Abstract

High-resolution addressing of individual ultracold atoms, trapped ions or solid state emitters allows for exquisite control in quantum optics experiments. This becomes possible through large aperture magnifying optics that project microscopic light patterns with diffraction limited performance. We use programmable amplitude holograms generated on a digital micromirror device to create arbitrary microscopic beam shapes with full phase and amplitude control. The system self-corrects for aberrations of up to several λ and reduces them to λ/50, leading to light patterns with a precision on the 10−4 level. We demonstrate aberration-compensated beam shaping in an optical lattice experiment and perform single-site addressing in a quantum gas microscope for 87Rb.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct imaging of a digital-micromirror device for configurable microscopic optical potentials

G. Gauthier, I. Lenton, N. McKay Parry, M. Baker, M. J. Davis, H. Rubinsztein-Dunlop, and T. W. Neely
Optica 3(10) 1136-1143 (2016)

High-precision laser beam shaping using a binary-amplitude spatial light modulator

Jinyang Liang, Rudolph N. Kohn, Jr., Michael F. Becker, and Daniel J. Heinzen
Appl. Opt. 49(8) 1323-1330 (2010)

Micromechanics-based digitally controlled tunable optical beam shaper

Sarun Sumriddetchkajorn
Opt. Lett. 28(9) 737-739 (2003)

References

  • View by:
  • |
  • |
  • |

  1. P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, “Quasiparticle engineering and entanglement propagation in a quantum many-body system,” Nature 511, 202–205 (2014).
    [Crossref] [PubMed]
  2. C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
    [Crossref] [PubMed]
  3. Y. Wang, X. Zhang, T. A. Corcovilos, A. Kumar, and D. S. Weiss, “Coherent addressing of individual neutral atoms in a 3D optical lattice,” Phys. Rev. Lett. 115, 043003 (2015).
    [Crossref] [PubMed]
  4. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
    [Crossref] [PubMed]
  5. V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
    [Crossref]
  6. A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2012).
    [Crossref] [PubMed]
  7. F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).
  8. J. M. Beckers, “Adaptive optics for astronomy - Principles, performance, and applications,” Annual Review of Astronomy and Astrophysics 31, 13–62 (1993).
    [Crossref]
  9. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
    [Crossref]
  10. M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proceedings of the National Academy of Sciences 99, 5788–5792 (2002).
    [Crossref]
  11. I. M. Vellekoop and A. P. Mosk, “Universal Optimal Transmission of Light Through Disordered Materials,” Physical Review Letters 101, 120601 (2008).
    [Crossref] [PubMed]
  12. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature photonics 6, 283–292 (2012).
    [Crossref]
  13. W.-H. Lee, “Binary synthetic holograms,” Appl. Opt. 13, 1677–1682 (1974).
    [Crossref] [PubMed]
  14. S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22, 17999–18009 (2014).
    [Crossref] [PubMed]
  15. N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv 1511.07381 (2015).
  16. A. T. Papageorge, A. J. Kollár, and B. L. Lev, “Coupling to modes of a near-confocal optical resonator using a digital light modulator,” Opt. Express 24, 11447–11457 (2016).
    [Crossref]
  17. W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
    [Crossref] [PubMed]
  18. J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom resolved fluorescence imaging of an atomic Mott insulator,” Nature 467, 68–72 (2010).
    [Crossref] [PubMed]
  19. P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
    [Crossref] [PubMed]
  20. R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, “Measuring entanglement entropy in a quantum many-body system,” Nature 528, 77–83 (2015).
    [Crossref] [PubMed]
  21. P. Zupancic, “Dynamic holography and beamshaping using digital micromirror devices,” Master’s thesis, Ludwig-Maximilians-UniversitätMünchen (2013).
  22. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon.  4, 388–394 (2010).
    [Crossref]
  23. B. Deutsch, R. Hillenbrand, and L. Novotny, “Near-field amplitude and phase recovery using phase-shifting interferometry,” Opt. Express 16, 494–501 (2008).
    [Crossref] [PubMed]
  24. P. M. Preiss, “Atomic Bose-Hubbard systems with single-particle control,” Ph.D. thesis, Harvard University (2015).
  25. W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, “Probing the superfluid–to–Mott insulator transition at the single-atom level,” Science 329, 547–550 (2010).
    [Crossref] [PubMed]
  26. A. Kantian, U. Schollwöck, and T. Giamarchi, “Competing regimes of motion of 1D mobile impurities,” Phys. Rev. Lett. 113, 070601 (2014).
    [Crossref] [PubMed]
  27. P. Smacchia, M. Knap, E. Demler, and A. Silva, “Exploring dynamical phase transitions and prethermalization with quantum noise of excitations,” Phys. Rev. B 91, 205136 (2015).
    [Crossref]
  28. T. Fukuhara, S. Hild, J. Zeiher, P. Schauß, I. Bloch, M. Endres, and C. Gross, “Spatially resolved detection of a spin-entanglement wave in a Bose-Hubbard chain,” Phys. Rev. Lett. 115, 035302 (2015).
    [Crossref] [PubMed]
  29. A. Kleine, C. Kollath, I. P. McCulloch, T. Giamarchi, and U. Schollwöck, “Spin-charge separation in two-component Bose gases,” Phys. Rev. A 77, 013607 (2008).
    [Crossref]

