Abstract

We report on a high-spectral-resolution terahertz imaging system operating with a multi-mode quantum-cascade laser (QCL), a fast scanning mirror, and a sensitive Ge:Ga detector. By tuning the frequency of the QCL, several spectra can be recorded in 1.5 s during the scan through a gas cell filled with methanol (CH3OH). These experiments yield information about the local absorption and the linewidth. Measurements with a faster frame rate of up to 3 Hz allow for the dynamic observation of CH3OH gas leaking from a terahertz-transparent tube into the evacuated cell. In addition to the relative absorption, the local pressure is mapped by exploiting the effect of pressure broadening.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation

Takeshi Yasui, Yuki Iyonaga, Yi-Da Hsieh, Yoshiyuki Sakaguchi, Francis Hindle, Shuko Yokoyama, Tsutomu Araki, and Mamoru Hashimoto
Optica 2(5) 460-467 (2015)

Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor

Angelo Sampaolo, Pietro Patimisco, Marilena Giglio, Leonardo Chieco, Gaetano Scamarcio, Frank K. Tittel, and Vincenzo Spagnolo
Opt. Express 24(14) 15872-15881 (2016)

Glass-type hydrogen and deuterium absorption cells developed for D/H ratio measurements in the Martian atmosphere

Takuya D. Kawahara, S. Okano, T. Abe, H. Fukunishi, and K. Ito
Appl. Opt. 36(10) 2229-2237 (1997)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. F. C. De Lucia, “Spectroscopy in the Terahertz Spectral Region,” in Sensing with Terahertz Radiation, D. Mittleman, ed. (Springer, 2003).
  3. H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5(4), 539–545 (2015).
    [Crossref]
  4. L. Rezac, P. Hartogh, R. Güsten, H. Wiesemeyer, H.-W. Hübers, C. Jarchow, H. Richter, B. Klein, and N. Honingh, “First detection of the 63 µm atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA,” Astron. Astrophys. 580, L10 (2015).
    [Crossref]
  5. A. M. Fosnight, B. L. Moran, and I. R. Medvedev, “Chemical analysis of exhaled human breath using a terahertz spectroscopic approach,” Appl. Phys. Lett. 103(13), 133703 (2013).
    [Crossref]
  6. A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
    [Crossref]
  7. J. Liu, W.-H. Fan, X. Chen, and J. Xie, “Identification of high explosive RDX using terahertz imaging and spectral fingerprints,” J. Phys. Conf. Ser. 680, 012030 (2016).
    [Crossref]
  8. P. F.-X. Neumaier, K. Schmalz, J. Borngräber, R. Wylde, and H.-W. Hübers, “Terahertz gas-phase spectroscopy: chemometrics for security and medical applications,” Analyst (Lond.) 140(1), 213–222 (2015).
    [Crossref] [PubMed]
  9. E. Bründermann, H.-W. Hübers, and M. Kimmitt, Terahertz Techniques (Springer, 2012).
  10. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [Crossref] [PubMed]
  11. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
    [Crossref]
  12. Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopy imaging using optimized binary masks,” Appl. Phys. Lett. 95(23), 231112 (2009).
    [Crossref]
  13. P. Dean, N. K. Saat, S. P. Khanna, M. Salih, A. Burnett, J. Cunningham, E. H. Linfield, and A. G. Davies, “Dual-frequency imaging using an electrically tunable terahertz quantum cascade laser,” Opt. Express 17(23), 20631–20641 (2009).
    [Crossref] [PubMed]
  14. M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030–1031 (2009).
    [Crossref]
  15. H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18(10), 10177–10187 (2010).
    [Crossref] [PubMed]
  16. N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3(5), 617–624 (2013).
    [Crossref]
  17. G. Moruzzi, P. Riminucci, F. Strumia, B. Carli, M. Carlotti, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, “The spectrum of CH3OH between 100 and 200 cm−1: Torsional and “forbidden” transitions,” J. Mol. Spectrosc. 144(1), 139–200 (1990).
    [Crossref]

2016 (1)

J. Liu, W.-H. Fan, X. Chen, and J. Xie, “Identification of high explosive RDX using terahertz imaging and spectral fingerprints,” J. Phys. Conf. Ser. 680, 012030 (2016).
[Crossref]

