Abstract

We investigate the operation of holmium-doped fibre amplifiers (HDFAs) in the 2.1 µm spectral region. For the first time we demonstrate a diode-pumped HDFA. This amplifier provides a peak gain of 25 dB at 2040 nm with a 15 dB gain window spanning the wavelength range 2030 – 2100 nm with an external noise figure (NF) of 4-6 dB. We also compare the operation of HDFAs when pumped at 1950 nm and 2008 nm. The 1950 nm pumped HDFA provides 41 dB peak gain at 2060 nm with 15 dB of gain spanning the wavelength range 2050 – 2120 nm and an external NF of 7-10 dB. By pumping at the longer wavelength of 2008 nm the gain bandwidth of the amplifier is shifted to longer wavelengths and using this architecture a HDFA was demonstrated with a peak gain of 39 dB at 2090 nm and 15 dB of gain spanning the wavelength range 2050 – 2150 nm. The external NF over this wavelength range was 8-14 dB.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 – 2050 nm window

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson
Opt. Express 21(22) 26450-26455 (2013)

Gain-switched holmium-doped fibre laser

Ka S. Wu, David Ottaway, Jesper Munch, David G. Lancaster, Shayne Bennetts, and Stuart D. Jackson
Opt. Express 17(23) 20872-20877 (2009)

Broadband silica-based thulium doped fiber amplifier employing multi-wavelength pumping

Junjia Wang, Sijing Liang, Qiongyue Kang, Yongmin Jung, Shaif-ul Alam, and David J. Richardson
Opt. Express 24(20) 23001-23008 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” Compt. Rend. Phys. 7(2), 213–223 (2006).
    [Crossref]
  2. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
    [Crossref]
  3. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).
  4. A. Hemming, N. Simakov, A. Davidson, S. Bennetts, M. Hughes, N. Carmody, P. Davies, L. Corena, D. Stepanov, J. Haub, R. Swain, and A. Carter, “A monolithic cladding pumped holmium-doped fibre laser,” in CLEO:2013 (Optical Society of America, San Jose, California, 2013), p. CW1M.1.
  5. Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
    [Crossref]
  6. H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
    [Crossref] [PubMed]
  7. H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 μm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
    [Crossref] [PubMed]
  8. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
    [Crossref] [PubMed]
  9. N. Mac Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. Wooler, S. U. Alam, F. Poletti, M. Petrovich, A. Heidt, N. Wheeler, N. Baddela, E. R. Numkam Fokoua, I. Giles, D. Giles, R. Phelan, J. O’Carroll, B. Kelly, B. Corbett, D. Murphy, A. D. Ellis, D. J. Richardson, and F. Garcia Gunning, “WDM Transmission at 2 µm over Low-Loss Hollow Core Photonic Bandgap Fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (Optical Society of America, Anaheim, California, 2013), p. OW1I.6.
  10. N. Mac Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. Heidt, I. Giles, D. J. Giles, B. Pálsdóttir, L. Grüner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. Ellis, D. Richardson, and F. C. Garcia Gunning, “Wavelength Division Multiplexing at 2 µm,” in European Conference and Exhibition on Optical Communication (Optical Society of America, Amsterdam, 2012), p. Th.3.A.3.
    [Crossref]
  11. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [Crossref]
  12. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
    [Crossref] [PubMed]
  13. Z. Li, S. Alam, J. Daniel, P. Shardlow, D. Jain, N. Simakov, A. Heidt, Y. Jung, J. Sahu, and W. Clarkson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in European Conference on Optical Communication (2014), p. Tu.3.4.2
    [Crossref]
  14. A. M. Heidt, Z. Li, and D. J. Richardson, “High Power Diode-Seeded Fiber Amplifiers at 2 µm - From Architectures to Applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 525–536 (2014).
    [Crossref]
  15. Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, P. C. Shardlow, A. M. Heidt, A. Clarkson, S. U. Alam, and D. J. Richardson, “Extreme Short Wavelength Operation (1.65 - 1.7 µm) of Silica-Based Thulium-Doped Fiber Amplifier,” in Optical Fiber Communication Conference (Optical Society of America, Los Angeles, California, 2015), p. Tu2C.1.
  16. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
    [Crossref] [PubMed]
  17. N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
    [Crossref] [PubMed]
  18. S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fibre laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
    [Crossref]
  19. V. A. Kamynin, S. O. Antipov, A. V. Baranikov, and A. S. Kurkov, “Holmium-doped fibre amplifier operating at 2.1 μm,” Quantum Electron. 44(2), 161–162 (2014).
    [Crossref]
  20. S. A. Filatova, V. A. Kamynin, V. B. Tsvetkov, O. I. Medvedkov, and A. S. Kurkov, “Gain spectrum of the Ho-doped fiber amplifier,” Laser Phys. Lett. 12(9), 095105 (2015).
    [Crossref]
  21. A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
    [Crossref]
  22. N. Simakov, Z. Li, S. U. Alam, P. C. Shardlow, J. M. O. Daniel, D. Jain, J. K. Sahu, A. Hemming, A. Clarkson and D. J. Richardson, “Holmium Doped Fiber Amplifier for Optical Communications at 2.05 - 2.13 µm,” in Optical Fiber Communication Conference (Optical Society of America, Los Angeles, California, 2015), p. Tu2C.6.
  23. S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 32(17), 2496–2498 (2007).
    [Crossref] [PubMed]
  24. S. D. Jackson, “Midinfrared holmium fiber lasers,” IEEE J. Quantum Electron. 42(2), 187–191 (2006).
    [Crossref]
  25. J. W. Kim, A. Boyland, J. K. Sahu, and W. A. Clarkson, “Ho-doped silica fibre laser in-band pumped by a Tm-doped fibre laser,” in CLEO-E/EQEC (2009), p. CJ6_5.
  26. A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 microm,” Opt. Lett. 35(4), 490–492 (2010).
    [Crossref] [PubMed]
  27. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
    [Crossref]
  28. E. J. Friebele, C. G. Askins, J. R. Peele, B. M. Wright, N. J. Condon, S. O’Connor, C. G. Brown, and S. R. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).
  29. B.-H. Choi, H.-H. Park, and M.-J. Chu, “New pump wavelength of 1540-nm band for long-wavelength-band erbium-doped fiber amplifier (L-band EDFA),” IEEE J. Quantum Electron. 39(10), 1272–1280 (2003).
    [Crossref]
  30. Y. Li, Y. Zhao, B. Ashton, S. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable Holmium-doped silica fibre lasers,” in European Conference on Optical Communication (31st: 2005: Glasgow, Scotland) (2005), p. 679–680.
  31. V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
    [Crossref]

