Abstract

We present a mid-infrared (mid-IR) supercontinuum (SC) light source pumped by femtosecond pulses from a thulium doped fiber amplifier (TDFA) at 2 μm. An octave-spanning spectrum from 1.1 to 3.7 μm with an average power of 253 mW has been obtained from a single mode ZBLAN fiber. Spectral flatness of 10 dB over a 1390 nm range has been obtained in the mid-IR region from 1940 – 3330 nm. It is resulted from the enhanced self phase modulation process in femtosecond regime. The all-fiber configuration makes such broadband coherent source a compact candidate for various applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system

Weiqiang Yang, Bin Zhang, Ke Yin, Xuanfeng Zhou, and Jing Hou
Opt. Express 21(17) 19732-19742 (2013)

High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power

Kun Liu, Jiang Liu, Hongxing Shi, Fangzhou Tan, and Pu Wang
Opt. Express 22(20) 24384-24391 (2014)

Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson
Opt. Express 21(20) 24281-24287 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Ye, H. Schnatz, and L. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
    [Crossref]
  2. O. H. Heckl, P. B. Changala, B. Spaun, B. J. Bjork, J. Ye, D. Patterson, and J. M. Doyle, “Cavity-enhanced Mid-IR optical frequency comb spectroscopy: enhanced time and spectral resolution,” in CLEO: Science and Innovations, 2015 OSA Technical Digest (online) (Optical Society of America, 2015), paper STh3M.4.
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
    [Crossref] [PubMed]
  4. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
    [Crossref]
  5. Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
    [Crossref] [PubMed]
  6. L. M. Kehlet, P. Tidemand-Lichtenberg, J. S. Dam, and C. Pedersen, “Infrared upconversion hyperspectral imaging,” Opt. Lett. 40(6), 938–941 (2015).
    [Crossref] [PubMed]
  7. J. Nallala, G. R. Lloyd, C. Kendall, N. A. Shepherd, H. Barr, and N. Stone, “Identification of GI cancers utilizing rapid mid-infrared spectral imaging,” Proc. SPIE 9703, 970303 (2016).
    [Crossref]
  8. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
    [Crossref] [PubMed]
  9. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from~ 1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28(10), 2486–2498 (2011).
    [Crossref]
  10. A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
    [Crossref] [PubMed]
  11. J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39(4), 910–913 (2014).
    [Crossref] [PubMed]
  12. D. Klimentov, N. Tolstik, V. V. Dvoyrin, V. L. Kalashnikov, and I. T. Sorokina, “Broadband dispersion measurement of ZBLAN, germanate and silica fibers in MidIR,” J. Lightwave Technol. 30, 1943–1947 (2012).
  13. J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High power supercontinuum generation in fluoride fibers pumped by 2 µm pulses,” IEEE Photon. Technol. Lett. 26(2), 150–153 (2014).
    [Crossref]
  14. W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Lett. 39(7), 1849–1852 (2014).
    [Crossref] [PubMed]
  15. W. Yuan, “Coherent mid-infrared supercontinuum generation with As2Se3 photonic crystal fiber and femtosecond Airy pulses,” Laser Phys. Lett. 12(12), 125101 (2015).
    [Crossref]
  16. R. J. Weiblen, A. Docherty, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Calculation of the expected output spectrum for a mid-infrared supercontinuum source based on As ₂ S₃ chalcogenide photonic crystal fibers,” Opt. Express 22(18), 22220–22231 (2014).
    [Crossref] [PubMed]
  17. D. Türke, S. Pricking, A. Husakou, J. Teipel, J. Herrmann, and H. Giessen, “Coherence of subsequent supercontinuum pulses generated in tapered fibers in the femtosecond regime,” Opt. Express 15(5), 2732–2741 (2007).
    [Crossref] [PubMed]
  18. G. Imeshev and M. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
    [Crossref] [PubMed]
  19. G. P. Agrawal, “Optical pulse propagation in doped fiber amplifiers,” Phys. Rev. A 44(11), 7493–7501 (1991).
    [Crossref] [PubMed]
  20. L. F. Mollenauer, R. H. Stolen, and J. P. Godon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
    [Crossref]
  21. M. Y. Chen, H. Subbaraman, and R. T. Chen, “One stage pulse compression at 1554 nm through highly anomalous dispersive photonic crystal fiber,” Opt. Express 19(22), 21809–21817 (2011).
    [Crossref] [PubMed]
  22. C. W. Rudy, K. E. Urbanek, M. J. F. Digonnet, and R. L. Byer, “Amplified 2-μm thulium-doped all-fiber mode-locked figure-eight laser,” J. Lightwave Technol. 31(11), 1809–1812 (2013).
    [Crossref]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  24. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14(25), 11997–12007 (2006).
    [Crossref] [PubMed]
  25. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
    [Crossref] [PubMed]
  26. C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the mid-infrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).
    [Crossref]
  27. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  28. J. M. Dudley, L. Provino, N. Grossard, and H. Mailotte, “Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19(4), 765–771 (2002).
    [Crossref]
  29. A. K. Dharmadhikari and D. Mathur, Propagation of Ultrashort Pulses in Condensed Media (Springer, 2007).

