Abstract

Using numerical simulations, we demonstrate that the dipolar plasmonic resonance of a single metallic nanoparticle inserted in the core of a dielectric waveguide can be excited with higher order photonic modes of the waveguide only if their symmetry is compatible with the charge distribution of the plasmonic mode. For the case of a symmetric waveguide, we demonstrate that this condition is only achieved if the particle is shifted from the center of the core. The simple and comprehensive analysis presented in this contribution will serve as basis for applications in integrated nanophotonic/metamaterials devices, such as optical filters, modulators and mode converters.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Metallic nanoparticle chains on dielectric waveguides: coupled and uncoupled situations compared

Mickaël Février, Philippe Gogol, Jean-Michel Lourtioz, and Béatrice Dagens
Opt. Express 21(21) 24504-24513 (2013)

Numerical analysis of tip-localized surface plasmon resonances in periodic arrays of gold nanowires with triangular cross section

Ricardo Tellez-Limon, Mickaël Février, Aniello Apuzzo, Rafael Salas-Montiel, and Sylvain Blaize
J. Opt. Soc. Am. B 34(10) 2147-2154 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  3. L. Min and L. Huang, “Perspective on resonances of metamaterials,” Opt. Express 23(15), 19022–19033 (2015).
    [Crossref] [PubMed]
  4. M. Ota, A. Sumimura, M. Fukuhara, Y. Ishii, and M. Fukuda, “Plasmonic-multimode-interference-based logic circuit with simple phase adjustment,” Sci. Rep. 6, 24546 (2016).
    [Crossref] [PubMed]
  5. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  6. L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
    [Crossref]
  7. B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
    [Crossref]
  8. F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic Antennas Hybridized with Dielectric Waveguides,” ACS Nano 6(11), 10156–10167 (2012).
    [Crossref] [PubMed]
  9. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect Between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
    [Crossref] [PubMed]
  10. R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2(1), 24–30 (2014).
    [Crossref]
  11. D. Urbonas, A. Balčytis, M. Gabalis, K. Vaškevičius, G. Naujokaitė, S. Juodkazis, and R. Petruškevičius, “Ultra-wide free spectral range, enhanced sensitivity, and removed mode splitting SOI optical ring resonator with dispersive metal nanodisks,” Opt. Lett. 40(13), 2977–2980 (2015).
    [Crossref] [PubMed]
  12. R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 21(23), 27652–27671 (2013).
    [Crossref] [PubMed]
  13. F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
    [Crossref] [PubMed]
  14. Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
    [Crossref] [PubMed]
  15. M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
    [Crossref] [PubMed]
  16. L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
    [Crossref] [PubMed]
  17. C. Guan, J. Shi, M. Ding, P. Wang, P. Hua, L. Yuan, and G. Brambilla, “In-line rainbow trapping based on plasmonic gratings in optical microfibers,” Opt. Express 21(14), 16552–16560 (2013).
    [Crossref] [PubMed]
  18. A. Espinosa-Soria, A. Griol, and A. Martínez, “Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps,” Opt. Express 24(9), 9592–9601 (2016).
    [Crossref] [PubMed]
  19. M. Castro-Lopez, N. de Sousa, A. Garcia-Martin, F. Y. Gardes, and R. Sapienza, “Scattering of a plasmonic nanoantenna embedded in a silicon waveguide,” Opt. Express 23(22), 28108–28118 (2015).
    [Crossref] [PubMed]
  20. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).
  21. T. Witting, R. Schuhmann, and T. Weiland, “Model order reduction for large systems in computational electromagnetics,” Linear Algebra Appl. 415(2-3), 499–530 (2006).
    [Crossref]
  22. E. D. Palik, Handobook of Optical Constants of Solids (Academic, 1998).
  23. Y. Tian, X. Shang, and M. J. Lancaster, “Fabrication of multilayered SU8 structure for terahertz waveguide with ultralow transmission loss,” J. Micro/Nanolith. MEMS MOEMS 13(1), 013002 (2014).
    [Crossref]

2016 (2)

