Abstract

We describe an in-fiber interferometer based on a gas-filled hollow-core photonic crystal fiber. Expressions for the sensitivity, figure of merit and refractive index resolution are derived, and values are experimentally measured and theoretically validated using mode field calculations. The refractive indices of nine monoatomic and molecular gases are measured with a resolution of δns < 10−6.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase sensitivity of fundamental mode of hollow-core photonic bandgap fiber to internal gas pressure

Yingchun Cao, Wei Jin, Fan Yang, and Hoi Lut Ho
Opt. Express 22(11) 13190-13201 (2014)

Long-period grating and its cascaded counterpart in photonic crystal fiber for gas phase measurement

Fei Tian, Jiri Kanka, and Henry Du
Opt. Express 20(19) 20951-20961 (2012)

Characteristics of embedded-core hollow optical fiber

Chunying Guan, Fengjun Tian, Qiang Dai, and Libo Yuan
Opt. Express 19(21) 20069-20078 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Z. Tian, S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
    [Crossref]
  2. Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
    [Crossref]
  3. Z. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
    [Crossref] [PubMed]
  4. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [Crossref] [PubMed]
  5. B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt. 38(16), 3450–3459 (1999).
    [Crossref] [PubMed]
  6. L. S. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology: Fundamentals (Springer US, 2013).
  7. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  8. Y. Cao, W. Jin, F. Yang, and H. L. Ho, “Phase sensitivity of fundamental mode of hollow-core photonic bandgap fiber to internal gas pressure,” Opt. Express 22(11), 13190–13201 (2014).
    [Crossref] [PubMed]
  9. P. Antunes, F. Domingues, M. Granada, and P. Andr, “Mechanical properties of optical fibers,” in Selected Topics on Optical Fiber Technology, M. Yasin, ed. (InTech, 2012).
  10. W. Wei and Y. Bo, “Analysis of temperature effect in fiber optics ring resonator based on photonic crystal fiber,” Optik (Stuttg.) 126(19), 2094–2098 (2015).
    [Crossref]
  11. S.-C. Her and C.-Y. Huang, “Thermal strain analysis of optic fiber sensors,” Sensors (Basel) 13(2), 1846–1855 (2013).
    [Crossref] [PubMed]
  12. M. Esposito, S. Buontempo, A. Petriccione, M. Zarrelli, G. Breglio, A. Saccomanno, Z. Szillasi, A. Makovec, A. Cusano, A. Chiuchiolo, M. Bajko, and M. Giordano, “Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures,” Sensor. Actuat. A-Phys. 189, 195–203 (2013).
  13. J. E. Saunders, C. Sanders, H. Chen, and H. P. Loock, “Refractive indices of common solvents and solutions at 1550 nm,” Appl. Opt. 55(4), 947–953 (2016).
    [Crossref] [PubMed]
  14. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” arXiv:0805.0091 [physics] (2008).
  15. K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. H. Fan, and G. S. Kino, “Classification of the core modes of hollow-core photonic-bandgap fibers,” IEEE J. Quantum Electron. 45(9), 1192–1200 (2009).
    [Crossref]
  16. M. J. F. Digonnet, H. K. Kim, G. S. Kino, and S. H. Fan, “Understanding air-core photonic-bandgap fibers: Analogy to conventional fibers,” J. Lightwave Technol. 23(12), 4169–4177 (2005).
    [Crossref]
  17. C. R. Mansfield and E. R. Peck, “Dispersion of helium,” J. Opt. Soc. Am. 59(2), 199 (1969).
    [Crossref]
  18. W. M. Haynes, CRC Handbook of Chemistry and Physics, 92nd ed. (CRC, 2011), p. 2624.
  19. C. Gaiser and B. Fellmuth, “Experimental benchmark value for the molar polarizability of neon,” Europhys. Lett. 90(6), 63002 (2010).
    [Crossref]
  20. E. R. Peck and D. J. Fisher, “Dispersion of argon,” J. Opt. Soc. Am. 54(11), 1362 (1964).
    [Crossref]
  21. A. C. Newell and R. C. Baird, “Absolute determination of refractive indices of gases at 47.7 Gigahertz,” J. Appl. Phys. 36(12), 3751–3759 (1965).
    [Crossref]
  22. E. R. Peck and B. N. Khanna, “Dispersion of nitrogen,” J. Opt. Soc. Am. 56(8), 1059 (1966).
    [Crossref]
  23. N. J. Bridge and A. D. Buckingham, “The polarization of laser light scattered by gases,” Proc. R. Soc. Lond. A Math. Phys. Sci. 295(1442), 334–349 (1966).
    [Crossref]
  24. T. K. Bose, J. S. Sochanski, and R. H. Cole, “Dielectric and pressure virial coefficients of imperfect gases. V. Octopole moments of CH4 and CF4,” J. Chem. Phys. 57(9), 3592–3595 (1972).
    [Crossref]
  25. R. L. Kelly, R. Rollefson, and B. S. Schurin, “The infrared dispersion of acetylene and the dipole moment of the C–H Bond,” J. Chem. Phys. 19(12), 1595–1599 (1951).
    [Crossref]
  26. T. M. Miller and B. Bederson, Advances in Atomic & Molecular Physics (Academic, 1989), Vol. 25, p. 584.
  27. A. A. Maryott and F. Buckley, “Tables of dielectric constants and electric constants and electric dipole moments of substances in the gas phase,” Natl. Bur. Stand. (US), Circ (1953).
  28. I. Shavrin, S. Novotny, A. Shevchenko, and H. Ludvigsen, “Gas refractometry using a hollow-core photonic bandgap fiber in a Mach-Zehnder-type interferometer,” Appl. Phys. Lett. 100(5), 051106 (2012).
    [Crossref]
  29. H. P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Actuators B Chem. 173, 157–163 (2012).
    [Crossref]
  30. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
    [Crossref] [PubMed]
  31. G. A. Cárdenas-Sevilla, F. C. Fávero, and J. Villatoro, “High-visibility photonic crystal fiber interferometer as multifunctional sensor,” Sensors (Basel) 13(2), 2349–2358 (2013).
    [Crossref] [PubMed]
  32. J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
    [Crossref]
  33. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
    [Crossref]
  34. T. K. Gangopadhyay, “Prospects for Fibre Bragg Gratings and fabry-perot interferometers in fibre-optic vibration sensing,” Sens. Actuators A Phys. 113(1), 20–38 (2004).
    [Crossref]
  35. R. Yang, Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Lett. 36(23), 4482–4484 (2011).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