2016 (1)

J. Nallala, G. R. Lloyd, C. Kendall, N. A. Shepherd, H. Barr, and N. Stone, “Identification of GI cancers utilizing rapid mid-infrared spectral imaging,” Proc. SPIE 9703, 970303 (2016).
[Crossref]

2015 (2)

W. Yuan, “Coherent mid-infrared supercontinuum generation with As2Se3 photonic crystal fiber and femtosecond Airy pulses,” Laser Phys. Lett. 12(12), 125101 (2015).
[Crossref]

L. M. Kehlet, P. Tidemand-Lichtenberg, J. S. Dam, and C. Pedersen, “Infrared upconversion hyperspectral imaging,” Opt. Lett. 40(6), 938–941 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (2)

2012 (1)

2011 (2)

2010 (1)

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[Crossref] [PubMed]

2007 (1)

2006 (3)

D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14(25), 11997–12007 (2006).
[Crossref] [PubMed]

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the mid-infrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (1)

2003 (1)

J. Ye, H. Schnatz, and L. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

2002 (1)

2001 (3)

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
[Crossref] [PubMed]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[Crossref] [PubMed]

1991 (1)

G. P. Agrawal, “Optical pulse propagation in doped fiber amplifiers,” Phys. Rev. A 44(11), 7493–7501 (1991).
[Crossref] [PubMed]

1980 (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Godon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Aggarwal, I. D.

Agrawal, G. P.

G. P. Agrawal, “Optical pulse propagation in doped fiber amplifiers,” Phys. Rev. A 44(11), 7493–7501 (1991).
[Crossref] [PubMed]

Alam, S. U.

Alexander, V. V.

Austin, D. R.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Barr, H.

J. Nallala, G. R. Lloyd, C. Kendall, N. A. Shepherd, H. Barr, and N. Stone, “Identification of GI cancers utilizing rapid mid-infrared spectral imaging,” Proc. SPIE 9703, 970303 (2016).
[Crossref]

Baskiotis, C.

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Brown, T. G.

Byer, R. L.

Chan, A.

Chen, M. Y.

Chen, R.

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[Crossref] [PubMed]

Chen, R. T.

Chen, Y.

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[Crossref] [PubMed]

Chudoba, C.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dam, J. S.

de Sterke, C. M.

Digonnet, M. J. F.

Docherty, A.

Dudley, J. M.

Dvoyrin, V. V.

Eggleton, B. J.

Eichhorn, M.

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High power supercontinuum generation in fluoride fibers pumped by 2 µm pulses,” IEEE Photon. Technol. Lett. 26(2), 150–153 (2014).
[Crossref]

Feehan, J. S.

Fermann, M.

Freeman, M. J.

Fujimoto, J. G.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Ghanta, R. K.

Giessen, H.

Godon, J. P.

L. F. Mollenauer, R. H. Stolen, and J. P. Godon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Grossard, N.

Hagen, C. L.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the mid-infrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).
[Crossref]

Hakala, T.

