Abstract

This work demonstrates a novel broadband optical switch, based on dynamic-scattering effect in liquid crystals (LCs). Dynamic-scattering-mode technology was developed for display applications over four decades ago, but was displaced in favor of the twisted-nematic LCs. However, with the recent development of more stable LCs, dynamic scattering provides advantages over other technologies for optical switching. We demonstrate broadband polarization-insensitive attenuation of light directly passing thought the cell by 4 to 5 orders of magnitude at 633 nm. The attenuation is accomplished by light scattering to higher angles. Switching times of 150 μs to 10% transmission have been demonstrated. No degradation of devices is found after hundreds of switching cycles. The light-rejection mechanism is due to scattering, induced by disruption of LC director orientation with dopant ion motion with an applied electric field. Angular dependence of scattering is characterized as a function of bias voltage.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanosecond switching of micrometer optical retardance by an electrically controlled nematic liquid crystal cell

Bing-Xiang Li, Sergij V. Shiyanovskii, and Oleg D. Lavrentovich
Opt. Express 24(26) 29477-29482 (2016)

High contrast switching of transmission due to electrohydrodynamic effect in stacked thin systems of liquid crystals

Svetlana V. Serak, Uladzimir Hrozhyk, Jeoungyeon Hwang, Nelson V. Tabiryan, Diane Steeves, and Brian R. Kimball
Appl. Opt. 55(30) 8506-8512 (2016)

Electric switching of visible and infrared transmission using liquid crystals co-doped with plasmonic gold nanorods and dichroic dyes

Ghadah H. Sheetah, Qingkun Liu, Bohdan Senyuk, Blaise Fleury, and Ivan. I. Smalyukh
Opt. Express 26(17) 22264-22272 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Heusing and M. A. Aegerter, “Sol-gel coatings for electrochromic devices,” in Sol-Gel Processing for Conventional and Alternative Energy, M. Aparicio, A. Jitianu and L. C. Klein, ed. (Springer Science Business Media, 2012).
  2. M. W. Geis, T. M. Lyszczarz, R. M. Osgood, and B. R. Kimball, “30 to 50 ns liquid-crystal optical switches,” Opt. Express 18(18), 18886–18893 (2010).
    [Crossref] [PubMed]
  3. J. L. West, “Phase separation of liquid crystals in polymers,” Mol. Cyst. Liq. Cryst. 157, 427–441 (1988).
  4. H. Shim, H.-K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).
    [Crossref]
  5. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
    [Crossref]
  6. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCS),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
    [Crossref]
  7. V. T. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D. Ke-Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
    [Crossref]
  8. N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
    [Crossref]
  9. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. 18(1), 1–47 (2009).
    [Crossref]
  10. G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Dynamic scattering: a new electrooptic effect in certain classes of nematic liquid crystal,” Proc. IEEE 56(7), 1162–1171 (1968).
    [Crossref]
  11. G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Further studies of the dynamic scattering mode in nematic liquid crystals,” IEEE T. Electron Dev. Ed 17(1), 22–26 (1970).
    [Crossref]
  12. H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
    [Crossref]
  13. H. S. Lim, J. D. Margerum, and A. Graube, “Electrochemical properties of dopants and the D-C dynamic scattering of a nematic liquid crystal,” Elec. Soc. S. 124(9), 1389–1394 (1977).
    [Crossref]
  14. S. Kai, K. Yamaguchi, and K. Hirakawa, “Observation of flow figures on nematic liquid crystal MBBA,” J. Appl. Phys. 14(11), 1653–1658 (1975).
    [Crossref]
  15. R. Hérino, “Further investigations and comments on the dynamic scattering mode in nematic liquid crystals,” J. Appl. Phys. 52(5), 3690–3692 (1981).
    [Crossref]
  16. W. Helfrich, “Conduction-induced alignment of nematic liquid crystals: basic model and stability considerations,” J. Chem. Phys. 51(9), 4092–4105 (1969).
    [Crossref]
  17. B. Bahadur, “Dynamic scattering mode LCDs,” in Liquid Crystals Applications and Uses, Vol. 1, B. Birendra, ed. (World Scientific Publishing Co. Pte. Ltd., 1995).
  18. L. M. Blinov and V. G. Chigrinov, “Modulated and nonuniform structures in nematic liquid crystals,” in Electrooptic Effects in Liquid Crystal Materials, L. M. Blinov and V.G. Chigrinov, ed. (Springer-Verlag New York, Inc., 1994).
  19. S. Kai and W. Zimmermann, “Pattern dynamics in the electrodynamics on nematic liquid crystals,” Prog. Theor. Phys. Suppl. 99, 458–491 (1989).
    [Crossref]
  20. M. Schadt and C. von Planta, “Conductivity relaxation in positive dielectric liquid crystals,” J. Chem. Phys. 63(10), 4379–4383 (1975).
    [Crossref]
  21. “Physical properties of liquid crystals,” in Springer Handbook of Condensed Matter and Materials Data, Werner Martienssen, and Hans Warlimont, ed. (Springer Science & Business Media, 2006).
  22. B.-X. Li, V. Borshch, S. V. Shiyanovskii, S.-B. Liu, and O. D. Lavrentovich, “Electro-optic switching of dielectrically negative nematic through nanosecond electric modification of order parameter,” Appl. Phys. Lett. 104(20), 201105 (2014).
    [Crossref]
  23. S. Barret, F. Gaspard, R. Herino, and F. Mondon, “Dynamic scattering in nematic liquid crystals under dc conditions. I. Monitoring of electrode processes and lifetime investigation,” J. Appl. Phys. 47(6), 2375–2377 (1976).
    [Crossref]
  24. S. Barret, F. Gaspard, R. Herino, and F. Mondon, “Dynamic scattering in nematic liquid crystals under dc conditions. II. Monitoring of electrode processes and lifetime investigation,” J. Appl. Phys. 47(6), 2378–2381 (1976).
    [Crossref]
  25. H. V. Ivashchenko and V. G. Rumyantsev, “Molecular Crystals and Liquid Crystals Dyes” in Liquid Crystals, G. H. Dienes, ed. (Gordon and Breach Science Publishers S.A., 1987).
  26. T. Shimomura and S. Kobayashi, “Color contrast criteria in a guest-host mode liquid crystal display,” Appl. Opt. 20(5), 819–821 (1981).
    [Crossref] [PubMed]
  27. L. T. Creagh, A. R. Kmetz, and R. A. Reynolds, “Performance characteristics of nematic liquid crystal display devices,” IEEE Trans. Electron Dev. ED-18(9), 672–679 (1971).
    [Crossref]

