Abstract

A compact and portable optofluidic microresonator has been fabricated and characterized. It is based on a Fabry-Perot microcavity consisting essentially of two tailored dichroic Bragg mirrors prepared by reactive magnetron sputtering deposition. The microresonator has been filled with an ethanol solution of Nile-Blue dye. Infrared laser emission has been measured with a pump threshold as low as 0.12 MW/cm2 and an external energy conversion efficiency of 41%. The application of the device as a temperature and a chemical sensor is demonstrated. Small temperature variations as well as small amount of water concentrations in the liquid laser medium are detected as a shift of the resonant laser modes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of various excitation and detection schemes for dye-doped polymeric whispering gallery mode micro-lasers

Tobias Siegle, Jonas Kellerer, Marielle Bonenberger, Sarah Krämmer, Carolin Klusmann, Marius Müller, and Heinz Kalt
Opt. Express 26(3) 3579-3593 (2018)

Robust label-free biosensing using microdisk laser arrays with on-chip references

S. F. Wondimu, M. Hippler, C. Hussal, A. Hofmann, S. Krämmer, J. Lahann, H. Kalt, W. Freude, and C. Koos
Opt. Express 26(3) 3161-3173 (2018)

Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber

Richard Zeltner, Riccardo Pennetta, Shangran Xie, and Philip St.J. Russell
Opt. Lett. 43(7) 1479-1482 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. P. Schäfer, W. Schmidt, and J. Volze, “Organic dye solution laser,” Appl. Phys. Lett. 9(8), 306–309 (1966).
    [Crossref]
  2. M. J. Weber, Handbook of Laser Science and Technology Supplement 2: Optical Materials (Laser & Optical Science & Technology) (CRC, 1995).
  3. C. Sanchez, B. Lebeau, F. Chaput, and J.-P. Boilot, “Optical properties of functional hybrid organic-inorganic nanocomposites,” Adv. Mater. 15(23), 1969–1994 (2003).
    [Crossref]
  4. S. Chénais and S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
    [Crossref]
  5. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
    [Crossref]
  6. W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
    [Crossref] [PubMed]
  7. M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
    [Crossref]
  8. T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
    [Crossref] [PubMed]
  9. X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
    [Crossref] [PubMed]
  10. Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics 4(4), 043002 (2010).
    [Crossref] [PubMed]
  11. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  12. B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
    [Crossref]
  13. Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006).
    [Crossref] [PubMed]
  14. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
    [Crossref] [PubMed]
  15. S. I. Shopova, H. Y. Zhou, X. D. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
    [Crossref]
  16. Y. Gong, M. Zhang, C. Gong, Y. Wu, Y. Rao, and X. Fan, “Sensitive optofluidic flow rate sensor based on laser heating and microring resonator,” Microfluid. Nanofluidics 19(6), 1497–1505 (2015).
    [Crossref]
  17. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
    [PubMed]
  18. Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14(24), 4590–4595 (2014).
    [Crossref] [PubMed]
  19. Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
    [Crossref] [PubMed]
  20. F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “Whispering gallery mode laser based on antitumor drug-dye complex gain medium,” Opt. Lett. 37(22), 4756–4758 (2012).
    [Crossref] [PubMed]
  21. F. J. Duarte, High-Power Dye Lasers (Springer Verlag, 1991), Ch. 4.
  22. S. Balslev and A. Kristensen, “Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments,” Opt. Express 13(1), 344–351 (2005).
    [Crossref] [PubMed]
  23. Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
    [Crossref]
  24. Q. Kou, I. Yesilyurt, G. Escalier, J. C. Galas, L. Coureau, and Y. Chen, “Microfluidic dye laser integration in a lab-on-a-chip device,” Proc. SPIE 5641, 112–115 (2004).
    [Crossref]
  25. F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “High efficiency amplified spontaneous emission from a fluorescent anticancer drug–dye complex,” Org. Electron. 14(5), 1225–1230 (2013).
    [Crossref]
  26. B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
    [Crossref]
  27. C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
    [Crossref]
  28. L. L. Martín, C. Pérez-Rodríguez, P. Haro-González, and I. R. Martín, “Whispering gallery modes in a glass microsphere as a function of temperature,” Opt. Express 19(25), 25792–25798 (2011).
    [Crossref] [PubMed]
  29. R. J. Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: influence of intermolecular interactions,” Eur Phys J E Soft Matter 30(1), 19–26 (2009).
    [Crossref] [PubMed]
  30. F. Sedlmeir, R. Zeltner, G. Leuchs, and H. G. L. Schwefel, “High-Q MgF₂ whispering gallery mode resonators for refractometric sensing in aqueous environment,” Opt. Express 22(25), 30934–30942 (2014).
    [Crossref] [PubMed]
  31. V. D. Ta, R. Chen, D. M. Nguyen, and H. D. Sun, “Application of selfassembled hemispherical microlasers as gas sensors,” Appl. Phys. Lett. 102(3), 031107 (2013).
    [Crossref]
  32. H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
    [Crossref]