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[Crossref] [PubMed]

Hartl, I.

Heidt, A. M.

Herrmann, J.

Hollberg, L.

J. Ye, H. Schnatz, and L. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

Hou, J.

Husakou, A.

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[Crossref] [PubMed]

Hyyppä, J.

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[Crossref] [PubMed]

Imeshev, G.

Islam, M. N.

Kaasalainen, S.

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[Crossref] [PubMed]

Kalashnikov, V. L.

Kehlet, L. M.

Kendall, C.

J. Nallala, G. R. Lloyd, C. Kendall, N. A. Shepherd, H. Barr, and N. Stone, “Identification of GI cancers utilizing rapid mid-infrared spectral imaging,” Proc. SPIE 9703, 970303 (2016).
[Crossref]

Kieleck, C.

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High power supercontinuum generation in fluoride fibers pumped by 2 µm pulses,” IEEE Photon. Technol. Lett. 26(2), 150–153 (2014).
[Crossref]

Klimentov, D.

Ko, T. H.

Kulkarni, O. P.

Kumar, M.

Li, X. D.

Li, Z.

Liu, J.

Liu, K.

Lloyd, G. R.

J. Nallala, G. R. Lloyd, C. Kendall, N. A. Shepherd, H. Barr, and N. Stone, “Identification of GI cancers utilizing rapid mid-infrared spectral imaging,” Proc. SPIE 9703, 970303 (2016).
[Crossref]

Mailotte, H.

Mazé, G.

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High power supercontinuum generation in fluoride fibers pumped by 2 µm pulses,” IEEE Photon. Technol. Lett. 26(2), 150–153 (2014).
[Crossref]

Menyuk, C. R.

Michalska, M.

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39(4), 910–913 (2014).
[Crossref] [PubMed]

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High power supercontinuum generation in fluoride fibers pumped by 2 µm pulses,” IEEE Photon. Technol. Lett. 26(2), 150–153 (2014).
[Crossref]

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, and J. P. Godon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Nallala, J.

J. Nallala, G. R. Lloyd, C. Kendall, N. A. Shepherd, H. Barr, and N. Stone, “Identification of GI cancers utilizing rapid mid-infrared spectral imaging,” Proc. SPIE 9703, 970303 (2016).
[Crossref]

Neelakandan, M.

Pedersen, C.

Price, J. H. V.

Pricking, S.

Provino, L.

Räikkönen, E.

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[Crossref] [PubMed]

Ranka, J. K.

Richardson, D. J.

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
[Crossref] [PubMed]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Rudy, C. W.

Sanders, S. T.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the mid-infrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).
[Crossref]

Sanghera, J. S.

Schnatz, H.

J. Ye, H. Schnatz, and L. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

Shaw, L. B.

Shepherd, N. A.

J. Nallala, G. R. Lloyd, C. Kendall, N. A. Shepherd, H. Barr, and N. Stone, “Identification of GI cancers utilizing rapid mid-infrared spectral imaging,” Proc. SPIE 9703, 970303 (2016).
[Crossref]

Shi, H.

Sorokina, I. T.

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, and J. P. Godon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Stone, N.

J. Nallala, G. R. Lloyd, C. Kendall, N. A. Shepherd, H. Barr, and N. Stone, “Identification of GI cancers utilizing rapid mid-infrared spectral imaging,” Proc. SPIE 9703, 970303 (2016).
[Crossref]

Subbaraman, H.

Suomalainen, J.

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[Crossref] [PubMed]

Swiderski, J.

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39(4), 910–913 (2014).
[Crossref] [PubMed]

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High power supercontinuum generation in fluoride fibers pumped by 2 µm pulses,” IEEE Photon. Technol. Lett. 26(2), 150–153 (2014).
[Crossref]

Tan, F.

Teipel, J.

Terry, F. L.

Tidemand-Lichtenberg, P.

Tolstik, N.

Türke, D.

Urbanek, K. E.

Walewski, J. W.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the mid-infrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).
[Crossref]

Wang, P.