2015 (3)

P. F.-X. Neumaier, K. Schmalz, J. Borngräber, R. Wylde, and H.-W. Hübers, “Terahertz gas-phase spectroscopy: chemometrics for security and medical applications,” Analyst (Lond.) 140(1), 213–222 (2015).
[Crossref] [PubMed]

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5(4), 539–545 (2015).
[Crossref]

L. Rezac, P. Hartogh, R. Güsten, H. Wiesemeyer, H.-W. Hübers, C. Jarchow, H. Richter, B. Klein, and N. Honingh, “First detection of the 63 µm atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA,” Astron. Astrophys. 580, L10 (2015).
[Crossref]

2013 (2)

A. M. Fosnight, B. L. Moran, and I. R. Medvedev, “Chemical analysis of exhaled human breath using a terahertz spectroscopic approach,” Appl. Phys. Lett. 103(13), 133703 (2013).
[Crossref]

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3(5), 617–624 (2013).
[Crossref]

2010 (1)

2009 (3)

Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopy imaging using optimized binary masks,” Appl. Phys. Lett. 95(23), 231112 (2009).
[Crossref]

P. Dean, N. K. Saat, S. P. Khanna, M. Salih, A. Burnett, J. Cunningham, E. H. Linfield, and A. G. Davies, “Dual-frequency imaging using an electrically tunable terahertz quantum cascade laser,” Opt. Express 17(23), 20631–20641 (2009).
[Crossref] [PubMed]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030–1031 (2009).
[Crossref]

2008 (1)

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2005 (1)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

2003 (1)

1990 (1)

G. Moruzzi, P. Riminucci, F. Strumia, B. Carli, M. Carlotti, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, “The spectrum of CH3OH between 100 and 200 cm−1: Torsional and “forbidden” transitions,” J. Mol. Spectrosc. 144(1), 139–200 (1990).
[Crossref]

Anders, W.

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030–1031 (2009).
[Crossref]

Biermann, K.

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5(4), 539–545 (2015).
[Crossref]

Borngräber, J.

P. F.-X. Neumaier, K. Schmalz, J. Borngräber, R. Wylde, and H.-W. Hübers, “Terahertz gas-phase spectroscopy: chemometrics for security and medical applications,” Analyst (Lond.) 140(1), 213–222 (2015).
[Crossref] [PubMed]

Burnett, A.

Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopy imaging using optimized binary masks,” Appl. Phys. Lett. 95(23), 231112 (2009).
[Crossref]

P. Dean, N. K. Saat, S. P. Khanna, M. Salih, A. Burnett, J. Cunningham, E. H. Linfield, and A. G. Davies, “Dual-frequency imaging using an electrically tunable terahertz quantum cascade laser,” Opt. Express 17(23), 20631–20641 (2009).
[Crossref] [PubMed]

Burnett, A. D.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Carli, B.

G. Moruzzi, P. Riminucci, F. Strumia, B. Carli, M. Carlotti, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, “The spectrum of CH3OH between 100 and 200 cm−1: Torsional and “forbidden” transitions,” J. Mol. Spectrosc. 144(1), 139–200 (1990).
[Crossref]

Carlotti, M.

G. Moruzzi, P. Riminucci, F. Strumia, B. Carli, M. Carlotti, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, “The spectrum of CH3OH between 100 and 200 cm−1: Torsional and “forbidden” transitions,” J. Mol. Spectrosc. 144(1), 139–200 (1990).
[Crossref]

Chen, X.

J. Liu, W.-H. Fan, X. Chen, and J. Xie, “Identification of high explosive RDX using terahertz imaging and spectral fingerprints,” J. Phys. Conf. Ser. 680, 012030 (2016).
[Crossref]

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Cunningham, J.

Cunningham, J. E.

Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopy imaging using optimized binary masks,” Appl. Phys. Lett. 95(23), 231112 (2009).
[Crossref]

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Davies, A. G.

Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopy imaging using optimized binary masks,” Appl. Phys. Lett. 95(23), 231112 (2009).
[Crossref]

P. Dean, N. K. Saat, S. P. Khanna, M. Salih, A. Burnett, J. Cunningham, E. H. Linfield, and A. G. Davies, “Dual-frequency imaging using an electrically tunable terahertz quantum cascade laser,” Opt. Express 17(23), 20631–20641 (2009).
[Crossref] [PubMed]

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Dean, P.