2015 (4)

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 μm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref] [PubMed]

S. A. Filatova, V. A. Kamynin, V. B. Tsvetkov, O. I. Medvedkov, and A. S. Kurkov, “Gain spectrum of the Ho-doped fiber amplifier,” Laser Phys. Lett. 12(9), 095105 (2015).
[Crossref]

2014 (4)

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

A. M. Heidt, Z. Li, and D. J. Richardson, “High Power Diode-Seeded Fiber Amplifiers at 2 µm - From Architectures to Applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 525–536 (2014).
[Crossref]

E. J. Friebele, C. G. Askins, J. R. Peele, B. M. Wright, N. J. Condon, S. O’Connor, C. G. Brown, and S. R. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).

V. A. Kamynin, S. O. Antipov, A. V. Baranikov, and A. S. Kurkov, “Holmium-doped fibre amplifier operating at 2.1 μm,” Quantum Electron. 44(2), 161–162 (2014).
[Crossref]

2013 (5)

2012 (1)

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

2010 (1)

2007 (1)

2006 (3)

S. D. Jackson, “Midinfrared holmium fiber lasers,” IEEE J. Quantum Electron. 42(2), 187–191 (2006).
[Crossref]

S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
[Crossref] [PubMed]

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” Compt. Rend. Phys. 7(2), 213–223 (2006).
[Crossref]

2003 (1)

B.-H. Choi, H.-H. Park, and M.-J. Chu, “New pump wavelength of 1540-nm band for long-wavelength-band erbium-doped fiber amplifier (L-band EDFA),” IEEE J. Quantum Electron. 39(10), 1272–1280 (2003).
[Crossref]

2000 (1)

1996 (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Agger, S. D.

Alam, S.

Z. Li, S. Alam, J. Daniel, P. Shardlow, D. Jain, N. Simakov, A. Heidt, Y. Jung, J. Sahu, and W. Clarkson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in European Conference on Optical Communication (2014), p. Tu.3.4.2
[Crossref]

Alam, S. U.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 μm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref] [PubMed]

Antipov, S. O.

V. A. Kamynin, S. O. Antipov, A. V. Baranikov, and A. S. Kurkov, “Holmium-doped fibre amplifier operating at 2.1 μm,” Quantum Electron. 44(2), 161–162 (2014).
[Crossref]

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fibre laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Ashton, B.