2016 (1)

2015 (5)

Y. Wang, X. Zhang, T. A. Corcovilos, A. Kumar, and D. S. Weiss, “Coherent addressing of individual neutral atoms in a 3D optical lattice,” Phys. Rev. Lett. 115, 043003 (2015).
[Crossref] [PubMed]

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref] [PubMed]

R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, “Measuring entanglement entropy in a quantum many-body system,” Nature 528, 77–83 (2015).
[Crossref] [PubMed]

P. Smacchia, M. Knap, E. Demler, and A. Silva, “Exploring dynamical phase transitions and prethermalization with quantum noise of excitations,” Phys. Rev. B 91, 205136 (2015).
[Crossref]

T. Fukuhara, S. Hild, J. Zeiher, P. Schauß, I. Bloch, M. Endres, and C. Gross, “Spatially resolved detection of a spin-entanglement wave in a Bose-Hubbard chain,” Phys. Rev. Lett. 115, 035302 (2015).
[Crossref] [PubMed]

2014 (4)

A. Kantian, U. Schollwöck, and T. Giamarchi, “Competing regimes of motion of 1D mobile impurities,” Phys. Rev. Lett. 113, 070601 (2014).
[Crossref] [PubMed]

P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, “Quasiparticle engineering and entanglement propagation in a quantum many-body system,” Nature 511, 202–205 (2014).
[Crossref] [PubMed]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22, 17999–18009 (2014).
[Crossref] [PubMed]

2012 (2)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature photonics 6, 283–292 (2012).
[Crossref]

A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2012).
[Crossref] [PubMed]

2011 (1)

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

2010 (3)

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom resolved fluorescence imaging of an atomic Mott insulator,” Nature 467, 68–72 (2010).
[Crossref] [PubMed]

W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, “Probing the superfluid–to–Mott insulator transition at the single-atom level,” Science 329, 547–550 (2010).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon.  4, 388–394 (2010).
[Crossref]

2009 (1)

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[Crossref] [PubMed]

2008 (3)

I. M. Vellekoop and A. P. Mosk, “Universal Optimal Transmission of Light Through Disordered Materials,” Physical Review Letters 101, 120601 (2008).
[Crossref] [PubMed]

B. Deutsch, R. Hillenbrand, and L. Novotny, “Near-field amplitude and phase recovery using phase-shifting interferometry,” Opt. Express 16, 494–501 (2008).
[Crossref] [PubMed]

A. Kleine, C. Kollath, I. P. McCulloch, T. Giamarchi, and U. Schollwöck, “Spin-charge separation in two-component Bose gases,” Phys. Rev. A 77, 013607 (2008).
[Crossref]

2006 (1)

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

2002 (1)

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proceedings of the National Academy of Sciences 99, 5788–5792 (2002).
[Crossref]

2000 (1)

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

1999 (1)

1993 (1)

J. M. Beckers, “Adaptive optics for astronomy - Principles, performance, and applications,” Annual Review of Astronomy and Astrophysics 31, 13–62 (1993).
[Crossref]

1974 (1)

Bakr, W. S.

