Abstract

Upconversion of near infrared (NIR) into ultraviolet (UV) radiation could lead to a number of applications in bio-imaging, diagnostics and drug delivery. However, for bare nanoparticles, the conversion efficiency is extremely low. In this work, we experimentally demonstrate strongly enhanced upconversion emission from an ensemble of β-NaYF4:Gd3+/Yb3+/Tm3+ @NaLuF4 core-shell nanoparticles trapped in judiciously designed plasmonic nanocavities. In doing so, different metal platforms and nanostructures are systematically investigated. Our results indicate that using a cross-shape silver nanocavity, a record high enhancement of 170-fold can be obtained in the UV band centered at a wavelength of 345 nm. The observed upconversion efficiency improvement may be attributed to the increased absorption at NIR, the tailored photonic local density of states, and the light out-coupling characteristics of the cavity.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modification on populating paths of β-NaYF4:Nd/Yb/Ho@SiO2@Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission

Yi Qin, Zhiliang Dong, Dacheng Zhou, Yong Yang, Xuhui Xu, and Jianbei Qiu
Opt. Mater. Express 6(6) 1942-1955 (2016)

Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption

Bo Shao, Zhengwen Yang, Jun Li, Jianzhi Yang, Yida Wang, Jianbei Qiu, and Zhiguo Song
Opt. Mater. Express 7(4) 1188-1197 (2017)

Yb3+-enhanced UCNP@SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy

Nana Li, Xuanyuan Wen, Jing Liu, Baoju Wang, Qiuqiang Zhan, and Sailing He
Opt. Mater. Express 6(4) 1161-1171 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  2. X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: progresses and challenges,” Nano Today 8(6), 643–676 (2013).
    [Crossref]
  3. N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2(3), 84–85 (1959).
    [Crossref]
  4. M. R. Brown and W. A. Shand, “Infrared quantum counter action in rare earth doped flouride lattices,” IEEE J. Quantum Electron. 2(8), 251–253 (1966).
    [Crossref]
  5. A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
    [Crossref]
  6. W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8(1), 81 (2013).
    [Crossref] [PubMed]
  7. S. Heer, O. Lehmann, M. Haase, and H.-U. Gudel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
    [Crossref] [PubMed]
  8. D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-enhanced upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
    [Crossref] [PubMed]
  9. W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
    [Crossref] [PubMed]
  10. F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
    [Crossref] [PubMed]
  11. C. Wang, L. Cheng, and Z. Liu, “Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy,” Biomaterials 32(4), 1110–1120 (2011).
    [Crossref] [PubMed]
  12. M. L. Viger, M. Grossman, N. Fomina, and A. Almutairi, “Low power upconverted near-IR light for efficient polymeric nanoparticle degradation and cargo release,” Adv. Mater. 25(27), 3733–3738 (2013).
    [Crossref] [PubMed]
  13. G. S. Yi and G. M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence,” Chem. Mater. 19(3), 341–343 (2007).
    [Crossref]
  14. L. Pan, M. He, J. Ma, W. Tang, G. Gao, R. He, H. Su, and D. Cui, “Phase and size controllable synthesis of NaYbF4 nanocrystals in oleic acid/ionic liquid two-phase system for targeted fluorescent imaging of gastric cancer,” Theranostics 3(3), 210–222 (2013).
    [Crossref] [PubMed]
  15. J. Zhao, S. Ji, and H. Guo, “Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields,” RSC Advances 1(6), 937–950 (2011).
    [Crossref]
  16. C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals,” Opt. Lett. 36(20), 3990–3992 (2011).
    [Crossref] [PubMed]
  17. Y. Yang, P. Zhou, W. Xu, S. Xu, Y. Jiang, X. Chen, and H. Song, “NaYF4:Yb3+,Tm3+ inverse opal photonic crystals and NaYF4:Yb3+,Tm3+/TiO2 composites: synthesis, highly improved upconversion properties and NIR photoelectric response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(4), 659–662 (2016).
    [Crossref]
  18. B. Herter, S. Wolf, S. Fischer, J. Gutmann, B. Blasi, and J. C. Goldschmidt, “Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis,” Opt. Express 21(S5Suppl 5), A883–A900 (2013).
    [Crossref] [PubMed]
  19. A. C. Pan, C. Del Canizo, E. Canovas, N. M. Santos, J. P. Leitao, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Sol. Cells 94(11), 1923–1926 (2010).
    [Crossref]
  20. W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
    [Crossref]
  21. S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
    [Crossref] [PubMed]
  22. N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
    [Crossref] [PubMed]
  23. M. Saboktakin, X. Ye, S. J. Oh, S. H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation,” ACS Nano 6(10), 8758–8766 (2012).
    [Crossref] [PubMed]
  24. W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24, 236–241 (2012).
  25. M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
    [Crossref] [PubMed]
  26. K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
    [Crossref] [PubMed]
  27. W. H. de Jong and P. J. A. Borm, “Drug delivery and nanoparticles:applications and hazards,” Int. J. Nanomedicine 3(2), 133–149 (2008).
    [Crossref] [PubMed]
  28. C. Lantigua, S. He, M. A. Bouzan, W. Hayenga, N. J. Johnson, A. Almutairi, and M. Khajavikhan, “Engineering upconversion emission spectra using plasmonic nanocavities,” Opt. Lett. 39(13), 3710–3713 (2014).
    [Crossref] [PubMed]
  29. S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, “Spectroscopic study of thulium-activated double sodium yttrium fluoride Na0.4Y0.6F2.2:Tm3+ crystals: I. Intensity of spectra and luminescence kinetics,” Opt. Spectrosc. 105(2), 228–241 (2008).
    [Crossref]
  30. J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
    [Crossref]
  31. N. J. J. Johnson and F. C. J. M. van Veggel, “Lanthanide-based heteroepitaxial core-shell nanostructures: compressive versus tensile strain asymmetry,” ACS Nano 8(10), 10517–10527 (2014).
    [Crossref] [PubMed]
  32. N. J. J. Johnson, A. Korinek, C. Dong, and F. C. J. M. van Veggel, “Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals,” J. Am. Chem. Soc. 134(27), 11068–11071 (2012).
    [Crossref] [PubMed]
  33. K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-Photon Upconversion Emissions from Gd(3+) Ions in Fluoride Nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
    [Crossref] [PubMed]
  34. H.-X. Mai, Y.-W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
    [Crossref] [PubMed]
  35. Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19(34), 345606 (2008).
    [Crossref] [PubMed]
  36. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  37. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
    [Crossref] [PubMed]
  38. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
    [Crossref]