Y. Li, Y. Zhao, B. Ashton, S. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable Holmium-doped silica fibre lasers,” in European Conference on Optical Communication (31st: 2005: Glasgow, Scotland) (2005), p. 679–680.

Askins, C. G.

E. J. Friebele, C. G. Askins, J. R. Peele, B. M. Wright, N. J. Condon, S. O’Connor, C. G. Brown, and S. R. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).

Augere, B.

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” Compt. Rend. Phys. 7(2), 213–223 (2006).
[Crossref]

Baddela, N. K.

Baranikov, A. V.

V. A. Kamynin, S. O. Antipov, A. V. Baranikov, and A. S. Kurkov, “Holmium-doped fibre amplifier operating at 2.1 μm,” Quantum Electron. 44(2), 161–162 (2014).
[Crossref]

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fibre laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

Becker, M.

Bowman, S. R.

E. J. Friebele, C. G. Askins, J. R. Peele, B. M. Wright, N. J. Condon, S. O’Connor, C. G. Brown, and S. R. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).

Bradley, T.

Brown, C. G.

E. J. Friebele, C. G. Askins, J. R. Peele, B. M. Wright, N. J. Condon, S. O’Connor, C. G. Brown, and S. R. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).

Budni, P. A.

Bugge, F.

Cariou, J.-P.

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” Compt. Rend. Phys. 7(2), 213–223 (2006).
[Crossref]

Carter, A.

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

Chen, Y.

Chicklis, E. P.

Choi, B.-H.

B.-H. Choi, H.-H. Park, and M.-J. Chu, “New pump wavelength of 1540-nm band for long-wavelength-band erbium-doped fiber amplifier (L-band EDFA),” IEEE J. Quantum Electron. 39(10), 1272–1280 (2003).
[Crossref]

Chu, M.-J.

B.-H. Choi, H.-H. Park, and M.-J. Chu, “New pump wavelength of 1540-nm band for long-wavelength-band erbium-doped fiber amplifier (L-band EDFA),” IEEE J. Quantum Electron. 39(10), 1272–1280 (2003).
[Crossref]

Clarkson, W.

Z. Li, S. Alam, J. Daniel, P. Shardlow, D. Jain, N. Simakov, A. Heidt, Y. Jung, J. Sahu, and W. Clarkson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in European Conference on Optical Communication (2014), p. Tu.3.4.2
[Crossref]

Clarkson, W. A.

Condon, N. J.

E. J. Friebele, C. G. Askins, J. R. Peele, B. M. Wright, N. J. Condon, S. O’Connor, C. G. Brown, and S. R. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).

Corbett, B.

Daniel, J.

Z. Li, S. Alam, J. Daniel, P. Shardlow, D. Jain, N. Simakov, A. Heidt, Y. Jung, J. Sahu, and W. Clarkson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in European Conference on Optical Communication (2014), p. Tu.3.4.2
[Crossref]

Daniel, J. M. O.

Dvoyrin, V. V.

Ellis, A. D.

Erbert, G.

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Filatova, S. A.

S. A. Filatova, V. A. Kamynin, V. B. Tsvetkov, O. I. Medvedkov, and A. S. Kurkov, “Gain spectrum of the Ho-doped fiber amplifier,” Laser Phys. Lett. 12(9), 095105 (2015).
[Crossref]

Fleming, S.

Y. Li, Y. Zhao, B. Ashton, S. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable Holmium-doped silica fibre lasers,” in European Conference on Optical Communication (31st: 2005: Glasgow, Scotland) (2005), p. 679–680.

Friebele, E. J.

E. J. Friebele, C. G. Askins, J. R. Peele, B. M. Wright, N. J. Condon, S. O’Connor, C. G. Brown, and S. R. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).

Garcia Gunning, F. C.

Gleeson, M.

Gocalinska, A.

Gray, D. R.

Gruner-Nielsen, L.

Grüner-Nielsen, L.

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Gunning, F.

Gunning, F. C. G.

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Haub, J.

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

Hayes, J. R.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 μm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Heidt, A.

Z. Li, S. Alam, J. Daniel, P. Shardlow, D. Jain, N. Simakov, A. Heidt, Y. Jung, J. Sahu, and W. Clarkson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in European Conference on Optical Communication (2014), p. Tu.3.4.2
[Crossref]

Heidt, A. M.

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Hemming, A.

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Jackson, S.