W. Wei and Y. Bo, “Analysis of temperature effect in fiber optics ring resonator based on photonic crystal fiber,” Optik (Stuttg.) 126(19), 2094–2098 (2015).
[Crossref]

2014 (1)

2013 (3)

S.-C. Her and C.-Y. Huang, “Thermal strain analysis of optic fiber sensors,” Sensors (Basel) 13(2), 1846–1855 (2013).
[Crossref] [PubMed]

M. Esposito, S. Buontempo, A. Petriccione, M. Zarrelli, G. Breglio, A. Saccomanno, Z. Szillasi, A. Makovec, A. Cusano, A. Chiuchiolo, M. Bajko, and M. Giordano, “Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures,” Sensor. Actuat. A-Phys. 189, 195–203 (2013).

G. A. Cárdenas-Sevilla, F. C. Fávero, and J. Villatoro, “High-visibility photonic crystal fiber interferometer as multifunctional sensor,” Sensors (Basel) 13(2), 2349–2358 (2013).
[Crossref] [PubMed]

2012 (3)

I. Shavrin, S. Novotny, A. Shevchenko, and H. Ludvigsen, “Gas refractometry using a hollow-core photonic bandgap fiber in a Mach-Zehnder-type interferometer,” Appl. Phys. Lett. 100(5), 051106 (2012).
[Crossref]

H. P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Actuators B Chem. 173, 157–163 (2012).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
[Crossref]

2011 (1)

2010 (1)

C. Gaiser and B. Fellmuth, “Experimental benchmark value for the molar polarizability of neon,” Europhys. Lett. 90(6), 63002 (2010).
[Crossref]

2009 (2)

K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. H. Fan, and G. S. Kino, “Classification of the core modes of hollow-core photonic-bandgap fibers,” IEEE J. Quantum Electron. 45(9), 1192–1200 (2009).
[Crossref]

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[Crossref] [PubMed]

2008 (3)

Z. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
[Crossref] [PubMed]