2015 (4)

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Y. Gong, M. Zhang, C. Gong, Y. Wu, Y. Rao, and X. Fan, “Sensitive optofluidic flow rate sensor based on laser heating and microring resonator,” Microfluid. Nanofluidics 19(6), 1497–1505 (2015).
[Crossref]

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[PubMed]

2014 (3)

Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14(24), 4590–4595 (2014).
[Crossref] [PubMed]

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

F. Sedlmeir, R. Zeltner, G. Leuchs, and H. G. L. Schwefel, “High-Q MgF₂ whispering gallery mode resonators for refractometric sensing in aqueous environment,” Opt. Express 22(25), 30934–30942 (2014).
[Crossref] [PubMed]

2013 (2)

V. D. Ta, R. Chen, D. M. Nguyen, and H. D. Sun, “Application of selfassembled hemispherical microlasers as gas sensors,” Appl. Phys. Lett. 102(3), 031107 (2013).
[Crossref]

F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “High efficiency amplified spontaneous emission from a fluorescent anticancer drug–dye complex,” Org. Electron. 14(5), 1225–1230 (2013).
[Crossref]

2012 (2)

2011 (4)

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

L. L. Martín, C. Pérez-Rodríguez, P. Haro-González, and I. R. Martín, “Whispering gallery modes in a glass microsphere as a function of temperature,” Opt. Express 19(25), 25792–25798 (2011).
[Crossref] [PubMed]

2010 (4)

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics 4(4), 043002 (2010).
[Crossref] [PubMed]

2009 (2)

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

R. J. Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: influence of intermolecular interactions,” Eur Phys J E Soft Matter 30(1), 19–26 (2009).
[Crossref] [PubMed]

2007 (2)

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

S. I. Shopova, H. Y. Zhou, X. D. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

2006 (2)

Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
[Crossref]

Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

Q. Kou, I. Yesilyurt, G. Escalier, J. C. Galas, L. Coureau, and Y. Chen, “Microfluidic dye laser integration in a lab-on-a-chip device,” Proc. SPIE 5641, 112–115 (2004).
[Crossref]

2003 (2)

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

C. Sanchez, B. Lebeau, F. Chaput, and J.-P. Boilot, “Optical properties of functional hybrid organic-inorganic nanocomposites,” Adv. Mater. 15(23), 1969–1994 (2003).
[Crossref]

1966 (1)

F. P. Schäfer, W. Schmidt, and J. Volze, “Organic dye solution laser,” Appl. Phys. Lett. 9(8), 306–309 (1966).
[Crossref]

Arnold, S.

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Balslev, S.

Becker, H.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Bog, U.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Boilot, J.-P.

C. Sanchez, B. Lebeau, F. Chaput, and J.-P. Boilot, “Optical properties of functional hybrid organic-inorganic nanocomposites,” Adv. Mater. 15(23), 1969–1994 (2003).
[Crossref]

Boto, A.

F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “High efficiency amplified spontaneous emission from a fluorescent anticancer drug–dye complex,” Org. Electron. 14(5), 1225–1230 (2013).
[Crossref]

F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “Whispering gallery mode laser based on antitumor drug-dye complex gain medium,” Opt. Lett. 37(22), 4756–4758 (2012).
[Crossref] [PubMed]

Chan, H. L. W.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics 4(4), 043002 (2010).
[Crossref] [PubMed]

Chaput, F.