Y. Li, Y. Zhao, B. Ashton, S. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable Holmium-doped silica fibre lasers,” in European Conference on Optical Communication (31st: 2005: Glasgow, Scotland) (2005), p. 679–680.

Jackson, S. D.

S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 32(17), 2496–2498 (2007).
[Crossref] [PubMed]

S. D. Jackson, “Midinfrared holmium fiber lasers,” IEEE J. Quantum Electron. 42(2), 187–191 (2006).
[Crossref]

Jain, D.

Z. Li, S. Alam, J. Daniel, P. Shardlow, D. Jain, N. Simakov, A. Heidt, Y. Jung, J. Sahu, and W. Clarkson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in European Conference on Optical Communication (2014), p. Tu.3.4.2
[Crossref]

Jung, Y.

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref] [PubMed]

Z. Li, S. Alam, J. Daniel, P. Shardlow, D. Jain, N. Simakov, A. Heidt, Y. Jung, J. Sahu, and W. Clarkson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in European Conference on Optical Communication (2014), p. Tu.3.4.2
[Crossref]

Kablukov, S. I.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Kamynin, V. A.

S. A. Filatova, V. A. Kamynin, V. B. Tsvetkov, O. I. Medvedkov, and A. S. Kurkov, “Gain spectrum of the Ho-doped fiber amplifier,” Laser Phys. Lett. 12(9), 095105 (2015).
[Crossref]

V. A. Kamynin, S. O. Antipov, A. V. Baranikov, and A. S. Kurkov, “Holmium-doped fibre amplifier operating at 2.1 μm,” Quantum Electron. 44(2), 161–162 (2014).
[Crossref]

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fibre laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Kavanagh, N.

Kelly, B.

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 μm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref] [PubMed]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

Kurkov, A. S.

S. A. Filatova, V. A. Kamynin, V. B. Tsvetkov, O. I. Medvedkov, and A. S. Kurkov, “Gain spectrum of the Ho-doped fiber amplifier,” Laser Phys. Lett. 12(9), 095105 (2015).
[Crossref]

V. A. Kamynin, S. O. Antipov, A. V. Baranikov, and A. S. Kurkov, “Holmium-doped fibre amplifier operating at 2.1 μm,” Quantum Electron. 44(2), 161–162 (2014).
[Crossref]

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fibre laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 microm,” Opt. Lett. 35(4), 490–492 (2010).
[Crossref] [PubMed]

Lemons, M. L.

Li, Y.

Y. Li, Y. Zhao, B. Ashton, S. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable Holmium-doped silica fibre lasers,” in European Conference on Optical Communication (31st: 2005: Glasgow, Scotland) (2005), p. 679–680.

Li, Z.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 μm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

A. M. Heidt, Z. Li, and D. J. Richardson, “High Power Diode-Seeded Fiber Amplifiers at 2 µm - From Architectures to Applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 525–536 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

Z. Li, S. Alam, J. Daniel, P. Shardlow, D. Jain, N. Simakov, A. Heidt, Y. Jung, J. Sahu, and W. Clarkson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in European Conference on Optical Communication (2014), p. Tu.3.4.2
[Crossref]

Liu, Z.

MacSuibhne, N.

Marakulin, A. V.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fibre laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 microm,” Opt. Lett. 35(4), 490–492 (2010).
[Crossref] [PubMed]

Medvedkov, O. I.

S. A. Filatova, V. A. Kamynin, V. B. Tsvetkov, O. I. Medvedkov, and A. S. Kurkov, “Gain spectrum of the Ho-doped fiber amplifier,” Laser Phys. Lett. 12(9), 095105 (2015).
[Crossref]

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fibre laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Miller, C. A.

Minashina, L. A.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fibre laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

Morrissey, P. E.

Mosto, J. R.

Numkam, E.

Numkam Fokoua, E.

O’Brien, P.

O’Carroll, J.

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 μm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

O’Connor, S.

E. J. Friebele, C. G. Askins, J. R. Peele, B. M. Wright, N. J. Condon, S. O’Connor, C. G. Brown, and S. R. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).

Ouyang, X.

Pálsdóttir, B.

Park, H.-H.

B.-H. Choi, H.-H. Park, and M.-J. Chu, “New pump wavelength of 1540-nm band for long-wavelength-band erbium-doped fiber amplifier (L-band EDFA),” IEEE J. Quantum Electron. 39(10), 1272–1280 (2003).
[Crossref]

Parmigiani, F.