M. Ota, A. Sumimura, M. Fukuhara, Y. Ishii, and M. Fukuda, “Plasmonic-multimode-interference-based logic circuit with simple phase adjustment,” Sci. Rep. 6, 24546 (2016).
[Crossref] [PubMed]

A. Espinosa-Soria, A. Griol, and A. Martínez, “Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps,” Opt. Express 24(9), 9592–9601 (2016).
[Crossref] [PubMed]

2015 (7)

M. Castro-Lopez, N. de Sousa, A. Garcia-Martin, F. Y. Gardes, and R. Sapienza, “Scattering of a plasmonic nanoantenna embedded in a silicon waveguide,” Opt. Express 23(22), 28108–28118 (2015).
[Crossref] [PubMed]

L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

L. Min and L. Huang, “Perspective on resonances of metamaterials,” Opt. Express 23(15), 19022–19033 (2015).
[Crossref] [PubMed]

D. Urbonas, A. Balčytis, M. Gabalis, K. Vaškevičius, G. Naujokaitė, S. Juodkazis, and R. Petruškevičius, “Ultra-wide free spectral range, enhanced sensitivity, and removed mode splitting SOI optical ring resonator with dispersive metal nanodisks,” Opt. Lett. 40(13), 2977–2980 (2015).
[Crossref] [PubMed]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
[Crossref] [PubMed]

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref] [PubMed]

2014 (3)

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2(1), 24–30 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Y. Tian, X. Shang, and M. J. Lancaster, “Fabrication of multilayered SU8 structure for terahertz waveguide with ultralow transmission loss,” J. Micro/Nanolith. MEMS MOEMS 13(1), 013002 (2014).
[Crossref]

2013 (3)

2012 (2)

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic Antennas Hybridized with Dielectric Waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect Between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

2010 (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

2009 (1)

B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[Crossref]

2006 (1)

T. Witting, R. Schuhmann, and T. Weiland, “Model order reduction for large systems in computational electromagnetics,” Linear Algebra Appl. 415(2-3), 499–530 (2006).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Aassime, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect Between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Adibi, A.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
[Crossref] [PubMed]

Apuzzo, A.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2(1), 24–30 (2014).
[Crossref]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect Between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Baets, R.

Balcytis, A.

Bernal Arango, F.

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic Antennas Hybridized with Dielectric Waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref] [PubMed]

Blaize, S.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2(1), 24–30 (2014).
[Crossref]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect Between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Brambilla, G.

Bruck, R.

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Castro-Lopez, M.

Chamanzar, M.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
[Crossref] [PubMed]

Chelnokov, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect Between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Chen, Y.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref] [PubMed]

Dagens, B.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect Between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

de Lustrac, A.

B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[Crossref]

de Sousa, N.

Delacour, C.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect Between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Dhakal, A.

Ding, M.

Espinosa-Soria, A.

Fevrier, M.

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2(1), 24–30 (2014).
[Crossref]

Février, M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect Between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Fukuda, M.

M. Ota, A. Sumimura, M. Fukuhara, Y. Ishii, and M. Fukuda, “Plasmonic-multimode-interference-based logic circuit with simple phase adjustment,” Sci. Rep. 6, 24546 (2016).
[Crossref] [PubMed]

Fukuhara, M.

M. Ota, A. Sumimura, M. Fukuhara, Y. Ishii, and M. Fukuda, “Plasmonic-multimode-interference-based logic circuit with simple phase adjustment,” Sci. Rep. 6, 24546 (2016).
[Crossref] [PubMed]

Gabalis, M.

Gao, L.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref] [PubMed]

Garcia-Martin, A.

Gardes, F. Y.

Gogol, P.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect Between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Griol, A.

Guan, C.

Harris, J. S.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref] [PubMed]

Hsu, L. Y.

L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Hua, P.

Huang, L.

Huo, Y.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref] [PubMed]

Ishii, Y.

M. Ota, A. Sumimura, M. Fukuhara, Y. Ishii, and M. Fukuda, “Plasmonic-multimode-interference-based logic circuit with simple phase adjustment,” Sci. Rep. 6, 24546 (2016).
[Crossref] [PubMed]

Juodkazis, S.