Z. Tian, S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (2)

M. J. F. Digonnet, H. K. Kim, G. S. Kino, and S. H. Fan, “Understanding air-core photonic-bandgap fibers: Analogy to conventional fibers,” J. Lightwave Technol. 23(12), 4169–4177 (2005).
[Crossref]

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
[Crossref]

2004 (1)

T. K. Gangopadhyay, “Prospects for Fibre Bragg Gratings and fabry-perot interferometers in fibre-optic vibration sensing,” Sens. Actuators A Phys. 113(1), 20–38 (2004).
[Crossref]

1999 (1)

1972 (1)

T. K. Bose, J. S. Sochanski, and R. H. Cole, “Dielectric and pressure virial coefficients of imperfect gases. V. Octopole moments of CH4 and CF4,” J. Chem. Phys. 57(9), 3592–3595 (1972).
[Crossref]

1969 (1)

1966 (2)

N. J. Bridge and A. D. Buckingham, “The polarization of laser light scattered by gases,” Proc. R. Soc. Lond. A Math. Phys. Sci. 295(1442), 334–349 (1966).
[Crossref]

E. R. Peck and B. N. Khanna, “Dispersion of nitrogen,” J. Opt. Soc. Am. 56(8), 1059 (1966).
[Crossref]

1965 (1)

A. C. Newell and R. C. Baird, “Absolute determination of refractive indices of gases at 47.7 Gigahertz,” J. Appl. Phys. 36(12), 3751–3759 (1965).
[Crossref]

1964 (1)

1951 (1)

R. L. Kelly, R. Rollefson, and B. S. Schurin, “The infrared dispersion of acetylene and the dipole moment of the C–H Bond,” J. Chem. Phys. 19(12), 1595–1599 (1951).
[Crossref]

Aghaie, K. Z.

K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. H. Fan, and G. S. Kino, “Classification of the core modes of hollow-core photonic-bandgap fibers,” IEEE J. Quantum Electron. 45(9), 1192–1200 (2009).
[Crossref]

Badenes, G.

Baird, R. C.

A. C. Newell and R. C. Baird, “Absolute determination of refractive indices of gases at 47.7 Gigahertz,” J. Appl. Phys. 36(12), 3751–3759 (1965).
[Crossref]

Bajko, M.

M. Esposito, S. Buontempo, A. Petriccione, M. Zarrelli, G. Breglio, A. Saccomanno, Z. Szillasi, A. Makovec, A. Cusano, A. Chiuchiolo, M. Bajko, and M. Giordano, “Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures,” Sensor. Actuat. A-Phys. 189, 195–203 (2013).

Barnes, J.

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Bo, Y.

W. Wei and Y. Bo, “Analysis of temperature effect in fiber optics ring resonator based on photonic crystal fiber,” Optik (Stuttg.) 126(19), 2094–2098 (2015).
[Crossref]

Bock, W.

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Bose, T. K.

T. K. Bose, J. S. Sochanski, and R. H. Cole, “Dielectric and pressure virial coefficients of imperfect gases. V. Octopole moments of CH4 and CF4,” J. Chem. Phys. 57(9), 3592–3595 (1972).
[Crossref]

Breglio, G.

M. Esposito, S. Buontempo, A. Petriccione, M. Zarrelli, G. Breglio, A. Saccomanno, Z. Szillasi, A. Makovec, A. Cusano, A. Chiuchiolo, M. Bajko, and M. Giordano, “Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures,” Sensor. Actuat. A-Phys. 189, 195–203 (2013).

Bridge, N. J.

N. J. Bridge and A. D. Buckingham, “The polarization of laser light scattered by gases,” Proc. R. Soc. Lond. A Math. Phys. Sci. 295(1442), 334–349 (1966).
[Crossref]

Buckingham, A. D.

N. J. Bridge and A. D. Buckingham, “The polarization of laser light scattered by gases,” Proc. R. Soc. Lond. A Math. Phys. Sci. 295(1442), 334–349 (1966).
[Crossref]

Buontempo, S.

M. Esposito, S. Buontempo, A. Petriccione, M. Zarrelli, G. Breglio, A. Saccomanno, Z. Szillasi, A. Makovec, A. Cusano, A. Chiuchiolo, M. Bajko, and M. Giordano, “Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures,” Sensor. Actuat. A-Phys. 189, 195–203 (2013).