W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, “Probing the superfluid–to–Mott insulator transition at the single-atom level,” Science 329, 547–550 (2010).
[Crossref] [PubMed]

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[Crossref] [PubMed]

Barredo, D.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Beckers, J. M.

J. M. Beckers, “Adaptive optics for astronomy - Principles, performance, and applications,” Annual Review of Astronomy and Astrophysics 31, 13–62 (1993).
[Crossref]

Béguin, L.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Bertolotti, J.

Blatt, R.

P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, “Quasiparticle engineering and entanglement propagation in a quantum many-body system,” Nature 511, 202–205 (2014).
[Crossref] [PubMed]

Bloch, I.

T. Fukuhara, S. Hild, J. Zeiher, P. Schauß, I. Bloch, M. Endres, and C. Gross, “Spatially resolved detection of a spin-entanglement wave in a Bose-Hubbard chain,” Phys. Rev. Lett. 115, 035302 (2015).
[Crossref] [PubMed]

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom resolved fluorescence imaging of an atomic Mott insulator,” Nature 467, 68–72 (2010).
[Crossref] [PubMed]

Booth, M. J.

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proceedings of the National Academy of Sciences 99, 5788–5792 (2002).
[Crossref]

Boyer, V.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Browaeys, A.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Cassettari, D.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Chandrashekar, C. M.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Cheneau, M.

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom resolved fluorescence imaging of an atomic Mott insulator,” Nature 467, 68–72 (2010).
[Crossref] [PubMed]

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon.  4, 388–394 (2010).
[Crossref]

Corcovilos, T. A.

Y. Wang, X. Zhang, T. A. Corcovilos, A. Kumar, and D. S. Weiss, “Coherent addressing of individual neutral atoms in a 3D optical lattice,” Phys. Rev. Lett. 115, 043003 (2015).
[Crossref] [PubMed]

Deb, A. B.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Demler, E.

P. Smacchia, M. Knap, E. Demler, and A. Silva, “Exploring dynamical phase transitions and prethermalization with quantum noise of excitations,” Phys. Rev. B 91, 205136 (2015).
[Crossref]

Deutsch, B.

Dholakia, K.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon.  4, 388–394 (2010).
[Crossref]

Endres, M.

T. Fukuhara, S. Hild, J. Zeiher, P. Schauß, I. Bloch, M. Endres, and C. Gross, “Spatially resolved detection of a spin-entanglement wave in a Bose-Hubbard chain,” Phys. Rev. Lett. 115, 035302 (2015).
[Crossref] [PubMed]

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom resolved fluorescence imaging of an atomic Mott insulator,” Nature 467, 68–72 (2010).
[Crossref] [PubMed]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature photonics 6, 283–292 (2012).
[Crossref]

Fölling, S.

W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, “Probing the superfluid–to–Mott insulator transition at the single-atom level,” Science 329, 547–550 (2010).
[Crossref] [PubMed]

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[Crossref] [PubMed]

Foot, C. J.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Fukuhara, T.

T. Fukuhara, S. Hild, J. Zeiher, P. Schauß, I. Bloch, M. Endres, and C. Gross, “Spatially resolved detection of a spin-entanglement wave in a Bose-Hubbard chain,” Phys. Rev. Lett. 115, 035302 (2015).
[Crossref] [PubMed]

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

Gaunt, A. L.

A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2012).
[Crossref] [PubMed]

Giamarchi, T.