2016 (1)

Y. Yang, P. Zhou, W. Xu, S. Xu, Y. Jiang, X. Chen, and H. Song, “NaYF4:Yb3+,Tm3+ inverse opal photonic crystals and NaYF4:Yb3+,Tm3+/TiO2 composites: synthesis, highly improved upconversion properties and NIR photoelectric response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(4), 659–662 (2016).
[Crossref]

2015 (3)

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
[Crossref] [PubMed]

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-Photon Upconversion Emissions from Gd(3+) Ions in Fluoride Nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
[Crossref] [PubMed]

2014 (4)

C. Lantigua, S. He, M. A. Bouzan, W. Hayenga, N. J. Johnson, A. Almutairi, and M. Khajavikhan, “Engineering upconversion emission spectra using plasmonic nanocavities,” Opt. Lett. 39(13), 3710–3713 (2014).
[Crossref] [PubMed]

N. J. J. Johnson and F. C. J. M. van Veggel, “Lanthanide-based heteroepitaxial core-shell nanostructures: compressive versus tensile strain asymmetry,” ACS Nano 8(10), 10517–10527 (2014).
[Crossref] [PubMed]

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-enhanced upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

2013 (6)

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8(1), 81 (2013).
[Crossref] [PubMed]

X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: progresses and challenges,” Nano Today 8(6), 643–676 (2013).
[Crossref]

M. L. Viger, M. Grossman, N. Fomina, and A. Almutairi, “Low power upconverted near-IR light for efficient polymeric nanoparticle degradation and cargo release,” Adv. Mater. 25(27), 3733–3738 (2013).
[Crossref] [PubMed]

B. Herter, S. Wolf, S. Fischer, J. Gutmann, B. Blasi, and J. C. Goldschmidt, “Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis,” Opt. Express 21(S5Suppl 5), A883–A900 (2013).
[Crossref] [PubMed]

L. Pan, M. He, J. Ma, W. Tang, G. Gao, R. He, H. Su, and D. Cui, “Phase and size controllable synthesis of NaYbF4 nanocrystals in oleic acid/ionic liquid two-phase system for targeted fluorescent imaging of gastric cancer,” Theranostics 3(3), 210–222 (2013).
[Crossref] [PubMed]

2012 (5)

N. J. J. Johnson, A. Korinek, C. Dong, and F. C. J. M. van Veggel, “Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals,” J. Am. Chem. Soc. 134(27), 11068–11071 (2012).
[Crossref] [PubMed]

M. Saboktakin, X. Ye, S. J. Oh, S. H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation,” ACS Nano 6(10), 8758–8766 (2012).
[Crossref] [PubMed]

W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24, 236–241 (2012).