Fan, W.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Fan, W.-H.

J. Liu, W.-H. Fan, X. Chen, and J. Xie, “Identification of high explosive RDX using terahertz imaging and spectral fingerprints,” J. Phys. Conf. Ser. 680, 012030 (2016).
[Crossref]

Fosnight, A. M.

A. M. Fosnight, B. L. Moran, and I. R. Medvedev, “Chemical analysis of exhaled human breath using a terahertz spectroscopic approach,” Appl. Phys. Lett. 103(13), 133703 (2013).
[Crossref]

Gan, L.

Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopy imaging using optimized binary masks,” Appl. Phys. Lett. 95(23), 231112 (2009).
[Crossref]

Giehler, M.

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18(10), 10177–10187 (2010).
[Crossref] [PubMed]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030–1031 (2009).
[Crossref]

Gladden, L. F.

Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopy imaging using optimized binary masks,” Appl. Phys. Lett. 95(23), 231112 (2009).
[Crossref]

Grahn, H. T.

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5(4), 539–545 (2015).
[Crossref]

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3(5), 617–624 (2013).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18(10), 10177–10187 (2010).
[Crossref] [PubMed]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030–1031 (2009).
[Crossref]

Greiner-Bär, M.

Güsten, R.

L. Rezac, P. Hartogh, R. Güsten, H. Wiesemeyer, H.-W. Hübers, C. Jarchow, H. Richter, B. Klein, and N. Honingh, “First detection of the 63 µm atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA,” Astron. Astrophys. 580, L10 (2015).
[Crossref]

Hartogh, P.

L. Rezac, P. Hartogh, R. Güsten, H. Wiesemeyer, H.-W. Hübers, C. Jarchow, H. Richter, B. Klein, and N. Honingh, “First detection of the 63 µm atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA,” Astron. Astrophys. 580, L10 (2015).
[Crossref]

Hey, R.

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18(10), 10177–10187 (2010).
[Crossref] [PubMed]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030–1031 (2009).
[Crossref]

Honingh, N.

L. Rezac, P. Hartogh, R. Güsten, H. Wiesemeyer, H.-W. Hübers, C. Jarchow, H. Richter, B. Klein, and N. Honingh, “First detection of the 63 µm atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA,” Astron. Astrophys. 580, L10 (2015).
[Crossref]

Hübers, H.-W.

P. F.-X. Neumaier, K. Schmalz, J. Borngräber, R. Wylde, and H.-W. Hübers, “Terahertz gas-phase spectroscopy: chemometrics for security and medical applications,” Analyst (Lond.) 140(1), 213–222 (2015).
[Crossref] [PubMed]

L. Rezac, P. Hartogh, R. Güsten, H. Wiesemeyer, H.-W. Hübers, C. Jarchow, H. Richter, B. Klein, and N. Honingh, “First detection of the 63 µm atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA,” Astron. Astrophys. 580, L10 (2015).
[Crossref]

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5(4), 539–545 (2015).
[Crossref]

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3(5), 617–624 (2013).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18(10), 10177–10187 (2010).
[Crossref] [PubMed]

Inoue, H.

Jarchow, C.

L. Rezac, P. Hartogh, R. Güsten, H. Wiesemeyer, H.-W. Hübers, C. Jarchow, H. Richter, B. Klein, and N. Honingh, “First detection of the 63 µm atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA,” Astron. Astrophys. 580, L10 (2015).
[Crossref]

Johns, J. W. C.

G. Moruzzi, P. Riminucci, F. Strumia, B. Carli, M. Carlotti, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, “The spectrum of CH3OH between 100 and 200 cm−1: Torsional and “forbidden” transitions,” J. Mol. Spectrosc. 144(1), 139–200 (1990).
[Crossref]

Kawase, K.

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Khanna, S. P.

Klein, B.

L. Rezac, P. Hartogh, R. Güsten, H. Wiesemeyer, H.-W. Hübers, C. Jarchow, H. Richter, B. Klein, and N. Honingh, “First detection of the 63 µm atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA,” Astron. Astrophys. 580, L10 (2015).
[Crossref]

Lees, R. M.