Cao, Y.

Cárdenas-Sevilla, G. A.

G. A. Cárdenas-Sevilla, F. C. Fávero, and J. Villatoro, “High-visibility photonic crystal fiber interferometer as multifunctional sensor,” Sensors (Basel) 13(2), 2349–2358 (2013).
[Crossref] [PubMed]

Chen, C.

Chen, H.

Chen, Q. D.

Chiuchiolo, A.

M. Esposito, S. Buontempo, A. Petriccione, M. Zarrelli, G. Breglio, A. Saccomanno, Z. Szillasi, A. Makovec, A. Cusano, A. Chiuchiolo, M. Bajko, and M. Giordano, “Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures,” Sensor. Actuat. A-Phys. 189, 195–203 (2013).

Choi, H. Y.

Cole, R. H.

T. K. Bose, J. S. Sochanski, and R. H. Cole, “Dielectric and pressure virial coefficients of imperfect gases. V. Octopole moments of CH4 and CF4,” J. Chem. Phys. 57(9), 3592–3595 (1972).
[Crossref]

Cusano, A.

M. Esposito, S. Buontempo, A. Petriccione, M. Zarrelli, G. Breglio, A. Saccomanno, Z. Szillasi, A. Makovec, A. Cusano, A. Chiuchiolo, M. Bajko, and M. Giordano, “Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures,” Sensor. Actuat. A-Phys. 189, 195–203 (2013).

Dangui, V.

K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. H. Fan, and G. S. Kino, “Classification of the core modes of hollow-core photonic-bandgap fibers,” IEEE J. Quantum Electron. 45(9), 1192–1200 (2009).
[Crossref]

Digonnet, M. J. F.

K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. H. Fan, and G. S. Kino, “Classification of the core modes of hollow-core photonic-bandgap fibers,” IEEE J. Quantum Electron. 45(9), 1192–1200 (2009).
[Crossref]

M. J. F. Digonnet, H. K. Kim, G. S. Kino, and S. H. Fan, “Understanding air-core photonic-bandgap fibers: Analogy to conventional fibers,” J. Lightwave Technol. 23(12), 4169–4177 (2005).
[Crossref]

Ding, J. F.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
[Crossref]

Esposito, M.

M. Esposito, S. Buontempo, A. Petriccione, M. Zarrelli, G. Breglio, A. Saccomanno, Z. Szillasi, A. Makovec, A. Cusano, A. Chiuchiolo, M. Bajko, and M. Giordano, “Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures,” Sensor. Actuat. A-Phys. 189, 195–203 (2013).

Fan, S. H.

K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. H. Fan, and G. S. Kino, “Classification of the core modes of hollow-core photonic-bandgap fibers,” IEEE J. Quantum Electron. 45(9), 1192–1200 (2009).
[Crossref]

M. J. F. Digonnet, H. K. Kim, G. S. Kino, and S. H. Fan, “Understanding air-core photonic-bandgap fibers: Analogy to conventional fibers,” J. Lightwave Technol. 23(12), 4169–4177 (2005).
[Crossref]

Farrell, G.

Fávero, F. C.

G. A. Cárdenas-Sevilla, F. C. Fávero, and J. Villatoro, “High-visibility photonic crystal fiber interferometer as multifunctional sensor,” Sensors (Basel) 13(2), 2349–2358 (2013).
[Crossref] [PubMed]

Fellmuth, B.

C. Gaiser and B. Fellmuth, “Experimental benchmark value for the molar polarizability of neon,” Europhys. Lett. 90(6), 63002 (2010).
[Crossref]

Fisher, D. J.

Fraser, J. M.

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Gaiser, C.

C. Gaiser and B. Fellmuth, “Experimental benchmark value for the molar polarizability of neon,” Europhys. Lett. 90(6), 63002 (2010).
[Crossref]

Gangopadhyay, T. K.

T. K. Gangopadhyay, “Prospects for Fibre Bragg Gratings and fabry-perot interferometers in fibre-optic vibration sensing,” Sens. Actuators A Phys. 113(1), 20–38 (2004).
[Crossref]

Giordano, M.

M. Esposito, S. Buontempo, A. Petriccione, M. Zarrelli, G. Breglio, A. Saccomanno, Z. Szillasi, A. Makovec, A. Cusano, A. Chiuchiolo, M. Bajko, and M. Giordano, “Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures,” Sensor. Actuat. A-Phys. 189, 195–203 (2013).