Pavarelli, N.

Peele, J. R.

E. J. Friebele, C. G. Askins, J. R. Peele, B. M. Wright, N. J. Condon, S. O’Connor, C. G. Brown, and S. R. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).

Pelucchi, E.

Peters, F.

Petropoulos, P.

Petrovich, M. N.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 μm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Phelan, R.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 μm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

Poletti, F.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 μm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Pomeranz, L. A.

Povlsen, J. H.

Raspopin, K. S.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Richardson, D. J.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 μm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref] [PubMed]

A. M. Heidt, Z. Li, and D. J. Richardson, “High Power Diode-Seeded Fiber Amplifiers at 2 µm - From Architectures to Applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 525–536 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref] [PubMed]

Richter, T.

Robert, C.

Sahu, J.

Z. Li, S. Alam, J. Daniel, P. Shardlow, D. Jain, N. Simakov, A. Heidt, Y. Jung, J. Sahu, and W. Clarkson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in European Conference on Optical Communication (2014), p. Tu.3.4.2
[Crossref]

Sandoghchi, S. R.

Schubert, C.

Shardlow, P.

Z. Li, S. Alam, J. Daniel, P. Shardlow, D. Jain, N. Simakov, A. Heidt, Y. Jung, J. Sahu, and W. Clarkson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in European Conference on Optical Communication (2014), p. Tu.3.4.2
[Crossref]

Simakov, N.

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref] [PubMed]

Z. Li, S. Alam, J. Daniel, P. Shardlow, D. Jain, N. Simakov, A. Heidt, Y. Jung, J. Sahu, and W. Clarkson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in European Conference on Optical Communication (2014), p. Tu.3.4.2
[Crossref]

Slavik, R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Slavík, R.

Thomas, K.

Tsvetkov, V. B.

S. A. Filatova, V. A. Kamynin, V. B. Tsvetkov, O. I. Medvedkov, and A. S. Kurkov, “Gain spectrum of the Ho-doped fiber amplifier,” Laser Phys. Lett. 12(9), 095105 (2015).
[Crossref]

Valla, M.

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” Compt. Rend. Phys. 7(2), 213–223 (2006).
[Crossref]

Wheeler, N. V.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Wooler, J. P.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 μm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

Wright, B. M.

E. J. Friebele, C. G. Askins, J. R. Peele, B. M. Wright, N. J. Condon, S. O’Connor, C. G. Brown, and S. R. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).

Yang, H.

Ye, N.

Zhang, H.

Zhao, J.

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 μm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref] [PubMed]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

Zhao, Y.

Y. Li, Y. Zhao, B. Ashton, S. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable Holmium-doped silica fibre lasers,” in European Conference on Optical Communication (31st: 2005: Glasgow, Scotland) (2005), p. 679–680.

Compt. Rend. Phys. (1)

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” Compt. Rend. Phys. 7(2), 213–223 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

S. D. Jackson, “Midinfrared holmium fiber lasers,” IEEE J. Quantum Electron. 42(2), 187–191 (2006).
[Crossref]

B.-H. Choi, H.-H. Park, and M.-J. Chu, “New pump wavelength of 1540-nm band for long-wavelength-band erbium-doped fiber amplifier (L-band EDFA),” IEEE J. Quantum Electron. 39(10), 1272–1280 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. M. Heidt, Z. Li, and D. J. Richardson, “High Power Diode-Seeded Fiber Amplifiers at 2 µm - From Architectures to Applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 525–536 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (2)

S. A. Filatova, V. A. Kamynin, V. B. Tsvetkov, O. I. Medvedkov, and A. S. Kurkov, “Gain spectrum of the Ho-doped fiber amplifier,” Laser Phys. Lett. 12(9), 095105 (2015).
[Crossref]

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Nat. Photonics (1)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Opt. Express (5)

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref] [PubMed]

S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
[Crossref] [PubMed]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. G. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (1)

E. J. Friebele, C. G. Askins, J. R. Peele, B. M. Wright, N. J. Condon, S. O’Connor, C. G. Brown, and S. R. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).