A. Kantian, U. Schollwöck, and T. Giamarchi, “Competing regimes of motion of 1D mobile impurities,” Phys. Rev. Lett. 113, 070601 (2014).
[Crossref] [PubMed]

A. Kleine, C. Kollath, I. P. McCulloch, T. Giamarchi, and U. Schollwöck, “Spin-charge separation in two-component Bose gases,” Phys. Rev. A 77, 013607 (2008).
[Crossref]

Gillen, J. I.

W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, “Probing the superfluid–to–Mott insulator transition at the single-atom level,” Science 329, 547–550 (2010).
[Crossref] [PubMed]

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[Crossref] [PubMed]

Godun, R. M.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Goorden, S. A.

Greiner, M.

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref] [PubMed]

R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, “Measuring entanglement entropy in a quantum many-body system,” Nature 528, 77–83 (2015).
[Crossref] [PubMed]

W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, “Probing the superfluid–to–Mott insulator transition at the single-atom level,” Science 329, 547–550 (2010).
[Crossref] [PubMed]

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[Crossref] [PubMed]

Gromov, A.

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv 1511.07381 (2015).

Gross, C.

T. Fukuhara, S. Hild, J. Zeiher, P. Schauß, I. Bloch, M. Endres, and C. Gross, “Spatially resolved detection of a spin-entanglement wave in a Bose-Hubbard chain,” Phys. Rev. Lett. 115, 035302 (2015).
[Crossref] [PubMed]

Hadzibabic, Z.

A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2012).
[Crossref] [PubMed]

Haist, T.

Hauke, P.

P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, “Quasiparticle engineering and entanglement propagation in a quantum many-body system,” Nature 511, 202–205 (2014).
[Crossref] [PubMed]

Hempel, C.

P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, “Quasiparticle engineering and entanglement propagation in a quantum many-body system,” Nature 511, 202–205 (2014).
[Crossref] [PubMed]

Hild, S.

T. Fukuhara, S. Hild, J. Zeiher, P. Schauß, I. Bloch, M. Endres, and C. Gross, “Spatially resolved detection of a spin-entanglement wave in a Bose-Hubbard chain,” Phys. Rev. Lett. 115, 035302 (2015).
[Crossref] [PubMed]

Hillenbrand, R.

Islam, R.

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref] [PubMed]

R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, “Measuring entanglement entropy in a quantum many-body system,” Nature 528, 77–83 (2015).
[Crossref] [PubMed]

Jurcevic, P.

P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, “Quasiparticle engineering and entanglement propagation in a quantum many-body system,” Nature 511, 202–205 (2014).
[Crossref] [PubMed]

Juškaitis, R.

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proceedings of the National Academy of Sciences 99, 5788–5792 (2002).
[Crossref]

Kantian, A.

A. Kantian, U. Schollwöck, and T. Giamarchi, “Competing regimes of motion of 1D mobile impurities,” Phys. Rev. Lett. 113, 070601 (2014).
[Crossref] [PubMed]

Kleine, A.

A. Kleine, C. Kollath, I. P. McCulloch, T. Giamarchi, and U. Schollwöck, “Spin-charge separation in two-component Bose gases,” Phys. Rev. A 77, 013607 (2008).
[Crossref]

Knap, M.

P. Smacchia, M. Knap, E. Demler, and A. Silva, “Exploring dynamical phase transitions and prethermalization with quantum noise of excitations,” Phys. Rev. B 91, 205136 (2015).
[Crossref]

Kollár, A. J.

Kollath, C.

A. Kleine, C. Kollath, I. P. McCulloch, T. Giamarchi, and U. Schollwöck, “Spin-charge separation in two-component Bose gases,” Phys. Rev. A 77, 013607 (2008).
[Crossref]

Kuhr, S.

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom resolved fluorescence imaging of an atomic Mott insulator,” Nature 467, 68–72 (2010).
[Crossref] [PubMed]

Kumar, A.