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[Crossref]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

2011 (4)

C. Wang, L. Cheng, and Z. Liu, “Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy,” Biomaterials 32(4), 1110–1120 (2011).
[Crossref] [PubMed]

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

J. Zhao, S. Ji, and H. Guo, “Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields,” RSC Advances 1(6), 937–950 (2011).
[Crossref]

C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals,” Opt. Lett. 36(20), 3990–3992 (2011).
[Crossref] [PubMed]

2010 (3)

A. C. Pan, C. Del Canizo, E. Canovas, N. M. Santos, J. P. Leitao, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Sol. Cells 94(11), 1923–1926 (2010).
[Crossref]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[Crossref] [PubMed]

2008 (3)

W. H. de Jong and P. J. A. Borm, “Drug delivery and nanoparticles:applications and hazards,” Int. J. Nanomedicine 3(2), 133–149 (2008).
[Crossref] [PubMed]

S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, “Spectroscopic study of thulium-activated double sodium yttrium fluoride Na0.4Y0.6F2.2:Tm3+ crystals: I. Intensity of spectra and luminescence kinetics,” Opt. Spectrosc. 105(2), 228–241 (2008).
[Crossref]

Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19(34), 345606 (2008).
[Crossref] [PubMed]

2007 (1)

G. S. Yi and G. M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence,” Chem. Mater. 19(3), 341–343 (2007).
[Crossref]

2006 (2)

A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
[Crossref]

H.-X. Mai, Y.-W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

2005 (1)

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[Crossref]

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

2003 (1)

S. Heer, O. Lehmann, M. Haase, and H.-U. Gudel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

1966 (1)

M. R. Brown and W. A. Shand, “Infrared quantum counter action in rare earth doped flouride lattices,” IEEE J. Quantum Electron. 2(8), 251–253 (1966).
[Crossref]

1959 (1)

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2(3), 84–85 (1959).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Aebischer, A.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[Crossref]

Ahn, S.

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
[Crossref] [PubMed]

Aichele, T.

S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[Crossref] [PubMed]

Akselrod, G. M.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Almutairi, A.

C. Lantigua, S. He, M. A. Bouzan, W. Hayenga, N. J. Johnson, A. Almutairi, and M. Khajavikhan, “Engineering upconversion emission spectra using plasmonic nanocavities,” Opt. Lett. 39(13), 3710–3713 (2014).
[Crossref] [PubMed]

M. L. Viger, M. Grossman, N. Fomina, and A. Almutairi, “Low power upconverted near-IR light for efficient polymeric nanoparticle degradation and cargo release,” Adv. Mater. 25(27), 3733–3738 (2013).
[Crossref] [PubMed]

Argyropoulos, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Banerjee, D.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Bass, M.

A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
[Crossref]

Benson, O.

S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[Crossref] [PubMed]

Biner, D.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[Crossref]

Blasi, B.

Bloembergen, N.

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2(3), 84–85 (1959).
[Crossref]

Borm, P. J. A.

W. H. de Jong and P. J. A. Borm, “Drug delivery and nanoparticles:applications and hazards,” Int. J. Nanomedicine 3(2), 133–149 (2008).
[Crossref] [PubMed]

Bouzan, M. A.

Brown, M. R.

M. R. Brown and W. A. Shand, “Infrared quantum counter action in rare earth doped flouride lattices,” IEEE J. Quantum Electron. 2(8), 251–253 (1966).
[Crossref]

Canovas, E.

A. C. Pan, C. Del Canizo, E. Canovas, N. M. Santos, J. P. Leitao, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Sol. Cells 94(11), 1923–1926 (2010).
[Crossref]

Cao, C.

K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-Photon Upconversion Emissions from Gd(3+) Ions in Fluoride Nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
[Crossref] [PubMed]

Cassanho, A.

A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
[Crossref]

Chen, X.

Y. Yang, P. Zhou, W. Xu, S. Xu, Y. Jiang, X. Chen, and H. Song, “NaYF4:Yb3+,Tm3+ inverse opal photonic crystals and NaYF4:Yb3+,Tm3+/TiO2 composites: synthesis, highly improved upconversion properties and NIR photoelectric response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(4), 659–662 (2016).
[Crossref]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Cheng, L.

C. Wang, L. Cheng, and Z. Liu, “Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy,” Biomaterials 32(4), 1110–1120 (2011).
[Crossref] [PubMed]

Chettiar, U. K.

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

M. Saboktakin, X. Ye, S. J. Oh, S. H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation,” ACS Nano 6(10), 8758–8766 (2012).
[Crossref] [PubMed]

Chou, S. Y.

W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24, 236–241 (2012).

Chow, G. M.

G. S. Yi and G. M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence,” Chem. Mater. 19(3), 341–343 (2007).
[Crossref]

Ciraci, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Conibeer, G. J.

Cui, D.

L. Pan, M. He, J. Ma, W. Tang, G. Gao, R. He, H. Su, and D. Cui, “Phase and size controllable synthesis of NaYbF4 nanocrystals in oleic acid/ionic liquid two-phase system for targeted fluorescent imaging of gastric cancer,” Theranostics 3(3), 210–222 (2013).
[Crossref] [PubMed]

de Jong, W. H.