Kante, B.

L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Kanté, B.

B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[Crossref]

Koenderink, A. F.

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic Antennas Hybridized with Dielectric Waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref] [PubMed]

Kwadrin, A.

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic Antennas Hybridized with Dielectric Waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref] [PubMed]

Lancaster, M. J.

Y. Tian, X. Shang, and M. J. Lancaster, “Fabrication of multilayered SU8 structure for terahertz waveguide with ultralow transmission loss,” J. Micro/Nanolith. MEMS MOEMS 13(1), 013002 (2014).
[Crossref]

Le Thomas, N.

Lepetit, T.

L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Lourtioz, J. M.

B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[Crossref]

Lourtioz, J.-M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect Between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Luo, Y.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Martínez, A.

Mégy, R.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect Between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Min, L.

Muskens, O. L.

Naujokaite, G.

Neutens, P.

Nguyen, K. N.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Ota, M.

M. Ota, A. Sumimura, M. Fukuhara, Y. Ishii, and M. Fukuda, “Plasmonic-multimode-interference-based logic circuit with simple phase adjustment,” Sci. Rep. 6, 24546 (2016).
[Crossref] [PubMed]

Paik, S.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref] [PubMed]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Petruškevicius, R.

Peyskens, F.

Salas-Montiel, R.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2(1), 24–30 (2014).
[Crossref]

Sapienza, R.

Schuhmann, R.

T. Witting, R. Schuhmann, and T. Weiland, “Model order reduction for large systems in computational electromagnetics,” Linear Algebra Appl. 415(2-3), 499–530 (2006).
[Crossref]

Shang, X.

Y. Tian, X. Shang, and M. J. Lancaster, “Fabrication of multilayered SU8 structure for terahertz waveguide with ultralow transmission loss,” J. Micro/Nanolith. MEMS MOEMS 13(1), 013002 (2014).
[Crossref]

Shi, J.

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Subramanian, A. Z.

Sumimura, A.

M. Ota, A. Sumimura, M. Fukuhara, Y. Ishii, and M. Fukuda, “Plasmonic-multimode-interference-based logic circuit with simple phase adjustment,” Sci. Rep. 6, 24546 (2016).
[Crossref] [PubMed]

Tellez-Limon, R.

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2(1), 24–30 (2014).
[Crossref]

Tian, Y.

Y. Tian, X. Shang, and M. J. Lancaster, “Fabrication of multilayered SU8 structure for terahertz waveguide with ultralow transmission loss,” J. Micro/Nanolith. MEMS MOEMS 13(1), 013002 (2014).
[Crossref]

Urbonas, D.

Van Dorpe, P.

Vaškevicius, K.

Wang, P.

Weiland, T.

T. Witting, R. Schuhmann, and T. Weiland, “Model order reduction for large systems in computational electromagnetics,” Linear Algebra Appl. 415(2-3), 499–530 (2006).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Witting, T.

T. Witting, R. Schuhmann, and T. Weiland, “Model order reduction for large systems in computational electromagnetics,” Linear Algebra Appl. 415(2-3), 499–530 (2006).
[Crossref]

Xia, Z.

Yegnanarayanan, S.

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yuan, L.

Zang, K.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref] [PubMed]

Zhou, Z.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref] [PubMed]

ACS Nano (1)

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic Antennas Hybridized with Dielectric Waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref] [PubMed]

J. Micro/Nanolith. MEMS MOEMS (1)

Y. Tian, X. Shang, and M. J. Lancaster, “Fabrication of multilayered SU8 structure for terahertz waveguide with ultralow transmission loss,” J. Micro/Nanolith. MEMS MOEMS 13(1), 013002 (2014).
[Crossref]

Linear Algebra Appl. (1)

T. Witting, R. Schuhmann, and T. Weiland, “Model order reduction for large systems in computational electromagnetics,” Linear Algebra Appl. 415(2-3), 499–530 (2006).
[Crossref]

Nano Lett. (2)