C. Sanchez, B. Lebeau, F. Chaput, and J.-P. Boilot, “Optical properties of functional hybrid organic-inorganic nanocomposites,” Adv. Mater. 15(23), 1969–1994 (2003).
[Crossref]

Chen, J.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Chen, Q.

Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14(24), 4590–4595 (2014).
[Crossref] [PubMed]

Chen, R.

V. D. Ta, R. Chen, D. M. Nguyen, and H. D. Sun, “Application of selfassembled hemispherical microlasers as gas sensors,” Appl. Phys. Lett. 102(3), 031107 (2013).
[Crossref]

Chen, Y.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics 4(4), 043002 (2010).
[Crossref] [PubMed]

Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
[Crossref]

Q. Kou, I. Yesilyurt, G. Escalier, J. C. Galas, L. Coureau, and Y. Chen, “Microfluidic dye laser integration in a lab-on-a-chip device,” Proc. SPIE 5641, 112–115 (2004).
[Crossref]

Chénais, S.

S. Chénais and S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[Crossref]

Coureau, L.

Q. Kou, I. Yesilyurt, G. Escalier, J. C. Galas, L. Coureau, and Y. Chen, “Microfluidic dye laser integration in a lab-on-a-chip device,” Proc. SPIE 5641, 112–115 (2004).
[Crossref]

Dale, P. S.

Díaz, M.

F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “High efficiency amplified spontaneous emission from a fluorescent anticancer drug–dye complex,” Org. Electron. 14(5), 1225–1230 (2013).
[Crossref]

F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “Whispering gallery mode laser based on antitumor drug-dye complex gain medium,” Opt. Lett. 37(22), 4756–4758 (2012).
[Crossref] [PubMed]

Dong, C.-H.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Escalier, G.

Q. Kou, I. Yesilyurt, G. Escalier, J. C. Galas, L. Coureau, and Y. Chen, “Microfluidic dye laser integration in a lab-on-a-chip device,” Proc. SPIE 5641, 112–115 (2004).
[Crossref]

Fan, X.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Y. Gong, M. Zhang, C. Gong, Y. Wu, Y. Rao, and X. Fan, “Sensitive optofluidic flow rate sensor based on laser heating and microring resonator,” Microfluid. Nanofluidics 19(6), 1497–1505 (2015).
[Crossref]

Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14(24), 4590–4595 (2014).
[Crossref] [PubMed]

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

Fan, X. D.

S. I. Shopova, H. Y. Zhou, X. D. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Foreman, M. R.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[PubMed]

Forget, S.

S. Chénais and S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[Crossref]

Gaddam, V. R.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Galas, J. C.

Q. Kou, I. Yesilyurt, G. Escalier, J. C. Galas, L. Coureau, and Y. Chen, “Microfluidic dye laser integration in a lab-on-a-chip device,” Proc. SPIE 5641, 112–115 (2004).
[Crossref]

Gather, M. C.

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

Gong, C.

Y. Gong, M. Zhang, C. Gong, Y. Wu, Y. Rao, and X. Fan, “Sensitive optofluidic flow rate sensor based on laser heating and microring resonator,” Microfluid. Nanofluidics 19(6), 1497–1505 (2015).
[Crossref]

Gong, Q.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Gong, Y.

Y. Gong, M. Zhang, C. Gong, Y. Wu, Y. Rao, and X. Fan, “Sensitive optofluidic flow rate sensor based on laser heating and microring resonator,” Microfluid. Nanofluidics 19(6), 1497–1505 (2015).
[Crossref]

Guo, G.-C.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Han, Z.-F.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Haro-González, P.

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

He, L.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Helbo, B.

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Jiang, X.-F.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Kalt, H.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Koeber, S.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Koos, C.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Kou, Q.

Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
[Crossref]

Q. Kou, I. Yesilyurt, G. Escalier, J. C. Galas, L. Coureau, and Y. Chen, “Microfluidic dye laser integration in a lab-on-a-chip device,” Proc. SPIE 5641, 112–115 (2004).
[Crossref]

Kraemmer, S.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Kristensen, A.

S. Balslev and A. Kristensen, “Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments,” Opt. Express 13(1), 344–351 (2005).
[Crossref] [PubMed]

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Krüger, J. K.

R. J. Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: influence of intermolecular interactions,” Eur Phys J E Soft Matter 30(1), 19–26 (2009).
[Crossref] [PubMed]

Lahoz, F.

F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “High efficiency amplified spontaneous emission from a fluorescent anticancer drug–dye complex,” Org. Electron. 14(5), 1225–1230 (2013).
[Crossref]

F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “Whispering gallery mode laser based on antitumor drug-dye complex gain medium,” Opt. Lett. 37(22), 4756–4758 (2012).
[Crossref] [PubMed]

Lebeau, B.

C. Sanchez, B. Lebeau, F. Chaput, and J.-P. Boilot, “Optical properties of functional hybrid organic-inorganic nanocomposites,” Adv. Mater. 15(23), 1969–1994 (2003).
[Crossref]

Lei, L.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics 4(4), 043002 (2010).
[Crossref] [PubMed]

Leuchs, G.

Li, B.-B.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Li, H.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics 4(4), 043002 (2010).
[Crossref] [PubMed]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

Li, Y.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Li, Z.

Liu, S.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

López, D.

F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “High efficiency amplified spontaneous emission from a fluorescent anticancer drug–dye complex,” Org. Electron. 14(5), 1225–1230 (2013).
[Crossref]

F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “Whispering gallery mode laser based on antitumor drug-dye complex gain medium,” Opt. Lett. 37(22), 4756–4758 (2012).
[Crossref] [PubMed]

Mappes, T.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Marrero-Alonso, J.

F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “High efficiency amplified spontaneous emission from a fluorescent anticancer drug–dye complex,” Org. Electron. 14(5), 1225–1230 (2013).
[Crossref]

F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “Whispering gallery mode laser based on antitumor drug-dye complex gain medium,” Opt. Lett. 37(22), 4756–4758 (2012).
[Crossref] [PubMed]

Martín, I. R.

Martín, L. L.

Menon, A.

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Nguyen, D. M.

V. D. Ta, R. Chen, D. M. Nguyen, and H. D. Sun, “Application of selfassembled hemispherical microlasers as gas sensors,” Appl. Phys. Lett. 102(3), 031107 (2013).
[Crossref]

Oton, C. J.

F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “High efficiency amplified spontaneous emission from a fluorescent anticancer drug–dye complex,” Org. Electron. 14(5), 1225–1230 (2013).
[Crossref]

F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “Whispering gallery mode laser based on antitumor drug-dye complex gain medium,” Opt. Lett. 37(22), 4756–4758 (2012).
[Crossref] [PubMed]

Ozdemir, S. K.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Pérez-Rodríguez, C.

Philipp, M.

R. J. Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: influence of intermolecular interactions,” Eur Phys J E Soft Matter 30(1), 19–26 (2009).
[Crossref] [PubMed]

Psaltis, D.

Ramos, M. A.

R. J. Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: influence of intermolecular interactions,” Eur Phys J E Soft Matter 30(1), 19–26 (2009).
[Crossref] [PubMed]

Rao, Y.

Y. Gong, M. Zhang, C. Gong, Y. Wu, Y. Rao, and X. Fan, “Sensitive optofluidic flow rate sensor based on laser heating and microring resonator,” Microfluid. Nanofluidics 19(6), 1497–1505 (2015).
[Crossref]

Riobóo, R. J.

R. J. Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: influence of intermolecular interactions,” Eur Phys J E Soft Matter 30(1), 19–26 (2009).
[Crossref] [PubMed]

Ritt, M.

Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14(24), 4590–4595 (2014).
[Crossref] [PubMed]

Sanchez, C.