Y. Wang, X. Zhang, T. A. Corcovilos, A. Kumar, and D. S. Weiss, “Coherent addressing of individual neutral atoms in a 3D optical lattice,” Phys. Rev. Lett. 115, 043003 (2015).
[Crossref] [PubMed]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Labuhn, H.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Laczik, Z. J.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature photonics 6, 283–292 (2012).
[Crossref]

Lahaye, T.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Lahini, Y.

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref] [PubMed]

Lanyon, B. P.

P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, “Quasiparticle engineering and entanglement propagation in a quantum many-body system,” Nature 511, 202–205 (2014).
[Crossref] [PubMed]

Lee, W.-H.

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature photonics 6, 283–292 (2012).
[Crossref]

Lev, B. L.

Lukin, A.

R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, “Measuring entanglement entropy in a quantum many-body system,” Nature 528, 77–83 (2015).
[Crossref] [PubMed]

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref] [PubMed]

Ma, R.

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref] [PubMed]

R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, “Measuring entanglement entropy in a quantum many-body system,” Nature 528, 77–83 (2015).
[Crossref] [PubMed]

W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, “Probing the superfluid–to–Mott insulator transition at the single-atom level,” Science 329, 547–550 (2010).
[Crossref] [PubMed]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon.  4, 388–394 (2010).
[Crossref]

McCulloch, I. P.

A. Kleine, C. Kollath, I. P. McCulloch, T. Giamarchi, and U. Schollwöck, “Spin-charge separation in two-component Bose gases,” Phys. Rev. A 77, 013607 (2008).
[Crossref]

Mosk, A. P.

S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22, 17999–18009 (2014).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature photonics 6, 283–292 (2012).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Universal Optimal Transmission of Light Through Disordered Materials,” Physical Review Letters 101, 120601 (2008).
[Crossref] [PubMed]

Neil, M. A.

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proceedings of the National Academy of Sciences 99, 5788–5792 (2002).
[Crossref]

Nogrette, F.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Novotny, L.

Papageorge, A. T.

Peng, A.

W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, “Probing the superfluid–to–Mott insulator transition at the single-atom level,” Science 329, 547–550 (2010).
[Crossref] [PubMed]

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[Crossref] [PubMed]

Pollet, L.

W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, “Probing the superfluid–to–Mott insulator transition at the single-atom level,” Science 329, 547–550 (2010).
[Crossref] [PubMed]

Preiss, P. M.

R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, “Measuring entanglement entropy in a quantum many-body system,” Nature 528, 77–83 (2015).
[Crossref] [PubMed]

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref] [PubMed]

P. M. Preiss, “Atomic Bose-Hubbard systems with single-particle control,” Ph.D. thesis, Harvard University (2015).

Ravets, S.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Reicherter, M.

Rispoli, M.

R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, “Measuring entanglement entropy in a quantum many-body system,” Nature 528, 77–83 (2015).
[Crossref] [PubMed]

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref] [PubMed]

Roos, C. F.

P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, “Quasiparticle engineering and entanglement propagation in a quantum many-body system,” Nature 511, 202–205 (2014).
[Crossref] [PubMed]

Ryou, A.

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv 1511.07381 (2015).

Schauß, P.

T. Fukuhara, S. Hild, J. Zeiher, P. Schauß, I. Bloch, M. Endres, and C. Gross, “Spatially resolved detection of a spin-entanglement wave in a Bose-Hubbard chain,” Phys. Rev. Lett. 115, 035302 (2015).
[Crossref] [PubMed]

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

Schine, N.

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv 1511.07381 (2015).

Schollwöck, U.

A. Kantian, U. Schollwöck, and T. Giamarchi, “Competing regimes of motion of 1D mobile impurities,” Phys. Rev. Lett. 113, 070601 (2014).
[Crossref] [PubMed]

A. Kleine, C. Kollath, I. P. McCulloch, T. Giamarchi, and U. Schollwöck, “Spin-charge separation in two-component Bose gases,” Phys. Rev. A 77, 013607 (2008).
[Crossref]

Sherson, J. F.

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom resolved fluorescence imaging of an atomic Mott insulator,” Nature 467, 68–72 (2010).
[Crossref] [PubMed]

Silva, A.