Greig, P.

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

He, S. L.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
[Crossref]

Her, S.-C.

S.-C. Her and C.-Y. Huang, “Thermal strain analysis of optic fiber sensors,” Sensors (Basel) 13(2), 1846–1855 (2013).
[Crossref] [PubMed]

Ho, H. L.

Huang, C.-Y.

S.-C. Her and C.-Y. Huang, “Thermal strain analysis of optic fiber sensors,” Sensors (Basel) 13(2), 1846–1855 (2013).
[Crossref] [PubMed]

Jha, R.

Jin, W.

Kelly, R. L.

R. L. Kelly, R. Rollefson, and B. S. Schurin, “The infrared dispersion of acetylene and the dipole moment of the C–H Bond,” J. Chem. Phys. 19(12), 1595–1599 (1951).
[Crossref]

Khanna, B. N.

Kim, H. K.

Kim, M. J.

Kino, G. S.

K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. H. Fan, and G. S. Kino, “Classification of the core modes of hollow-core photonic-bandgap fibers,” IEEE J. Quantum Electron. 45(9), 1192–1200 (2009).
[Crossref]

M. J. F. Digonnet, H. K. Kim, G. S. Kino, and S. H. Fan, “Understanding air-core photonic-bandgap fibers: Analogy to conventional fibers,” J. Lightwave Technol. 23(12), 4169–4177 (2005).
[Crossref]

Lee, B. H.

Loock, H. P.

J. E. Saunders, C. Sanders, H. Chen, and H. P. Loock, “Refractive indices of common solvents and solutions at 1550 nm,” Appl. Opt. 55(4), 947–953 (2016).
[Crossref] [PubMed]

H. P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Actuators B Chem. 173, 157–163 (2012).
[Crossref]

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Z. Tian, S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Z. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
[Crossref] [PubMed]

Ludvigsen, H.

I. Shavrin, S. Novotny, A. Shevchenko, and H. Ludvigsen, “Gas refractometry using a hollow-core photonic bandgap fiber in a Mach-Zehnder-type interferometer,” Appl. Phys. Lett. 100(5), 051106 (2012).
[Crossref]

Makovec, A.

M. Esposito, S. Buontempo, A. Petriccione, M. Zarrelli, G. Breglio, A. Saccomanno, Z. Szillasi, A. Makovec, A. Cusano, A. Chiuchiolo, M. Bajko, and M. Giordano, “Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures,” Sensor. Actuat. A-Phys. 189, 195–203 (2013).

Mansfield, C. R.

Mathew, J.

Newell, A. C.

A. C. Newell and R. C. Baird, “Absolute determination of refractive indices of gases at 47.7 Gigahertz,” J. Appl. Phys. 36(12), 3751–3759 (1965).
[Crossref]

Nishii, J.

Novotny, S.

I. Shavrin, S. Novotny, A. Shevchenko, and H. Ludvigsen, “Gas refractometry using a hollow-core photonic bandgap fiber in a Mach-Zehnder-type interferometer,” Appl. Phys. Lett. 100(5), 051106 (2012).
[Crossref]

Oleschuk, R. D.

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Peck, E. R.

Petriccione, A.

M. Esposito, S. Buontempo, A. Petriccione, M. Zarrelli, G. Breglio, A. Saccomanno, Z. Szillasi, A. Makovec, A. Cusano, A. Chiuchiolo, M. Bajko, and M. Giordano, “Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures,” Sensor. Actuat. A-Phys. 189, 195–203 (2013).

Pruneri, V.

Rollefson, R.

R. L. Kelly, R. Rollefson, and B. S. Schurin, “The infrared dispersion of acetylene and the dipole moment of the C–H Bond,” J. Chem. Phys. 19(12), 1595–1599 (1951).
[Crossref]

Russell, P. S. J.

Saccomanno, A.

M. Esposito, S. Buontempo, A. Petriccione, M. Zarrelli, G. Breglio, A. Saccomanno, Z. Szillasi, A. Makovec, A. Cusano, A. Chiuchiolo, M. Bajko, and M. Giordano, “Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures,” Sensor. Actuat. A-Phys. 189, 195–203 (2013).