Weiblen, R. J.

Windeler, R. S.

Xue, G.

Yang, W.

Ye, J.

J. Ye, H. Schnatz, and L. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

Yin, K.

Yuan, W.

W. Yuan, “Coherent mid-infrared supercontinuum generation with As2Se3 photonic crystal fiber and femtosecond Airy pulses,” Laser Phys. Lett. 12(12), 125101 (2015).
[Crossref]

Zhang, B.

IEEE J. Sel. Top. Quantum Electron. (1)

J. Ye, H. Schnatz, and L. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High power supercontinuum generation in fluoride fibers pumped by 2 µm pulses,” IEEE Photon. Technol. Lett. 26(2), 150–153 (2014).
[Crossref]

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the mid-infrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

W. Yuan, “Coherent mid-infrared supercontinuum generation with As2Se3 photonic crystal fiber and femtosecond Airy pulses,” Laser Phys. Lett. 12(12), 125101 (2015).
[Crossref]

Meas. Sci. Technol. (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Opt. Express (7)

G. Imeshev and M. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
[Crossref] [PubMed]

D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14(25), 11997–12007 (2006).
[Crossref] [PubMed]

D. Türke, S. Pricking, A. Husakou, J. Teipel, J. Herrmann, and H. Giessen, “Coherence of subsequent supercontinuum pulses generated in tapered fibers in the femtosecond regime,” Opt. Express 15(5), 2732–2741 (2007).
[Crossref] [PubMed]

M. Y. Chen, H. Subbaraman, and R. T. Chen, “One stage pulse compression at 1554 nm through highly anomalous dispersive photonic crystal fiber,” Opt. Express 19(22), 21809–21817 (2011).
[Crossref] [PubMed]

R. J. Weiblen, A. Docherty, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Calculation of the expected output spectrum for a mid-infrared supercontinuum source based on As ₂ S₃ chalcogenide photonic crystal fibers,” Opt. Express 22(18), 22220–22231 (2014).
[Crossref] [PubMed]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
[Crossref] [PubMed]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (1)

G. P. Agrawal, “Optical pulse propagation in doped fiber amplifiers,” Phys. Rev. A 44(11), 7493–7501 (1991).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

L. F. Mollenauer, R. H. Stolen, and J. P. Godon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[Crossref] [PubMed]

Proc. SPIE (1)

J. Nallala, G. R. Lloyd, C. Kendall, N. A. Shepherd, H. Barr, and N. Stone, “Identification of GI cancers utilizing rapid mid-infrared spectral imaging,” Proc. SPIE 9703, 970303 (2016).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Sensors (Basel) (1)

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010).
[Crossref] [PubMed]

Other (3)

O. H. Heckl, P. B. Changala, B. Spaun, B. J. Bjork, J. Ye, D. Patterson, and J. M. Doyle, “Cavity-enhanced Mid-IR optical frequency comb spectroscopy: enhanced time and spectral resolution,” in CLEO: Science and Innovations, 2015 OSA Technical Digest (online) (Optical Society of America, 2015), paper STh3M.4.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

A. K. Dharmadhikari and D. Mathur, Propagation of Ultrashort Pulses in Condensed Media (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic experimental setup of the supercontinuum generation system.
Fig. 2
Fig. 2 (a) Spectrum of the pulse after preamplifier. Insert shows the pulse train with a repetition rate of 56 MHz. (b) Pulse profile reconstructed by FROG after the preamplifier.
Fig. 3
Fig. 3 (a) Output spectra, (b) pulses profiles and (c) FROG traces at the average power of 85 mW, 305 mW, and 658 mW after the main amplifier.
Fig. 4
Fig. 4 ZBLAN output spectra generated at an average output power of 35 mW, 100 mW and 253 mW.
Fig. 5
Fig. 5 (a) SC spectra pumped by femtosecond, picosecond and nanosecond pulses with the same peak power. (b) The magnification of the pump wavelength part of SC spectra.

Tables (1)

Tables Icon

Table 1 Summary of previous experimental results of SC generation

Metrics