C. Sanchez, B. Lebeau, F. Chaput, and J.-P. Boilot, “Optical properties of functional hybrid organic-inorganic nanocomposites,” Adv. Mater. 15(23), 1969–1994 (2003).
[Crossref]

Schäfer, F. P.

F. P. Schäfer, W. Schmidt, and J. Volze, “Organic dye solution laser,” Appl. Phys. Lett. 9(8), 306–309 (1966).
[Crossref]

Scherer, A.

Schmidt, H.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

Schmidt, S.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Schmidt, W.

F. P. Schäfer, W. Schmidt, and J. Volze, “Organic dye solution laser,” Appl. Phys. Lett. 9(8), 306–309 (1966).
[Crossref]

Schwefel, H. G. L.

Sedlmeir, F.

Shi, J.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics 4(4), 043002 (2010).
[Crossref] [PubMed]

Shopova, S. I.

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

S. I. Shopova, H. Y. Zhou, X. D. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Siegle, T.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Sivaramakrishnan, S.

Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14(24), 4590–4595 (2014).
[Crossref] [PubMed]

Sun, H. D.

V. D. Ta, R. Chen, D. M. Nguyen, and H. D. Sun, “Application of selfassembled hemispherical microlasers as gas sensors,” Appl. Phys. Lett. 102(3), 031107 (2013).
[Crossref]

Sun, Y.

Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14(24), 4590–4595 (2014).
[Crossref] [PubMed]

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Suter, J. D.

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[PubMed]

Ta, V. D.

V. D. Ta, R. Chen, D. M. Nguyen, and H. D. Sun, “Application of selfassembled hemispherical microlasers as gas sensors,” Appl. Phys. Lett. 102(3), 031107 (2013).
[Crossref]

Vollmer, F.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[PubMed]

Volze, J.

F. P. Schäfer, W. Schmidt, and J. Volze, “Organic dye solution laser,” Appl. Phys. Lett. 9(8), 306–309 (1966).
[Crossref]

Wang, L.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics 4(4), 043002 (2010).
[Crossref] [PubMed]

Wang, Q.-Y.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Wang, W.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Wang, Y.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics 4(4), 043002 (2010).
[Crossref] [PubMed]

Weinzierl, U.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

White, I. M.

Wienhold, T.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Wondimu, S. F.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Wu, C. S.

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Wu, Y.

Y. Gong, M. Zhang, C. Gong, Y. Wu, Y. Rao, and X. Fan, “Sensitive optofluidic flow rate sensor based on laser heating and microring resonator,” Microfluid. Nanofluidics 19(6), 1497–1505 (2015).
[Crossref]

Xiao, L.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Xiao, Y.-F.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Yang, L.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Yesilyurt, I.

Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
[Crossref]

Q. Kou, I. Yesilyurt, G. Escalier, J. C. Galas, L. Coureau, and Y. Chen, “Microfluidic dye laser integration in a lab-on-a-chip device,” Proc. SPIE 5641, 112–115 (2004).
[Crossref]

Yun, S. H.

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

Zeltner, R.

Zhang, K.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics 4(4), 043002 (2010).
[Crossref] [PubMed]

Zhang, M.

Y. Gong, M. Zhang, C. Gong, Y. Wu, Y. Rao, and X. Fan, “Sensitive optofluidic flow rate sensor based on laser heating and microring resonator,” Microfluid. Nanofluidics 19(6), 1497–1505 (2015).
[Crossref]

Zhang, P.

S. I. Shopova, H. Y. Zhou, X. D. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Zhang, T.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Zhang, X. M.

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics 4(4), 043002 (2010).
[Crossref] [PubMed]

Zhang, Z.

Zhou, C.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Zhou, H. Y.