G. Moruzzi, P. Riminucci, F. Strumia, B. Carli, M. Carlotti, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, “The spectrum of CH3OH between 100 and 200 cm−1: Torsional and “forbidden” transitions,” J. Mol. Spectrosc. 144(1), 139–200 (1990).
[Crossref]

Linfield, E. H.

Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopy imaging using optimized binary masks,” Appl. Phys. Lett. 95(23), 231112 (2009).
[Crossref]

P. Dean, N. K. Saat, S. P. Khanna, M. Salih, A. Burnett, J. Cunningham, E. H. Linfield, and A. G. Davies, “Dual-frequency imaging using an electrically tunable terahertz quantum cascade laser,” Opt. Express 17(23), 20631–20641 (2009).
[Crossref] [PubMed]

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Liu, J.

J. Liu, W.-H. Fan, X. Chen, and J. Xie, “Identification of high explosive RDX using terahertz imaging and spectral fingerprints,” J. Phys. Conf. Ser. 680, 012030 (2016).
[Crossref]

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Medvedev, I. R.

A. M. Fosnight, B. L. Moran, and I. R. Medvedev, “Chemical analysis of exhaled human breath using a terahertz spectroscopic approach,” Appl. Phys. Lett. 103(13), 133703 (2013).
[Crossref]

Moran, B. L.

A. M. Fosnight, B. L. Moran, and I. R. Medvedev, “Chemical analysis of exhaled human breath using a terahertz spectroscopic approach,” Appl. Phys. Lett. 103(13), 133703 (2013).
[Crossref]

Moruzzi, G.

G. Moruzzi, P. Riminucci, F. Strumia, B. Carli, M. Carlotti, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, “The spectrum of CH3OH between 100 and 200 cm−1: Torsional and “forbidden” transitions,” J. Mol. Spectrosc. 144(1), 139–200 (1990).
[Crossref]

Mukhopadhyay, I.

G. Moruzzi, P. Riminucci, F. Strumia, B. Carli, M. Carlotti, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, “The spectrum of CH3OH between 100 and 200 cm−1: Torsional and “forbidden” transitions,” J. Mol. Spectrosc. 144(1), 139–200 (1990).
[Crossref]

Neumaier, P. F.-X.

P. F.-X. Neumaier, K. Schmalz, J. Borngräber, R. Wylde, and H.-W. Hübers, “Terahertz gas-phase spectroscopy: chemometrics for security and medical applications,” Analyst (Lond.) 140(1), 213–222 (2015).
[Crossref] [PubMed]

Ogawa, Y.

Parrott, E. P. J.

Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopy imaging using optimized binary masks,” Appl. Phys. Lett. 95(23), 231112 (2009).
[Crossref]

Pavlov, S. G.

Rezac, L.

L. Rezac, P. Hartogh, R. Güsten, H. Wiesemeyer, H.-W. Hübers, C. Jarchow, H. Richter, B. Klein, and N. Honingh, “First detection of the 63 µm atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA,” Astron. Astrophys. 580, L10 (2015).
[Crossref]

Richter, H.

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5(4), 539–545 (2015).
[Crossref]

L. Rezac, P. Hartogh, R. Güsten, H. Wiesemeyer, H.-W. Hübers, C. Jarchow, H. Richter, B. Klein, and N. Honingh, “First detection of the 63 µm atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA,” Astron. Astrophys. 580, L10 (2015).
[Crossref]

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3(5), 617–624 (2013).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18(10), 10177–10187 (2010).
[Crossref] [PubMed]

Riminucci, P.

G. Moruzzi, P. Riminucci, F. Strumia, B. Carli, M. Carlotti, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, “The spectrum of CH3OH between 100 and 200 cm−1: Torsional and “forbidden” transitions,” J. Mol. Spectrosc. 144(1), 139–200 (1990).
[Crossref]

Rothbart, N.

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3(5), 617–624 (2013).
[Crossref]

Saat, N. K.

Salih, M.

Schmalz, K.