W. H. de Jong and P. J. A. Borm, “Drug delivery and nanoparticles:applications and hazards,” Int. J. Nanomedicine 3(2), 133–149 (2008).
[Crossref] [PubMed]

de Wild, J.

W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8(1), 81 (2013).
[Crossref] [PubMed]

Del Canizo, C.

A. C. Pan, C. Del Canizo, E. Canovas, N. M. Santos, J. P. Leitao, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Sol. Cells 94(11), 1923–1926 (2010).
[Crossref]

Ding, F.

W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24, 236–241 (2012).

Dionne, J. A.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-enhanced upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

Dong, C.

N. J. J. Johnson, A. Korinek, C. Dong, and F. C. J. M. van Veggel, “Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals,” J. Am. Chem. Soc. 134(27), 11068–11071 (2012).
[Crossref] [PubMed]

Engheta, N.

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

M. Saboktakin, X. Ye, S. J. Oh, S. H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation,” ACS Nano 6(10), 8758–8766 (2012).
[Crossref] [PubMed]

Fafarman, A. T.

M. Saboktakin, X. Ye, S. J. Oh, S. H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation,” ACS Nano 6(10), 8758–8766 (2012).
[Crossref] [PubMed]

Fainman, Y.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Fang, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Fischer, S.

Fomina, N.

M. L. Viger, M. Grossman, N. Fomina, and A. Almutairi, “Low power upconverted near-IR light for efficient polymeric nanoparticle degradation and cargo release,” Adv. Mater. 25(27), 3733–3738 (2013).
[Crossref] [PubMed]

Gao, G.

L. Pan, M. He, J. Ma, W. Tang, G. Gao, R. He, H. Su, and D. Cui, “Phase and size controllable synthesis of NaYbF4 nanocrystals in oleic acid/ionic liquid two-phase system for targeted fluorescent imaging of gastric cancer,” Theranostics 3(3), 210–222 (2013).
[Crossref] [PubMed]

García-Etxarri, A.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-enhanced upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

Gerner, P.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[Crossref]

Goldschmidt, J. C.

Grimm, J.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[Crossref]

Grossman, M.

M. L. Viger, M. Grossman, N. Fomina, and A. Almutairi, “Low power upconverted near-IR light for efficient polymeric nanoparticle degradation and cargo release,” Adv. Mater. 25(27), 3733–3738 (2013).
[Crossref] [PubMed]

Gudel, H.-U.

S. Heer, O. Lehmann, M. Haase, and H.-U. Gudel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

Güdel, H. U.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[Crossref]

Guo, H.

J. Zhao, S. Ji, and H. Guo, “Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields,” RSC Advances 1(6), 937–950 (2011).
[Crossref]

Gutmann, J.

Haase, M.

S. Heer, O. Lehmann, M. Haase, and H.-U. Gudel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

Han, I. K.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Han, J. S.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Hayenga, W.

He, M.

L. Pan, M. He, J. Ma, W. Tang, G. Gao, R. He, H. Su, and D. Cui, “Phase and size controllable synthesis of NaYbF4 nanocrystals in oleic acid/ionic liquid two-phase system for targeted fluorescent imaging of gastric cancer,” Theranostics 3(3), 210–222 (2013).
[Crossref] [PubMed]

He, R.

L. Pan, M. He, J. Ma, W. Tang, G. Gao, R. He, H. Su, and D. Cui, “Phase and size controllable synthesis of NaYbF4 nanocrystals in oleic acid/ionic liquid two-phase system for targeted fluorescent imaging of gastric cancer,” Theranostics 3(3), 210–222 (2013).
[Crossref] [PubMed]

He, S.

Heer, S.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[Crossref]

S. Heer, O. Lehmann, M. Haase, and H.-U. Gudel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

Herter, B.

Hoang, T. B.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Hong, S. H.

M. Saboktakin, X. Ye, S. J. Oh, S. H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation,” ACS Nano 6(10), 8758–8766 (2012).
[Crossref] [PubMed]

Huang, J.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Hummelen, J. C.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[Crossref]

Ivanova, S. E.

S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, “Spectroscopic study of thulium-activated double sodium yttrium fluoride Na0.4Y0.6F2.2:Tm3+ crystals: I. Intensity of spectra and luminescence kinetics,” Opt. Spectrosc. 105(2), 228–241 (2008).
[Crossref]

Jang, H. S.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Jenssen, H.

A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
[Crossref]

Ji, S.

J. Zhao, S. Ji, and H. Guo, “Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields,” RSC Advances 1(6), 937–950 (2011).
[Crossref]

Jiang, T.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Jiang, Y.

Y. Yang, P. Zhou, W. Xu, S. Xu, Y. Jiang, X. Chen, and H. Song, “NaYF4:Yb3+,Tm3+ inverse opal photonic crystals and NaYF4:Yb3+,Tm3+/TiO2 composites: synthesis, highly improved upconversion properties and NIR photoelectric response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(4), 659–662 (2016).
[Crossref]

Johnson, C. M.