P. Smacchia, M. Knap, E. Demler, and A. Silva, “Exploring dynamical phase transitions and prethermalization with quantum noise of excitations,” Phys. Rev. B 91, 205136 (2015).
[Crossref]

Simon, J.

W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, “Probing the superfluid–to–Mott insulator transition at the single-atom level,” Science 329, 547–550 (2010).
[Crossref] [PubMed]

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv 1511.07381 (2015).

Smacchia, P.

P. Smacchia, M. Knap, E. Demler, and A. Silva, “Exploring dynamical phase transitions and prethermalization with quantum noise of excitations,” Phys. Rev. B 91, 205136 (2015).
[Crossref]

Smirne, G.

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

Sommer, A.

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv 1511.07381 (2015).

Tai, M. E.

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref] [PubMed]

R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, “Measuring entanglement entropy in a quantum many-body system,” Nature 528, 77–83 (2015).
[Crossref] [PubMed]

W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, “Probing the superfluid–to–Mott insulator transition at the single-atom level,” Science 329, 547–550 (2010).
[Crossref] [PubMed]

Tiziani, H. J.

Vellekoop, I. M.

I. M. Vellekoop and A. P. Mosk, “Universal Optimal Transmission of Light Through Disordered Materials,” Physical Review Letters 101, 120601 (2008).
[Crossref] [PubMed]

Vernier, A.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Wagemann, E. U.

Wang, Y.

Y. Wang, X. Zhang, T. A. Corcovilos, A. Kumar, and D. S. Weiss, “Coherent addressing of individual neutral atoms in a 3D optical lattice,” Phys. Rev. Lett. 115, 043003 (2015).
[Crossref] [PubMed]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Weiss, D. S.

Y. Wang, X. Zhang, T. A. Corcovilos, A. Kumar, and D. S. Weiss, “Coherent addressing of individual neutral atoms in a 3D optical lattice,” Phys. Rev. Lett. 115, 043003 (2015).
[Crossref] [PubMed]

Weitenberg, C.

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom resolved fluorescence imaging of an atomic Mott insulator,” Nature 467, 68–72 (2010).
[Crossref] [PubMed]

Wilson, T.

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proceedings of the National Academy of Sciences 99, 5788–5792 (2002).
[Crossref]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Zeiher, J.

T. Fukuhara, S. Hild, J. Zeiher, P. Schauß, I. Bloch, M. Endres, and C. Gross, “Spatially resolved detection of a spin-entanglement wave in a Bose-Hubbard chain,” Phys. Rev. Lett. 115, 035302 (2015).
[Crossref] [PubMed]

Zhang, X.

Y. Wang, X. Zhang, T. A. Corcovilos, A. Kumar, and D. S. Weiss, “Coherent addressing of individual neutral atoms in a 3D optical lattice,” Phys. Rev. Lett. 115, 043003 (2015).
[Crossref] [PubMed]

Zoller, P.

P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, “Quasiparticle engineering and entanglement propagation in a quantum many-body system,” Nature 511, 202–205 (2014).
[Crossref] [PubMed]

Zupancic, P.

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref] [PubMed]

P. Zupancic, “Dynamic holography and beamshaping using digital micromirror devices,” Master’s thesis, Ludwig-Maximilians-UniversitätMünchen (2013).

Annual Review of Astronomy and Astrophysics (1)

J. M. Beckers, “Adaptive optics for astronomy - Principles, performance, and applications,” Annual Review of Astronomy and Astrophysics 31, 13–62 (1993).
[Crossref]

Appl. Opt. (1)

Nature (5)

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[Crossref] [PubMed]

J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, “Single-atom resolved fluorescence imaging of an atomic Mott insulator,” Nature 467, 68–72 (2010).
[Crossref] [PubMed]

P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, “Quasiparticle engineering and entanglement propagation in a quantum many-body system,” Nature 511, 202–205 (2014).
[Crossref] [PubMed]