P. F.-X. Neumaier, K. Schmalz, J. Borngräber, R. Wylde, and H.-W. Hübers, “Terahertz gas-phase spectroscopy: chemometrics for security and medical applications,” Analyst (Lond.) 140(1), 213–222 (2015).
[Crossref] [PubMed]

Schrottke, L.

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5(4), 539–545 (2015).
[Crossref]

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3(5), 617–624 (2013).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18(10), 10177–10187 (2010).
[Crossref] [PubMed]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030–1031 (2009).
[Crossref]

Semenov, A. D.

Shen, H.

Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopy imaging using optimized binary masks,” Appl. Phys. Lett. 95(23), 231112 (2009).
[Crossref]

Shen, Y. C.

Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopy imaging using optimized binary masks,” Appl. Phys. Lett. 95(23), 231112 (2009).
[Crossref]

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Stringer, M.

Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopy imaging using optimized binary masks,” Appl. Phys. Lett. 95(23), 231112 (2009).
[Crossref]

Strumia, F.

G. Moruzzi, P. Riminucci, F. Strumia, B. Carli, M. Carlotti, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, “The spectrum of CH3OH between 100 and 200 cm−1: Torsional and “forbidden” transitions,” J. Mol. Spectrosc. 144(1), 139–200 (1990).
[Crossref]

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Tych, K.

Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopy imaging using optimized binary masks,” Appl. Phys. Lett. 95(23), 231112 (2009).
[Crossref]

Watanabe, Y.

Wienold, M.

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5(4), 539–545 (2015).
[Crossref]

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3(5), 617–624 (2013).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18(10), 10177–10187 (2010).
[Crossref] [PubMed]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030–1031 (2009).
[Crossref]

Wiesemeyer, H.

L. Rezac, P. Hartogh, R. Güsten, H. Wiesemeyer, H.-W. Hübers, C. Jarchow, H. Richter, B. Klein, and N. Honingh, “First detection of the 63 µm atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA,” Astron. Astrophys. 580, L10 (2015).
[Crossref]

Winnewisser, B. P.

G. Moruzzi, P. Riminucci, F. Strumia, B. Carli, M. Carlotti, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, “The spectrum of CH3OH between 100 and 200 cm−1: Torsional and “forbidden” transitions,” J. Mol. Spectrosc. 144(1), 139–200 (1990).
[Crossref]

Winnewisser, M.

G. Moruzzi, P. Riminucci, F. Strumia, B. Carli, M. Carlotti, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, “The spectrum of CH3OH between 100 and 200 cm−1: Torsional and “forbidden” transitions,” J. Mol. Spectrosc. 144(1), 139–200 (1990).
[Crossref]

Wylde, R.

P. F.-X. Neumaier, K. Schmalz, J. Borngräber, R. Wylde, and H.-W. Hübers, “Terahertz gas-phase spectroscopy: chemometrics for security and medical applications,” Analyst (Lond.) 140(1), 213–222 (2015).
[Crossref] [PubMed]

Xie, J.

J. Liu, W.-H. Fan, X. Chen, and J. Xie, “Identification of high explosive RDX using terahertz imaging and spectral fingerprints,” J. Phys. Conf. Ser. 680, 012030 (2016).
[Crossref]

Zeitler, J. A.

Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopy imaging using optimized binary masks,” Appl. Phys. Lett. 95(23), 231112 (2009).
[Crossref]

Analyst (Lond.) (1)

P. F.-X. Neumaier, K. Schmalz, J. Borngräber, R. Wylde, and H.-W. Hübers, “Terahertz gas-phase spectroscopy: chemometrics for security and medical applications,” Analyst (Lond.) 140(1), 213–222 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

A. M. Fosnight, B. L. Moran, and I. R. Medvedev, “Chemical analysis of exhaled human breath using a terahertz spectroscopic approach,” Appl. Phys. Lett. 103(13), 133703 (2013).
[Crossref]

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Y. C. Shen, L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, and A. G. Davies, “Terahertz pulsed spectroscopy imaging using optimized binary masks,” Appl. Phys. Lett. 95(23), 231112 (2009).
[Crossref]

Astron. Astrophys. (1)

L. Rezac, P. Hartogh, R. Güsten, H. Wiesemeyer, H.-W. Hübers, C. Jarchow, H. Richter, B. Klein, and N. Honingh, “First detection of the 63 µm atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA,” Astron. Astrophys. 580, L10 (2015).
[Crossref]