Sanders, C.

Saunders, J. E.

Schurin, B. S.

R. L. Kelly, R. Rollefson, and B. S. Schurin, “The infrared dispersion of acetylene and the dipole moment of the C–H Bond,” J. Chem. Phys. 19(12), 1595–1599 (1951).
[Crossref]

Semenova, Y.

Shao, L. Y.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
[Crossref]

Shavrin, I.

I. Shavrin, S. Novotny, A. Shevchenko, and H. Ludvigsen, “Gas refractometry using a hollow-core photonic bandgap fiber in a Mach-Zehnder-type interferometer,” Appl. Phys. Lett. 100(5), 051106 (2012).
[Crossref]

Shevchenko, A.

I. Shavrin, S. Novotny, A. Shevchenko, and H. Ludvigsen, “Gas refractometry using a hollow-core photonic bandgap fiber in a Mach-Zehnder-type interferometer,” Appl. Phys. Lett. 100(5), 051106 (2012).
[Crossref]

Sochanski, J. S.

T. K. Bose, J. S. Sochanski, and R. H. Cole, “Dielectric and pressure virial coefficients of imperfect gases. V. Octopole moments of CH4 and CF4,” J. Chem. Phys. 57(9), 3592–3595 (1972).
[Crossref]

Sun, H. B.

Szillasi, Z.

M. Esposito, S. Buontempo, A. Petriccione, M. Zarrelli, G. Breglio, A. Saccomanno, Z. Szillasi, A. Makovec, A. Cusano, A. Chiuchiolo, M. Bajko, and M. Giordano, “Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures,” Sensor. Actuat. A-Phys. 189, 195–203 (2013).

Tian, Z.

Z. Tian, S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Z. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
[Crossref] [PubMed]

Tian, Z. B.

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Villatoro, J.

G. A. Cárdenas-Sevilla, F. C. Fávero, and J. Villatoro, “High-visibility photonic crystal fiber interferometer as multifunctional sensor,” Sensors (Basel) 13(2), 2349–2358 (2013).
[Crossref] [PubMed]

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[Crossref] [PubMed]

Wei, W.

W. Wei and Y. Bo, “Analysis of temperature effect in fiber optics ring resonator based on photonic crystal fiber,” Optik (Stuttg.) 126(19), 2094–2098 (2015).
[Crossref]

Wentzell, P. D.

H. P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Actuators B Chem. 173, 157–163 (2012).
[Crossref]

Xue, Y.

Yam, S. H.

Z. Tian, S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Yam, S. S. H.

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Z. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
[Crossref] [PubMed]

Yan, J. H.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
[Crossref]

Yang, F.

Yang, R.

Yu, Y. S.

Zarrelli, M.

M. Esposito, S. Buontempo, A. Petriccione, M. Zarrelli, G. Breglio, A. Saccomanno, Z. Szillasi, A. Makovec, A. Cusano, A. Chiuchiolo, M. Bajko, and M. Giordano, “Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures,” Sensor. Actuat. A-Phys. 189, 195–203 (2013).

Zhang, A. P.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

I. Shavrin, S. Novotny, A. Shevchenko, and H. Ludvigsen, “Gas refractometry using a hollow-core photonic bandgap fiber in a Mach-Zehnder-type interferometer,” Appl. Phys. Lett. 100(5), 051106 (2012).
[Crossref]

Europhys. Lett. (1)

C. Gaiser and B. Fellmuth, “Experimental benchmark value for the molar polarizability of neon,” Europhys. Lett. 90(6), 63002 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. H. Fan, and G. S. Kino, “Classification of the core modes of hollow-core photonic-bandgap fibers,” IEEE J. Quantum Electron. 45(9), 1192–1200 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (3)

Z. Tian, S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
[Crossref]

J. Appl. Phys. (1)

A. C. Newell and R. C. Baird, “Absolute determination of refractive indices of gases at 47.7 Gigahertz,” J. Appl. Phys. 36(12), 3751–3759 (1965).
[Crossref]

J. Chem. Phys. (2)

T. K. Bose, J. S. Sochanski, and R. H. Cole, “Dielectric and pressure virial coefficients of imperfect gases. V. Octopole moments of CH4 and CF4,” J. Chem. Phys. 57(9), 3592–3595 (1972).
[Crossref]