Quantum Electron. (2)

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fibre laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

V. A. Kamynin, S. O. Antipov, A. V. Baranikov, and A. S. Kurkov, “Holmium-doped fibre amplifier operating at 2.1 μm,” Quantum Electron. 44(2), 161–162 (2014).
[Crossref]

Other (9)

Z. Li, S. Alam, J. Daniel, P. Shardlow, D. Jain, N. Simakov, A. Heidt, Y. Jung, J. Sahu, and W. Clarkson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in European Conference on Optical Communication (2014), p. Tu.3.4.2
[Crossref]

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, P. C. Shardlow, A. M. Heidt, A. Clarkson, S. U. Alam, and D. J. Richardson, “Extreme Short Wavelength Operation (1.65 - 1.7 µm) of Silica-Based Thulium-Doped Fiber Amplifier,” in Optical Fiber Communication Conference (Optical Society of America, Los Angeles, California, 2015), p. Tu2C.1.

N. Mac Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. Wooler, S. U. Alam, F. Poletti, M. Petrovich, A. Heidt, N. Wheeler, N. Baddela, E. R. Numkam Fokoua, I. Giles, D. Giles, R. Phelan, J. O’Carroll, B. Kelly, B. Corbett, D. Murphy, A. D. Ellis, D. J. Richardson, and F. Garcia Gunning, “WDM Transmission at 2 µm over Low-Loss Hollow Core Photonic Bandgap Fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (Optical Society of America, Anaheim, California, 2013), p. OW1I.6.

N. Mac Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. Heidt, I. Giles, D. J. Giles, B. Pálsdóttir, L. Grüner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. Ellis, D. Richardson, and F. C. Garcia Gunning, “Wavelength Division Multiplexing at 2 µm,” in European Conference and Exhibition on Optical Communication (Optical Society of America, Amsterdam, 2012), p. Th.3.A.3.
[Crossref]

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).

A. Hemming, N. Simakov, A. Davidson, S. Bennetts, M. Hughes, N. Carmody, P. Davies, L. Corena, D. Stepanov, J. Haub, R. Swain, and A. Carter, “A monolithic cladding pumped holmium-doped fibre laser,” in CLEO:2013 (Optical Society of America, San Jose, California, 2013), p. CW1M.1.

N. Simakov, Z. Li, S. U. Alam, P. C. Shardlow, J. M. O. Daniel, D. Jain, J. K. Sahu, A. Hemming, A. Clarkson and D. J. Richardson, “Holmium Doped Fiber Amplifier for Optical Communications at 2.05 - 2.13 µm,” in Optical Fiber Communication Conference (Optical Society of America, Los Angeles, California, 2015), p. Tu2C.6.

J. W. Kim, A. Boyland, J. K. Sahu, and W. A. Clarkson, “Ho-doped silica fibre laser in-band pumped by a Tm-doped fibre laser,” in CLEO-E/EQEC (2009), p. CJ6_5.

Y. Li, Y. Zhao, B. Ashton, S. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable Holmium-doped silica fibre lasers,” in European Conference on Optical Communication (31st: 2005: Glasgow, Scotland) (2005), p. 679–680.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Absorption spectrum of holmium-doped silica. (b) Relevant pump transitions and non-radiative decay for both pump wavelengths in order to achieve emission at 2100 nm
Fig. 2
Fig. 2 The effective cross-section gain in Ho:silica as a function of inversion.
Fig. 3
Fig. 3 Schematic of the double-pass diode-pumped HDFA. WDM: Wavelength division multiplexer; HDF: Holmium-doped fiber.
Fig. 4
Fig. 4 Schematic of the double-pass fiber-laser pumped HDFA. WDM: Wavelength division multiplexer; HDF: Holmium-doped fiber.
Fig. 5
Fig. 5 Performance of the diode-pumped HDFA (a) summary of gain and NF vs. wavelength (b) amplified spectra for the small-signal, −20 dBm, input (c) amplified spectra for the saturated, 0 dBm, input signal. The spectra were measured with a 0.5 nm resolution.
Fig. 6
Fig. 6 Performance of the 1950 nm fiber laser pumped HDFA (a) summary of gain and NF vs. wavelength (b) amplified spectra for the small-signal, −20 dBm, input (c) amplified spectra for the saturated, 0 dBm, input signal. The spectra were measured with a 0.5 nm resolution.
Fig. 7
Fig. 7 Performance of 2008 nm fiber laser pumped HDFA (a) summary of gain and NF vs. wavelength (b) amplified spectra for the small-signal, −20 dBm, input (c) amplified spectra for the saturated, 0 dBm, input signal. The spectra were measured with a 0.5 nm resolution.
Fig. 8
Fig. 8 Summary of small-signal gain and NF of the various HDFAs demonstrated in the paper

Tables (1)

Tables Icon

Table 1 Summary of the HDFAs reported in this paper.

Metrics