Electron. Lett. (1)

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030–1031 (2009).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (2)

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3(5), 617–624 (2013).
[Crossref]

H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, “4.7-THz local oscillator for the GREAT heterodyne spectrometer on SOFIA,” IEEE Trans. Terahertz Sci. Technol. 5(4), 539–545 (2015).
[Crossref]

J. Mol. Spectrosc. (1)

G. Moruzzi, P. Riminucci, F. Strumia, B. Carli, M. Carlotti, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, “The spectrum of CH3OH between 100 and 200 cm−1: Torsional and “forbidden” transitions,” J. Mol. Spectrosc. 144(1), 139–200 (1990).
[Crossref]

J. Phys. Conf. Ser. (1)

J. Liu, W.-H. Fan, X. Chen, and J. Xie, “Identification of high explosive RDX using terahertz imaging and spectral fingerprints,” J. Phys. Conf. Ser. 680, 012030 (2016).
[Crossref]

Mater. Today (1)

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11(3), 18–26 (2008).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (3)

Other (2)

F. C. De Lucia, “Spectroscopy in the Terahertz Spectral Region,” in Sensing with Terahertz Radiation, D. Mittleman, ed. (Springer, 2003).

E. Bründermann, H.-W. Hübers, and M. Kimmitt, Terahertz Techniques (Springer, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the spectral imaging setup. THz radiation emitted by a QCL is scanned through an absorption cell by a fast scanning mirror (FSM). The beam is focused on a THz-transparent PTFE tube filled with CH3OH inside the cell (indicated by the red rectangle). The transmitted radiation is detected with a Ge:Ga detector.
Fig. 2
Fig. 2 (a) Beam profile at the center position (x = y = z = 0) of the object plane inside the absorption cell and (b) contrast function C(z) along the optical axis.
Fig. 3
Fig. 3 (a) Signal transmitted through the absorption cell which is filled with CH3OH at a pressure of 5 hPa as a function of driving current and heat sink temperature of the QCL. The operating range applied for spectral imaging is indicated by the vertical lines. Around 595 mA and below 47 K, a mode jump occurs. (b) The transmission spectrum which corresponds to the white horizontal line in (a). The red line indicates the measured absorption, while the dashed line is a result of a simulation.
Fig. 4
Fig. 4 (a) Spectral absorption image of CH3OH with the PTFE tube visible by the higher absorption (yellow-red region). The spectral image consists of 1,350 pixels and was acquired within 1.5 s. (b) Absorption spectra of CH3OH at a pressure of 5 hPa inside (red line) and outside (blue line) of the PTFE tube.
Fig. 5
Fig. 5 Sequence of absorption images of the same tube as in shown in Fig. 4(a), where the investigated area is marked by the circle (dashed line). The wall of the tube is indicated by the rectangles (dashed lines). The area between the rectangles is a hole, which was drilled into the tube. Each frame has been recorded within 0.33 s and normalized to the background. (a)‒(d) Successive sequence of absorption images starting at t = 1.33 s after gas injection via V1 at t = 0, showing how the leakage evolves over time. (e) Absorption image at t = 60 s, when the absorption in the tube and the gas cell is almost at equilibrium. (f) Absorption image after opening of V2. Note that the absorption scale in (e) and (f) is different.
Fig. 6
Fig. 6 (a) Absorption spectra of CH3OH at different pressure values. (b) Linewidth w(FWHM) as a function of CH3OH pressure p measured in the homogenously filled gas cell. The function w(p) is approximated by a linear function according to Eq. (4).
Fig. 7
Fig. 7 (a) Spectral image of the leakage process derived from a transmission measurement and (b) from the width of the absorption line which corresponds to the local pressure. The whole area is acquired in 9.7 s and contains 4,606 spectra. The position of the tube is indicated by the black rectangle. While the gas distribution is observed in (a) as well as in (b), the hole where the gas leaks out is better resolved in (b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

C= I max I min I max + I min ,
T(ν)= T 0 2Aw π[4 (ν ν C ) 2 + w 2 ] .
A * = T 0 T( ν C ) T 0 = 2A πw T 0 ,
w(p)=bp+d.

Metrics