Johnson, N. J.

Johnson, N. J. J.

N. J. J. Johnson and F. C. J. M. van Veggel, “Lanthanide-based heteroepitaxial core-shell nanostructures: compressive versus tensile strain asymmetry,” ACS Nano 8(10), 10517–10527 (2014).
[Crossref] [PubMed]

N. J. J. Johnson, A. Korinek, C. Dong, and F. C. J. M. van Veggel, “Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals,” J. Am. Chem. Soc. 134(27), 11068–11071 (2012).
[Crossref] [PubMed]

Ju, B. K.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Kagan, C. R.

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

M. Saboktakin, X. Ye, S. J. Oh, S. H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation,” ACS Nano 6(10), 8758–8766 (2012).
[Crossref] [PubMed]

Katz, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Khajavikhan, M.

C. Lantigua, S. He, M. A. Bouzan, W. Hayenga, N. J. Johnson, A. Almutairi, and M. Khajavikhan, “Engineering upconversion emission spectra using plasmonic nanocavities,” Opt. Lett. 39(13), 3710–3713 (2014).
[Crossref] [PubMed]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Kim, S. Y.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Ko, D. H.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Ko, H.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Korinek, A.

N. J. J. Johnson, A. Korinek, C. Dong, and F. C. J. M. van Veggel, “Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals,” J. Am. Chem. Soc. 134(27), 11068–11071 (2012).
[Crossref] [PubMed]

Krämer, K. W.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[Crossref]

Kwak, K. W.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Kwon, H. K.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Kwon, S. H.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Kwon, S. J.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Kyhm, J.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Lantigua, C.

Lee, J. H.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Lee, K. T.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Lee, S. H.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Lehmann, O.

S. Heer, O. Lehmann, M. Haase, and H.-U. Gudel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

Leitao, J. P.

A. C. Pan, C. Del Canizo, E. Canovas, N. M. Santos, J. P. Leitao, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Sol. Cells 94(11), 1923–1926 (2010).
[Crossref]

Li, X.

X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: progresses and challenges,” Nano Today 8(6), 643–676 (2013).
[Crossref]

Li, Z.

Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19(34), 345606 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Liu, X.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Liu, Y.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Liu, Z.

C. Wang, L. Cheng, and Z. Liu, “Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy,” Biomaterials 32(4), 1110–1120 (2011).
[Crossref] [PubMed]

Lomakin, V.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Lu, D.

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
[Crossref] [PubMed]

Luque, A.

A. C. Pan, C. Del Canizo, E. Canovas, N. M. Santos, J. P. Leitao, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Sol. Cells 94(11), 1923–1926 (2010).
[Crossref]

Ma, J.

L. Pan, M. He, J. Ma, W. Tang, G. Gao, R. He, H. Su, and D. Cui, “Phase and size controllable synthesis of NaYbF4 nanocrystals in oleic acid/ionic liquid two-phase system for targeted fluorescent imaging of gastric cancer,” Theranostics 3(3), 210–222 (2013).
[Crossref] [PubMed]

Maduro, J. A.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[Crossref]

Mai, H.-X.

H.-X. Mai, Y.-W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Meijerink, A.

W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8(1), 81 (2013).
[Crossref] [PubMed]

Mikkelsen, M. H.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Milliez, J.

A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
[Crossref]

Mirzaeva, A.

S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, “Spectroscopic study of thulium-activated double sodium yttrium fluoride Na0.4Y0.6F2.2:Tm3+ crystals: I. Intensity of spectra and luminescence kinetics,” Opt. Spectrosc. 105(2), 228–241 (2008).
[Crossref]

Mizrahi, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Murray, C. B.

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

M. Saboktakin, X. Ye, S. J. Oh, S. H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation,” ACS Nano 6(10), 8758–8766 (2012).
[Crossref] [PubMed]

Nann, T.

S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[Crossref] [PubMed]

Oh, S. J.

M. Saboktakin, X. Ye, S. J. Oh, S. H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation,” ACS Nano 6(10), 8758–8766 (2012).
[Crossref] [PubMed]

Pan, A. C.

A. C. Pan, C. Del Canizo, E. Canovas, N. M. Santos, J. P. Leitao, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Sol. Cells 94(11), 1923–1926 (2010).
[Crossref]

Pan, L.

L. Pan, M. He, J. Ma, W. Tang, G. Gao, R. He, H. Su, and D. Cui, “Phase and size controllable synthesis of NaYbF4 nanocrystals in oleic acid/ionic liquid two-phase system for targeted fluorescent imaging of gastric cancer,” Theranostics 3(3), 210–222 (2013).
[Crossref] [PubMed]

Park, J. H.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Park, W.