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect Between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Opt. Express (7)

L. Min and L. Huang, “Perspective on resonances of metamaterials,” Opt. Express 23(15), 19022–19033 (2015).
[Crossref] [PubMed]

M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
[Crossref] [PubMed]

R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 21(23), 27652–27671 (2013).
[Crossref] [PubMed]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
[Crossref] [PubMed]

C. Guan, J. Shi, M. Ding, P. Wang, P. Hua, L. Yuan, and G. Brambilla, “In-line rainbow trapping based on plasmonic gratings in optical microfibers,” Opt. Express 21(14), 16552–16560 (2013).
[Crossref] [PubMed]

A. Espinosa-Soria, A. Griol, and A. Martínez, “Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps,” Opt. Express 24(9), 9592–9601 (2016).
[Crossref] [PubMed]

M. Castro-Lopez, N. de Sousa, A. Garcia-Martin, F. Y. Gardes, and R. Sapienza, “Scattering of a plasmonic nanoantenna embedded in a silicon waveguide,” Opt. Express 23(22), 28108–28118 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Photonics Research (1)

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2(1), 24–30 (2014).
[Crossref]

Phys. Rev. B (1)

B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[Crossref]

Prog. Electromagnetics Res. (1)

L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Sci. Rep. (2)

M. Ota, A. Sumimura, M. Fukuhara, Y. Ishii, and M. Fukuda, “Plasmonic-multimode-interference-based logic circuit with simple phase adjustment,” Sci. Rep. 6, 24546 (2016).
[Crossref] [PubMed]

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref] [PubMed]

Science (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Other (2)

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).

E. D. Palik, Handobook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic representation of a gold nanoparticle immersed in the core of a dielectric waveguide of width wc, height tc and refractive index nc = 2. The cladding is considered air (ns = 1). The particle dimensions are wx = 100 nm, ty = 30 nm, and lz = 50 nm. (b) Cross section of the structure in the xy plane showing the definitions of the vertical (sy) and lateral (sx) displacements of the nanoparticle measured from the center of the core.

Fig. 2
Fig. 2

(a) Dispersion curves of a waveguide of width wc = 500 nm and thickness tc = 200 nm. The waveguide supports the propagation of the fundamental TE0 and TM0 modes in the spectral range λ = [875-1627] nm. Higher order modes appear at shorter wavelengths. The insets show the intensity of the mode profile and orientation of the electric field for the fundamental modes. (b) Transmission and reflection spectra for TE0 and TM0 modes when the particle is at the center of the waveguide. For TE0 the transmittance drops by 82% at λ = 1048 nm. The insets show the intensity of the electromagnetic field and the charges distribution in the nanoparticle.

Fig. 3
Fig. 3

Transmission and reflection spectra of the TE0 mode for (a) vertical displacements of the nanoparticle (sy) and (b) for horizontal displacements (sx). In both cases, the LSP resonance is blue shifted when the particle is shifted out of the center of the core.

Fig. 4
Fig. 4

(a) Dispersion curves of the first four modes of a waveguide of width wc = 500 nm and thickness tc = 450 nm. The insets show the intensity mode profile and distribution of the electric field lines. (b) Transmission and reflection spectra of the four modes when the nanoparticle is at the center of the core. The dipolar LSP resonance is only excited with the TE0 mode, with the resonance leading to a reduction of the transmittance of 73% at λ = 1074 nm.

Fig. 5
Fig. 5

Transmission and reflection spectra of the four first modes of the waveguide for (a) vertical displacement sy = 140 nm, and (b) lateral displacement sx = 160 nm. For a vertical displacement of the nanoparticle, the LSP resonance is excited with TE0 and TM1 modes of the waveguide, while for a lateral displacement it is excited with TE0 and TE1 modes.

Fig. 6
Fig. 6

(a) Mode conversion from TE0 to TM1 as a function of the vertical displacement of the nanoparticle (sy) and (b) from TE0 to TE1 for a lateral displacement (sy). In the first case, 5% of TE0 mode is converted into TM1, while for the second one, only 1% is converted from TE0 to TE1.

Metrics