. P.

M. Li, J. Azaña, and J. P. Yao, “Special topic: all-optical signal processing preface,” Chin. Sci. Bull. 59(22), 2647–2648 (2014).
[Crossref]

M. Li, J. Azaña, N. H. Zhu, and J. P. Yao, “Recent progresses on optical arbitrary waveform generation,” Frontiers Optoelectron. 7(3), 359–375 (2014).
[Crossref]

M. Li, Y. Han, S. L. Pan, and J. P. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photonics Technol. Lett. 23(11), 715–717 (2011).
[Crossref]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically pumped linearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

M. Li, C. Wang, W. Li, and J. P. Yao, “An unbalanced temporal pulse-shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Tech. 58(11), 2968–2975 (2010).
[Crossref]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Ye, X.

Yetik, I.

I. Yetik and A. Nehorai, “Beamforming using the fractional Fourier transform,” IEEE Trans. Signal Process. 51(6), 1663–1668 (2003).
[Crossref]

Yu, A. L.

A. L. Yu, W. W. Zou, S. G. Li, and J. P. Chen, “A multi-channel multi-bit programmable photonic beamformer based on cascaded DWDM,” IEEE Photonics J. 6(4), 7902310 (2014).

Zadok, A.

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).

Zhang, F.

Zhang, H.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Zhang, H. Y.

C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time-delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
[Crossref]

Zhang, S.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Zheng, J.

Zhou, J.

C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time-delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
[Crossref]

Zhu, N.

W. Li, W. T. Wang, and N. Zhu, “Photonic generation of radio-Frequency waveforms based on dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 6(3), 5500608 (2014).
[Crossref]

J. Zheng, H. Wang, J. Fu, L. Wei, S. Pan, L. Wang, J. Liu, and N. Zhu, “Fiber-distributed ultra-wideband noise radar with steerable power spectrum and colorless base station,” Opt. Express 22(5), 4896–4907 (2014).
[Crossref] [PubMed]

Zhu, N. H.

M. Li, J. Azaña, N. H. Zhu, and J. P. Yao, “Recent progresses on optical arbitrary waveform generation,” Frontiers Optoelectron. 7(3), 359–375 (2014).
[Crossref]

Zou, W.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Zou, W. W.

A. L. Yu, W. W. Zou, S. G. Li, and J. P. Chen, “A multi-channel multi-bit programmable photonic beamformer based on cascaded DWDM,” IEEE Photonics J. 6(4), 7902310 (2014).

Appl. Opt. (1)

Chin. Sci. Bull. (1)

M. Li, J. Azaña, and J. P. Yao, “Special topic: all-optical signal processing preface,” Chin. Sci. Bull. 59(22), 2647–2648 (2014).
[Crossref]

Electron. Commun. (1)

S. Mano and T. Katagi, “A method for measuring amplitude and phase of each radiating element of a phased array antenna,” Electron. Commun. 64(5), 58–64 (1982).
[Crossref]

Frontiers Optoelectron. (1)

M. Li, J. Azaña, N. H. Zhu, and J. P. Yao, “Recent progresses on optical arbitrary waveform generation,” Frontiers Optoelectron. 7(3), 359–375 (2014).
[Crossref]

IEEE Photonics J. (2)

W. Li, W. T. Wang, and N. Zhu, “Photonic generation of radio-Frequency waveforms based on dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 6(3), 5500608 (2014).
[Crossref]

A. L. Yu, W. W. Zou, S. G. Li, and J. P. Chen, “A multi-channel multi-bit programmable photonic beamformer based on cascaded DWDM,” IEEE Photonics J. 6(4), 7902310 (2014).

IEEE Photonics Technol. Lett. (4)

O. Raz, R. Rotman, and M. Tur, “Wavelength-controlled photonic true time delay for wide-band applications,” IEEE Photonics Technol. Lett. 17(5), 1076–1078 (2005).
[Crossref]

N. Riza, “An acoustooptic-phased-array antenna beamformer for multiple simultaneous beam generation,” IEEE Photonics Technol. Lett. 4(7), 807–809 (1992).
[Crossref]

M. Li, Y. Han, S. L. Pan, and J. P. Yao, “Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system,” IEEE Photonics Technol. Lett. 23(11), 715–717 (2011).
[Crossref]

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).