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
[Crossref] [PubMed]

Pellé, F.

S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, “Spectroscopic study of thulium-activated double sodium yttrium fluoride Na0.4Y0.6F2.2:Tm3+ crystals: I. Intensity of spectra and luminescence kinetics,” Opt. Spectrosc. 105(2), 228–241 (2008).
[Crossref]

Pshenichnikov, M. S.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Qin, G.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Qin, W.

K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-Photon Upconversion Emissions from Gd(3+) Ions in Fluoride Nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
[Crossref] [PubMed]

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Rapaport, A.

A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
[Crossref]

Rath, J. K.

W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8(1), 81 (2013).
[Crossref] [PubMed]

Reece, P. J.

Reinhard, C.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[Crossref]

Saboktakin, M.

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

M. Saboktakin, X. Ye, S. J. Oh, S. H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation,” ACS Nano 6(10), 8758–8766 (2012).
[Crossref] [PubMed]

Salleo, A.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-enhanced upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

Santos, N. M.

A. C. Pan, C. Del Canizo, E. Canovas, N. M. Santos, J. P. Leitao, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Sol. Cells 94(11), 1923–1926 (2010).
[Crossref]

Schietinger, S.

S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[Crossref] [PubMed]

Schropp, R. E.

W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8(1), 81 (2013).
[Crossref] [PubMed]

Shand, W. A.

M. R. Brown and W. A. Shand, “Infrared quantum counter action in rare earth doped flouride lattices,” IEEE J. Quantum Electron. 2(8), 251–253 (1966).
[Crossref]

Shin, D. H.

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

Si, R.

H.-X. Mai, Y.-W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Simic, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Slutsky, B.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Smith, D. R.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Song, H.

Y. Yang, P. Zhou, W. Xu, S. Xu, Y. Jiang, X. Chen, and H. Song, “NaYF4:Yb3+,Tm3+ inverse opal photonic crystals and NaYF4:Yb3+,Tm3+/TiO2 composites: synthesis, highly improved upconversion properties and NIR photoelectric response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(4), 659–662 (2016).
[Crossref]

Su, H.

L. Pan, M. He, J. Ma, W. Tang, G. Gao, R. He, H. Su, and D. Cui, “Phase and size controllable synthesis of NaYbF4 nanocrystals in oleic acid/ionic liquid two-phase system for targeted fluorescent imaging of gastric cancer,” Theranostics 3(3), 210–222 (2013).
[Crossref] [PubMed]

Sun, L. D.

H.-X. Mai, Y.-W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Suyver, J. F.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[Crossref]

Tang, W.

L. Pan, M. He, J. Ma, W. Tang, G. Gao, R. He, H. Su, and D. Cui, “Phase and size controllable synthesis of NaYbF4 nanocrystals in oleic acid/ionic liquid two-phase system for targeted fluorescent imaging of gastric cancer,” Theranostics 3(3), 210–222 (2013).
[Crossref] [PubMed]

Tkachuk, A. M.

S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, “Spectroscopic study of thulium-activated double sodium yttrium fluoride Na0.4Y0.6F2.2:Tm3+ crystals: I. Intensity of spectra and luminescence kinetics,” Opt. Spectrosc. 105(2), 228–241 (2008).
[Crossref]

van Sark, W. G.

W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8(1), 81 (2013).
[Crossref] [PubMed]

van Veggel, F. C. J. M.

N. J. J. Johnson and F. C. J. M. van Veggel, “Lanthanide-based heteroepitaxial core-shell nanostructures: compressive versus tensile strain asymmetry,” ACS Nano 8(10), 10517–10527 (2014).
[Crossref] [PubMed]

N. J. J. Johnson, A. Korinek, C. Dong, and F. C. J. M. van Veggel, “Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals,” J. Am. Chem. Soc. 134(27), 11068–11071 (2012).
[Crossref] [PubMed]

Viger, M. L.

M. L. Viger, M. Grossman, N. Fomina, and A. Almutairi, “Low power upconverted near-IR light for efficient polymeric nanoparticle degradation and cargo release,” Adv. Mater. 25(27), 3733–3738 (2013).
[Crossref] [PubMed]

Visser, C.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[Crossref]

Wang, C.

C. Wang, L. Cheng, and Z. Liu, “Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy,” Biomaterials 32(4), 1110–1120 (2011).
[Crossref] [PubMed]

Wang, F.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Wang, H. Q.

S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[Crossref] [PubMed]

Wang, L.

K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-Photon Upconversion Emissions from Gd(3+) Ions in Fluoride Nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
[Crossref] [PubMed]

Wolf, S.

Wu, D. M.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-enhanced upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

Xu, S.