R. L. Kelly, R. Rollefson, and B. S. Schurin, “The infrared dispersion of acetylene and the dipole moment of the C–H Bond,” J. Chem. Phys. 19(12), 1595–1599 (1951).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. (3)

Opt. Express (2)

Opt. Lett. (3)

Optik (Stuttg.) (1)

W. Wei and Y. Bo, “Analysis of temperature effect in fiber optics ring resonator based on photonic crystal fiber,” Optik (Stuttg.) 126(19), 2094–2098 (2015).
[Crossref]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

N. J. Bridge and A. D. Buckingham, “The polarization of laser light scattered by gases,” Proc. R. Soc. Lond. A Math. Phys. Sci. 295(1442), 334–349 (1966).
[Crossref]

Sens. Actuators A Phys. (1)

T. K. Gangopadhyay, “Prospects for Fibre Bragg Gratings and fabry-perot interferometers in fibre-optic vibration sensing,” Sens. Actuators A Phys. 113(1), 20–38 (2004).
[Crossref]

Sens. Actuators B Chem. (1)

H. P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Actuators B Chem. 173, 157–163 (2012).
[Crossref]

Sensor. Actuat. A-Phys. (1)

M. Esposito, S. Buontempo, A. Petriccione, M. Zarrelli, G. Breglio, A. Saccomanno, Z. Szillasi, A. Makovec, A. Cusano, A. Chiuchiolo, M. Bajko, and M. Giordano, “Fiber Bragg Grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures,” Sensor. Actuat. A-Phys. 189, 195–203 (2013).

Sensors (Basel) (2)

S.-C. Her and C.-Y. Huang, “Thermal strain analysis of optic fiber sensors,” Sensors (Basel) 13(2), 1846–1855 (2013).
[Crossref] [PubMed]

G. A. Cárdenas-Sevilla, F. C. Fávero, and J. Villatoro, “High-visibility photonic crystal fiber interferometer as multifunctional sensor,” Sensors (Basel) 13(2), 2349–2358 (2013).
[Crossref] [PubMed]

Other (6)

T. M. Miller and B. Bederson, Advances in Atomic & Molecular Physics (Academic, 1989), Vol. 25, p. 584.

A. A. Maryott and F. Buckley, “Tables of dielectric constants and electric constants and electric dipole moments of substances in the gas phase,” Natl. Bur. Stand. (US), Circ (1953).

P. Antunes, F. Domingues, M. Granada, and P. Andr, “Mechanical properties of optical fibers,” in Selected Topics on Optical Fiber Technology, M. Yasin, ed. (InTech, 2012).

L. S. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology: Fundamentals (Springer US, 2013).

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” arXiv:0805.0091 [physics] (2008).