C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011).
[Crossref] [PubMed]

R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, “Measuring entanglement entropy in a quantum many-body system,” Nature 528, 77–83 (2015).
[Crossref] [PubMed]

Nature Photon (1)

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon.  4, 388–394 (2010).
[Crossref]

Nature photonics (1)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature photonics 6, 283–292 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (2)

V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, “Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator,” Phys. Rev. A 73, 031402 (2006).
[Crossref]

A. Kleine, C. Kollath, I. P. McCulloch, T. Giamarchi, and U. Schollwöck, “Spin-charge separation in two-component Bose gases,” Phys. Rev. A 77, 013607 (2008).
[Crossref]

Phys. Rev. B (1)

P. Smacchia, M. Knap, E. Demler, and A. Silva, “Exploring dynamical phase transitions and prethermalization with quantum noise of excitations,” Phys. Rev. B 91, 205136 (2015).
[Crossref]

Phys. Rev. Lett. (4)

T. Fukuhara, S. Hild, J. Zeiher, P. Schauß, I. Bloch, M. Endres, and C. Gross, “Spatially resolved detection of a spin-entanglement wave in a Bose-Hubbard chain,” Phys. Rev. Lett. 115, 035302 (2015).
[Crossref] [PubMed]

A. Kantian, U. Schollwöck, and T. Giamarchi, “Competing regimes of motion of 1D mobile impurities,” Phys. Rev. Lett. 113, 070601 (2014).
[Crossref] [PubMed]

Y. Wang, X. Zhang, T. A. Corcovilos, A. Kumar, and D. S. Weiss, “Coherent addressing of individual neutral atoms in a 3D optical lattice,” Phys. Rev. Lett. 115, 043003 (2015).
[Crossref] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Phys. Rev. X (1)

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).

Physical Review Letters (1)

I. M. Vellekoop and A. P. Mosk, “Universal Optimal Transmission of Light Through Disordered Materials,” Physical Review Letters 101, 120601 (2008).
[Crossref] [PubMed]

Proceedings of the National Academy of Sciences (1)

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proceedings of the National Academy of Sciences 99, 5788–5792 (2002).
[Crossref]

Sci. Rep. (1)

A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2012).
[Crossref] [PubMed]

Science (2)

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref] [PubMed]

W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, “Probing the superfluid–to–Mott insulator transition at the single-atom level,” Science 329, 547–550 (2010).
[Crossref] [PubMed]

Other (3)

P. M. Preiss, “Atomic Bose-Hubbard systems with single-particle control,” Ph.D. thesis, Harvard University (2015).

P. Zupancic, “Dynamic holography and beamshaping using digital micromirror devices,” Master’s thesis, Ludwig-Maximilians-UniversitätMünchen (2013).

N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, “Synthetic Landau levels for photons,” arXiv 1511.07381 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Phase-shifting with an amplitude hologram. The phase of the light in the first diffraction order is given by the spatial phase of the grating. Thus we can change the phase of the light by modifying the position of the grating slits. This is illustrated here by the locations of the wave fronts relative to a fixed reference point (black dot) in the path of the beam.

Fig. 2
Fig. 2

Self-calibration of the aberration correction. (a) In the calibration sequence, only two small regions of the DMD are active — one is fixed, the other samples the full aperture. (b) The DMD is placed in the Fourier plane of the optical system. Light emerging from the two patches interferes in the image plane. The position of the interference stripes depends on the relative phase between the two beams. (c) Using the phase-shifting capabilities of the holographic DMD, we sample the interference patterns at the same point in space for three different relative phases. From this data, the phase difference between the beams and their relative amplitude can be derived. (d) The measured phase difference is mod 2π (shaded interval). Adding integer multiples of 2π (gray dots), the true, smoothly varying phase profile can be found by unwrapping (blue dots). (e) Phase and amplitude map of the fully calibrated DMD path. Tilt and focus have been removed from the phase map, showing 3λ of astigmatism due to bending of the DMD chip itself. The amplitude map shows the Gaussian envelope of the illuminating beam, which falls to 50% of its maximal value at the edge of the aperture.