Y. Yang, P. Zhou, W. Xu, S. Xu, Y. Jiang, X. Chen, and H. Song, “NaYF4:Yb3+,Tm3+ inverse opal photonic crystals and NaYF4:Yb3+,Tm3+/TiO2 composites: synthesis, highly improved upconversion properties and NIR photoelectric response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(4), 659–662 (2016).
[Crossref]

Xu, W.

Y. Yang, P. Zhou, W. Xu, S. Xu, Y. Jiang, X. Chen, and H. Song, “NaYF4:Yb3+,Tm3+ inverse opal photonic crystals and NaYF4:Yb3+,Tm3+/TiO2 composites: synthesis, highly improved upconversion properties and NIR photoelectric response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(4), 659–662 (2016).
[Crossref]

Yan, C. H.

H.-X. Mai, Y.-W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Yan, Z. G.

H.-X. Mai, Y.-W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, P. Zhou, W. Xu, S. Xu, Y. Jiang, X. Chen, and H. Song, “NaYF4:Yb3+,Tm3+ inverse opal photonic crystals and NaYF4:Yb3+,Tm3+/TiO2 composites: synthesis, highly improved upconversion properties and NIR photoelectric response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(4), 659–662 (2016).
[Crossref]

Ye, X.

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

M. Saboktakin, X. Ye, S. J. Oh, S. H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation,” ACS Nano 6(10), 8758–8766 (2012).
[Crossref] [PubMed]

Yi, G. S.

G. S. Yi and G. M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence,” Chem. Mater. 19(3), 341–343 (2007).
[Crossref]

You, L. P.

H.-X. Mai, Y.-W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Zhang, F.

X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: progresses and challenges,” Nano Today 8(6), 643–676 (2013).
[Crossref]

Zhang, W.

W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24, 236–241 (2012).

Zhang, Y.

Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19(34), 345606 (2008).
[Crossref] [PubMed]

Zhang, Y.-W.

H.-X. Mai, Y.-W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

Zhao, D.

K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-Photon Upconversion Emissions from Gd(3+) Ions in Fluoride Nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
[Crossref] [PubMed]

X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: progresses and challenges,” Nano Today 8(6), 643–676 (2013).
[Crossref]

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, S. Ji, and H. Guo, “Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields,” RSC Advances 1(6), 937–950 (2011).
[Crossref]

Zheng, K.

K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-Photon Upconversion Emissions from Gd(3+) Ions in Fluoride Nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
[Crossref] [PubMed]

Zhou, P.

Y. Yang, P. Zhou, W. Xu, S. Xu, Y. Jiang, X. Chen, and H. Song, “NaYF4:Yb3+,Tm3+ inverse opal photonic crystals and NaYF4:Yb3+,Tm3+/TiO2 composites: synthesis, highly improved upconversion properties and NIR photoelectric response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(4), 659–662 (2016).
[Crossref]

Zou, W.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[Crossref]

ACS Nano (3)

M. Saboktakin, X. Ye, S. J. Oh, S. H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation,” ACS Nano 6(10), 8758–8766 (2012).
[Crossref] [PubMed]

M. Saboktakin, X. Ye, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays,” ACS Nano 7(8), 7186–7192 (2013).
[Crossref] [PubMed]

N. J. J. Johnson and F. C. J. M. van Veggel, “Lanthanide-based heteroepitaxial core-shell nanostructures: compressive versus tensile strain asymmetry,” ACS Nano 8(10), 10517–10527 (2014).
[Crossref] [PubMed]

Adv. Mater. (2)

W. Zhang, F. Ding, and S. Y. Chou, “Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas,” Adv. Mater. 24, 236–241 (2012).

M. L. Viger, M. Grossman, N. Fomina, and A. Almutairi, “Low power upconverted near-IR light for efficient polymeric nanoparticle degradation and cargo release,” Adv. Mater. 25(27), 3733–3738 (2013).
[Crossref] [PubMed]

Analyst (Lond.) (1)

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

S. Heer, O. Lehmann, M. Haase, and H.-U. Gudel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

Biomaterials (1)

C. Wang, L. Cheng, and Z. Liu, “Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy,” Biomaterials 32(4), 1110–1120 (2011).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Chem. Mater. (1)

G. S. Yi and G. M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence,” Chem. Mater. 19(3), 341–343 (2007).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

M. R. Brown and W. A. Shand, “Infrared quantum counter action in rare earth doped flouride lattices,” IEEE J. Quantum Electron. 2(8), 251–253 (1966).
[Crossref]

Int. J. Nanomedicine (1)

W. H. de Jong and P. J. A. Borm, “Drug delivery and nanoparticles:applications and hazards,” Int. J. Nanomedicine 3(2), 133–149 (2008).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

N. J. J. Johnson, A. Korinek, C. Dong, and F. C. J. M. van Veggel, “Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals,” J. Am. Chem. Soc. 134(27), 11068–11071 (2012).
[Crossref] [PubMed]

H.-X. Mai, Y.-W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc. 128(19), 6426–6436 (2006).
[Crossref] [PubMed]