IEEE Trans. Aerosp. Electron. Syst. (1)

C. P. Lai and R. M. Narayanan, “Ultrawideband random noise radar design for through-wall surveillance,” IEEE Trans. Aerosp. Electron. Syst. 46(4), 1716–1730 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically pumped linearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

M. Li, C. Wang, W. Li, and J. P. Yao, “An unbalanced temporal pulse-shaping system for chirped microwave waveform generation,” IEEE Trans. Microw. Theory Tech. 58(11), 2968–2975 (2010).
[Crossref]

IEEE Trans. Signal Process. (1)

I. Yetik and A. Nehorai, “Beamforming using the fractional Fourier transform,” IEEE Trans. Signal Process. 51(6), 1663–1668 (2003).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Korea (1)

Nat. Insight (1)

L. Venema, “Photonics technologies,” Nat. Insight 424, 809 (2003).

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two words,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

C. Fan, S. G. Huang, X. L. Gao, J. Zhou, W. Y. Gu, and H. Y. Zhang, “Compact high frequency true-time-delay beamformer using bidirectional reflectance of the fiber gratings,” Opt. Fiber Technol. 19(1), 60–65 (2013).
[Crossref]

Optica (1)

Sci. Rep. (1)

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic architecture of the proposed optically-steered phased array radar. TLS: tunable laser source; MZM: Mach-Zehnder modulator; LNA: low-noise amplifier; EDFA: erbium-doped optical fiber amplifier; PS: optical power splitter; DCF: dispersion compensation fiber; SMF: single mode fiber; PD: photodetector; PT: phase trimmer; ATT: attenuator.
Fig. 2
Fig. 2 Time delays of the DCF-based TTD units. (a) The measurement time delays of the TTD. (b) The time delay difference of the TTD.
Fig. 3
Fig. 3 X-band amplitude characteristic for eight paths through the TTD device.
Fig. 4
Fig. 4 Beam steered angles at different frequencies.
Fig. 5
Fig. 5 Single-target detection experiment. (a) Schematic diagram, AWG: Arbitrary Waveform Generator; PS: power splitter; OSC: oscilloscope. (b) Experimental layout of single-target detection.
Fig. 6
Fig. 6 Measurement results of the single-target detection with the wavelength of 1545 nm. (a) The reference signal. (b) The received signal. (c)-(f) The received echo signal when the target distance is 1.25 m, 1.65 m, 2.95 m, 3.95 m. (g) Normalized cross correlation. (h) The target distance.
Fig. 7
Fig. 7 Measurement results with the angle 48 degree. (a)-(d) The received signal when the wavelength is 1550 nm, 1554 nm, 1557 nm and 1560 nm. (e)-(h) The results after matched filtering processing between (a)-(d) and the reference signal when the wavelength is 1550 nm, 1554 nm, 1557 nm and 1560 nm. (i) The target distance ~(g).
Fig. 8
Fig. 8 Double-target detection experiment. (a) Schematic diagram of dual-target detection. (b) Experimental layout of dual-target detection.
Fig. 9
Fig. 9 Experimental results. (a)-(d) The received signals when the distance between dual target is 1.9 cm, 3.2 cm, 4.5 cm and 6 cm. (e)-(h) The cross-correlation results when the separated distances are 1.9 cm, 3.2 cm, 4.5 cm and 6.0 cm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

τ i = L i λ 0 λ m D D C F ( λ ) d λ + ( L L i ) λ 0 λ m D S M F ( λ ) d λ , ( i = 1 , 2 , 3 , 8 )
Δ τ = ( L i + 1 L i ) λ 0 λ m ( D D C F ( λ ) D S M F ( λ ) ) d λ , ( i = 1 , 2 , 3 , 7 )
θ = arc sin ( c Δ τ d )
S = cos ( 2 π f 0 t + π R t 2 )
S r = cos ( 2 π f 0 t + π R t 2 ) , S b = cos ( 2 π f 0 t ( t + Δ t + Δ τ ) + π R ( t + Δ t + Δ τ ) 2 + φ )
S x c o r r ( S r , S b )

Metrics