S. I. Shopova, H. Y. Zhou, X. D. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Zhu, H.

Adv. Mater. (1)

C. Sanchez, B. Lebeau, F. Chaput, and J.-P. Boilot, “Optical properties of functional hybrid organic-inorganic nanocomposites,” Adv. Mater. 15(23), 1969–1994 (2003).
[Crossref]

Adv. Opt. Photonics (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[PubMed]

Appl. Phys. Lett. (7)

S. I. Shopova, H. Y. Zhou, X. D. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

F. P. Schäfer, W. Schmidt, and J. Volze, “Organic dye solution laser,” Appl. Phys. Lett. 9(8), 306–309 (1966).
[Crossref]

Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
[Crossref]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

V. D. Ta, R. Chen, D. M. Nguyen, and H. D. Sun, “Application of selfassembled hemispherical microlasers as gas sensors,” Appl. Phys. Lett. 102(3), 031107 (2013).
[Crossref]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

Biomicrofluidics (1)

Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, X. M. Zhang, Y. Wang, and H. L. W. Chan, “Optofluidic microcavities: Dye-lasers and biosensors,” Biomicrofluidics 4(4), 043002 (2010).
[Crossref] [PubMed]

Eur Phys J E Soft Matter (1)

R. J. Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: influence of intermolecular interactions,” Eur Phys J E Soft Matter 30(1), 19–26 (2009).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Lab Chip (3)

Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab Chip 14(24), 4590–4595 (2014).
[Crossref] [PubMed]

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Microfluid. Nanofluidics (1)

Y. Gong, M. Zhang, C. Gong, Y. Wu, Y. Rao, and X. Fan, “Sensitive optofluidic flow rate sensor based on laser heating and microring resonator,” Microfluid. Nanofluidics 19(6), 1497–1505 (2015).
[Crossref]

Nat. Methods (1)

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Org. Electron. (1)

F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “High efficiency amplified spontaneous emission from a fluorescent anticancer drug–dye complex,” Org. Electron. 14(5), 1225–1230 (2013).
[Crossref]

Polym. Int. (1)

S. Chénais and S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Proc. SPIE (1)

Q. Kou, I. Yesilyurt, G. Escalier, J. C. Galas, L. Coureau, and Y. Chen, “Microfluidic dye laser integration in a lab-on-a-chip device,” Proc. SPIE 5641, 112–115 (2004).
[Crossref]

Other (2)

F. J. Duarte, High-Power Dye Lasers (Springer Verlag, 1991), Ch. 4.

M. J. Weber, Handbook of Laser Science and Technology Supplement 2: Optical Materials (Laser & Optical Science & Technology) (CRC, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Scheme of the optofluidic laser resonator device (not at scale):): (1) Laser pump beam (570 nm), (2) transmitted pump beam (4%), (3) reflected pump beam (14%), (4) Nile-Blue forwards laser emission (74%), (5) Nile-Blue backward s laser emission (26%), (6) mirror #1, (7) mirror #2, (8) 150 microns spacer, (9) and (10) in/out tubing fittings. (b) Reflectance spectra of mirror #1 (red) and mirror #2 (blue) (front and back inner surfaces) and normalized absorption (dashed grey) and PL emission spectra (solid grey) of NB dye in ethanol (1 mM). The excitation wavelength at 570 nm is indicated with an arrow.
Fig. 2
Fig. 2 (a) Normalized emission spectra of the NB dye solution (i) in a cuvette; in the laser device under (ii) 0.08 MW/cm2 and (iii) 0.16 MW/cm2 pump power. Spectra have been vertically shifted for clarity. (b) Emission intensity (black squares) and FWHM (blue circles) as a function of the pump power.
Fig. 3
Fig. 3 (a) Laser emission as a function of the incident pump energy. Dashed red line is a linear fit. (b) IR laser modes. Mode numbers are indicated. Inset gives the experimental (black squares) and simulated (red circles) FSR vs mode number.
Fig. 4
Fig. 4 (a) Photograph of the dye laser portable device under laser operation. The output IR laser beam is indicated in the picture. (b) Intensity of the IR laser emission as a function of the number of excitation pump pulses.
Fig. 5
Fig. 5 Evolution of the laser peak positions as a function of temperature for two different laser modes (red squares). Black squares and dashed lines give the simulated peak positions (see the text).
Fig. 6
Fig. 6 Dependence of the experimental (black squares) and theoretical (red circles) laser peak position on the water content of the solution.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

m λ m =2nd.
FSR= λ 2 2nd .
n=1.368900.00041T.

Metrics