Fig. 3
Fig. 3

High-precision beam shaping. (a) A diffraction grating is the basis of every DMD pattern. In an imaging system with strong aberrations, the unmodified pattern (left) leads to a corrugated beam shape (blue dots on the right). A phase- and amplitude-corrected pattern (center) cancels aberrations by bending the grating slits. This leads to the optimized profile (black dots), which very closely resembles the desired Gaussian profile over four orders of magnitude (red line). (b) By introducing phase vortices in addition to aberration and amplitude corrections, we generate clean higher-order modes, such as the Laguerre-Gauss LG33. We show a log–plot of the cross-section.

Fig. 4
Fig. 4

Arbitrary beam shapes. Any shape can be projected by modulating its Fourier transform onto the DMD pattern. Combined with the aberration control, we create very clean higher-order Gaussian modes as well as more complicated, numerically defined structures.

Fig. 5
Fig. 5

Measuring aberrations in a quantum gas microscope. A Bose-Einstein condensate is used to map out interference patterns directly in the plane of the atoms. (a) Pairs of patches on the DMD (left) produce a standing wave in the atom plane, forcing the atoms to its minima. The measured atomic density distribution (right, one pixel corresponds to one lattice site) reveals the phase difference between the patches as the phase of the averaged density wave. (b) Translating the pair of patches across the Fourier plane, the changing standing wave phase reveals aberrations. Data points are measured fringe phases, red is a fit with the two shifted polynomials Δϕ in eq. (5). Light blue is the reconstructed phase profile ϕ. The width of the plotted profile indicates the range of the aperture over which the reconstruction in valid. (c) A smooth phase map is interpolated from six measured phase profiles (gray lines). The dominant aberrations are spherical terms. Tilt and focus have been removed from the phase map.

Fig. 6
Fig. 6

Single-site addressing in an atomic Mott insulator: An addressing beam with a repulsive Hermite-Gauss profile is superimposed onto a Mott insulator in a deep optical lattice. A column of atoms is pinned in the minimum of the addressing beam while the transverse lattice is turned off and a deconfining Gaussian beam expels all other atoms. The pinned atoms are then loaded back into the optical lattice. By choosing higher orders of the addressing Hermite-Gauss beam, up to six adjacent columns can be prepared.

Fig. 7
Fig. 7

Full counting statistics in one dimension. Left: A Mott insulator with up to n = 3 atoms near the center appears as three concentric rings in parity-projecting fluorescence imaging. A single row or atoms (red box) can be cut from the Mott insulator and all atoms are detected after a short vertical expansion. Right: We obtain the full density profile and number statistics for each site in the one-dimensional profile.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E out = E in x 0 a / 2 x 0 + a / 2 exp ( i 2 π m x ) d x = E in sin ( π m a ) π m exp ( i 2 π m x 0 ) .
1 2 [ 1 + cos ( 2 π p [ cos θ x + sin θ y ] + ϕ out ( x , y ) ϕ in ( x , y ) ) ]
a ( x , y ) = 1 π arcsin ( s π E out ( x , y ) E in ( x , y ) )
B ref ( x , z ) = a exp ( i k z ) B samp , q ( x , z ) = b exp ( i k [ cos γ z sin γ x + Δ ϕ + q ( 2 π / 3 ) ] ) ,
| B ref ( x , z ) + B samp , q ( x , z ) | 2 = a 2 + b 2 + 2 a b cos ( k [ ( 1 cos γ ) z + sin γ x ] + Δ ϕ + q ( 2 π / 3 ) ) .
p = 1 3 ( m 2 + m 3 2 m 1 ) + i 3 ( m 2 m 3 ) ,
Δ ϕ = arg p a b = | p | .
ϕ ( x ) = i = 0 6 a i x i
Δ ϕ ( x ) = ϕ ( x l / 2 ) ϕ ( x + l / 2 )

Metrics