W. M. Haynes, CRC Handbook of Chemistry and Physics, 92nd ed. (CRC, 2011), p. 2624.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The top left image of a PCF (HC-1550 NKT) was obtained using a scanning electron microscope. The other images show five of the core modes simulated using the eigenmode solver analysis. The effective indices were obtained setting the hole interiors at vacuum, the bend radius to R = 30 mm, and the temperature to T = 23°C. The two polarization states of the core TEM00 mode give different effective indices.
Fig. 2
Fig. 2 (a) The calculated phase indices, neff, of the four lowest lying core modes of Fig. 1 as the sample’s index in the holes, ns, was increased. The hollow data points are the effective index with a bend radius of 30 mm and the solid data points represent the effective index of the modes in a straight fiber. For the TEM00*, TEM00, and TEM10 modes the phase index is nearly independent on the bend radius. (b) The phase indices, neff, as a function of bending radius calculated as in (a) but for ns = 1.0.
Fig. 3
Fig. 3 (a) The difference in phase index responsible for the interference spectrum, Δneff, is shown for the two modes polarized in the bending plane Δneff = neff(TEM00)- neff(TEM01) in blue and black circles and the two out-of-plane polarized modes Δneff = neff(TEM00*)- neff(TEM10) in red and green squares. (b) The sensitivity dneff/dns for the core modes as the bend radius is increased is calculated from the first derivative of Fig. 3(a). The dashed lines are meant to guide the eye. The short blue arrow corresponds to a sensitivity of the interference measurement f = Δdneff/dns = dΔneff/dns = 0.008.
Fig. 4
Fig. 4 Experimental setup. Laser light is coupled into a single mode fibre (SMF). Using gas-permeable ferrules the light is then coupled into the hollow-core photonic crystal fiber (length 346 mm). The photodetector signal is recorded through a lock-in amplifier.
Fig. 5
Fig. 5 Normalized intensities of all nine gases in the order of increasing polarizability, from top left to bottom right corners.
Fig. 6
Fig. 6 Spatial frequencies obtained using a fast Fourier transform of (a) the chlorodifluoromethane and (b) the acetylene spectra. The black, red, and blue lines represent the gases at low, medium and high pressure. The inset shows the peak located at 1.43 nm−1, which corresponds to the interference pattern separated by 0.69 nm as shown in Fig. 5. Acetylene has a structured absorbance band at 1527-1537 nm and this is apparent in the Fourier transform by a concentration dependent peak at 1.60 nm−1.
Fig. 7
Fig. 7 (a) Phase as a function of pressure for each of the nine gases. The slope increases with the polarizability of the gas. (b) The dependence of the effective index difference between the beating modes and the index of the gas in the holes. Δneff was calculated using Eq. (3) from the phase at the centre wavelength of 1532 nm. The index of the gas in the holes ns was obtained using Eq. (15) from the pressure and polarizability (Table 1) of each gas.
Fig. 8
Fig. 8 Interferometric phase measured for helium, neon, nitrogen and ClF2CH at different pressures (from Fig. 7(a)). The corresponding Δneff was calculated using Eq. (6) from the phase at the centre wavelength of 1532 nm. The index of the gas in the holes ns was obtained from the pressure and polarizability (Table 1) of each gas from the pressure using Eq. (15). The minimal detectable gas refractive index change δns = 0.5-1.0 × 10−6 is indicated by horizontal arrows and corresponds to the width of the 1σ−confidence interval (95%) [29].
Fig. 9
Fig. 9 Experimental calibration to determine the polarizability from the phase-pressure dependence. The black squares and red circles represent the static average electric dipole polarizabilities for the ground state and the true polarizability at 1532 nm calculated from dispersion, respectively. The line is a linear fit of the data with a slope and intercept of 6.00 ± 0.84 × 10−41 J−1C2m2bar and −0.4 ± 4.9 × 10−41 J−1C2m2, respectively.

Tables (1)

Tables Icon

Table 1 Polarizabilities of the gases investigated in this paper with references. For He, Ar, N2, and C2H2 the polarizability was calculated using known dispersion and refractive indices at 1532 nm. The static average electric dipole polarizabilities for the ground state of all gases are also shown.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ϕ i = 2π λ n i eff L i
I= I 1 + I 2 +2 I 1 I 2 cos( ϕ 1 ϕ 2 )
Δ n eff = λΔϕ 2πL
n i eff =( 1 f i ) n i w + f i n s
dΔϕ d n s = 2πL λ d d n s ( n 1 eff n 2 eff ) = 2πL λ d d n s ( [ ( 1 f 1 ) n 1 w + f 1 n s ][ ( 1 f 2 ) n 2 w + f 2 n s ] ) = 2πL λ ( f 1 f 2 )
dΔϕ d n s = 2πL λ | f 1 f 2 |
dλ d n s = 2πL Δϕ | f 1 f 2 |
f= dΔ n eff d n s
f= dλ d n s 1 λL 1 λ 1 1 λ 2 1
δλ=4Δ n eff L
FoM= dΔϕ d n s 1 δϕ = 4fL λ
Δϕ=2π ( n 1 eff ( P,T,λ ) n 2 eff ( P,T,λ ) )L( P,T ) λ
Δϕ= i Δϕ X i Δ X i X i =P,T,λ
dΔϕ= 2πΔP λ [ ( n 1 eff P n 2 eff P )L+ L P ( n 1 eff n 2 eff ) ] + 2πΔT λ [ ( n 1 eff T n 2 eff T )L+ L T ( n 1 eff n 2 eff ) ] +2πLΔλ[ ( n 1 eff λ n 2 eff λ ) 1 λ ( n 1 eff n 2 eff ) 1 λ 2 ]
n s 2 1 2+ n s 2 = P N A α s 3RT ε 0
ϕ=arctan( ( F( ω ) ) ( F( ω ) ) )

Metrics