J. Disp. Technol. (1)

A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. Yang, P. Zhou, W. Xu, S. Xu, Y. Jiang, X. Chen, and H. Song, “NaYF4:Yb3+,Tm3+ inverse opal photonic crystals and NaYF4:Yb3+,Tm3+/TiO2 composites: synthesis, highly improved upconversion properties and NIR photoelectric response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(4), 659–662 (2016).
[Crossref]

J. Phys. Chem. Lett. (2)

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-enhanced upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-Photon Upconversion Emissions from Gd(3+) Ions in Fluoride Nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
[Crossref] [PubMed]

Nano Lett. (2)

K. T. Lee, J. H. Park, S. J. Kwon, H. K. Kwon, J. Kyhm, K. W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S. H. Lee, D. H. Shin, H. Ko, I. K. Han, B. K. Ju, S. H. Kwon, and D. H. Ko, “Simultaneous enhancement of upconversion and downshifting luminescence via plasmonic structure,” Nano Lett. 15(4), 2491–2497 (2015).
[Crossref] [PubMed]

S. Schietinger, T. Aichele, H. Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[Crossref] [PubMed]

Nano Today (1)

X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: progresses and challenges,” Nano Today 8(6), 643–676 (2013).
[Crossref]

Nanoscale Res. Lett. (1)

W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8(1), 81 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19(34), 345606 (2008).
[Crossref] [PubMed]

Nat. Photonics (2)

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[Crossref]

Nature (1)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (1)

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005).
[Crossref]

Opt. Spectrosc. (1)

S. E. Ivanova, A. M. Tkachuk, A. Mirzaeva, and F. Pellé, “Spectroscopic study of thulium-activated double sodium yttrium fluoride Na0.4Y0.6F2.2:Tm3+ crystals: I. Intensity of spectra and luminescence kinetics,” Opt. Spectrosc. 105(2), 228–241 (2008).
[Crossref]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. Lett. (1)

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2(3), 84–85 (1959).
[Crossref]

RSC Advances (1)

J. Zhao, S. Ji, and H. Guo, “Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields,” RSC Advances 1(6), 937–950 (2011).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

A. C. Pan, C. Del Canizo, E. Canovas, N. M. Santos, J. P. Leitao, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Sol. Cells 94(11), 1923–1926 (2010).
[Crossref]

Theranostics (1)

L. Pan, M. He, J. Ma, W. Tang, G. Gao, R. He, H. Su, and D. Cui, “Phase and size controllable synthesis of NaYbF4 nanocrystals in oleic acid/ionic liquid two-phase system for targeted fluorescent imaging of gastric cancer,” Theranostics 3(3), 210–222 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Energy diagram for the upconversion nanoparticles NaYF4:Yb3+/Tm3+. Solid arrows indicate absorption lines and radiative transitions; dashed arrows represent nonlinear energy transfers. (b) The primary radiative transitions and their corresponding nominal probabilities. (c) A solution of NaYF4:20%Yb3+/0.5%Tm3+ nanoparticles illuminated by a 980 nm laser. (d) A transmission electron micrograph (TEM) of the β-phase UCNPs.
Fig. 2
Fig. 2 Electromagnetic response of a cross-shape nanocavity. (a) A cross-shape cavity when surrounded by air and the associated absorption profile. (b) Same as in (a). Here the resonator is surrounded by silver walls. For visual purposes, the absorption profiles in (a) and (b) are normalized differently. (c) The local density of states. The four curves represent different simulations, each carried with 10 random dipoles. (d) The ratio of outcoupling from dipoles randomly dispersed in the cavity to that when these same dipoles are embedded in a UCNP plain film.
Fig. 3
Fig. 3 Nanofabrication procedure. (a)-(g) The steps involved in the fabrication of the nanocavities with UCNPs. (h) A scanning electron microscope image of a ring-shape cavity.
Fig. 4
Fig. 4 (a) A schematic of upconversion nanoparticle. The dimensions of the four nanocavity structures studied in this paper. (b) cross shape, (c) square, (d) ring, and (e) concentric rings nanocavities.
Fig. 5
Fig. 5 A schematic of the lock-in detection characterization set-up, with a built-in confocal microscope for adjusting the pump with respect to the patterns.
Fig. 6
Fig. 6 Measurement results. Upconversion spectra for a number of patterns and nanocavities using (a) silver, (b) gold, (c) aluminum. All three diagrams are normalized to the same arbitrary units of intensity.
Fig. 7
Fig. 7 Single cavity upconversion enhancement (a-c). (d) Comparison of the upconversion enhancement between different cavity designs and metal platforms at four spectral bands in the visible and near ultraviolet frequencies. The enhancement is calculated as the ratio of the emitted light from a single nanocavity to that emanating from the same area of UCNP films on glass.

Metrics