2016 (1)

H. Shim, H.-K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).
[Crossref]

2014 (1)

B.-X. Li, V. Borshch, S. V. Shiyanovskii, S.-B. Liu, and O. D. Lavrentovich, “Electro-optic switching of dielectrically negative nematic through nanosecond electric modification of order parameter,” Appl. Phys. Lett. 104(20), 201105 (2014).
[Crossref]

2011 (2)

V. T. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D. Ke-Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

2010 (1)

2009 (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. 18(1), 1–47 (2009).
[Crossref]

2002 (1)

H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
[Crossref]

2000 (1)

J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCS),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

1994 (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

1989 (1)

S. Kai and W. Zimmermann, “Pattern dynamics in the electrodynamics on nematic liquid crystals,” Prog. Theor. Phys. Suppl. 99, 458–491 (1989).
[Crossref]

1988 (1)

J. L. West, “Phase separation of liquid crystals in polymers,” Mol. Cyst. Liq. Cryst. 157, 427–441 (1988).

1981 (2)

R. Hérino, “Further investigations and comments on the dynamic scattering mode in nematic liquid crystals,” J. Appl. Phys. 52(5), 3690–3692 (1981).
[Crossref]

T. Shimomura and S. Kobayashi, “Color contrast criteria in a guest-host mode liquid crystal display,” Appl. Opt. 20(5), 819–821 (1981).
[Crossref] [PubMed]

1977 (1)

H. S. Lim, J. D. Margerum, and A. Graube, “Electrochemical properties of dopants and the D-C dynamic scattering of a nematic liquid crystal,” Elec. Soc. S. 124(9), 1389–1394 (1977).
[Crossref]

1976 (2)

S. Barret, F. Gaspard, R. Herino, and F. Mondon, “Dynamic scattering in nematic liquid crystals under dc conditions. I. Monitoring of electrode processes and lifetime investigation,” J. Appl. Phys. 47(6), 2375–2377 (1976).
[Crossref]

S. Barret, F. Gaspard, R. Herino, and F. Mondon, “Dynamic scattering in nematic liquid crystals under dc conditions. II. Monitoring of electrode processes and lifetime investigation,” J. Appl. Phys. 47(6), 2378–2381 (1976).
[Crossref]

1975 (2)

S. Kai, K. Yamaguchi, and K. Hirakawa, “Observation of flow figures on nematic liquid crystal MBBA,” J. Appl. Phys. 14(11), 1653–1658 (1975).
[Crossref]

M. Schadt and C. von Planta, “Conductivity relaxation in positive dielectric liquid crystals,” J. Chem. Phys. 63(10), 4379–4383 (1975).
[Crossref]

1971 (1)

L. T. Creagh, A. R. Kmetz, and R. A. Reynolds, “Performance characteristics of nematic liquid crystal display devices,” IEEE Trans. Electron Dev. ED-18(9), 672–679 (1971).
[Crossref]

1970 (1)

G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Further studies of the dynamic scattering mode in nematic liquid crystals,” IEEE T. Electron Dev. Ed 17(1), 22–26 (1970).
[Crossref]

1969 (1)

W. Helfrich, “Conduction-induced alignment of nematic liquid crystals: basic model and stability considerations,” J. Chem. Phys. 51(9), 4092–4105 (1969).
[Crossref]

1968 (1)

G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Dynamic scattering: a new electrooptic effect in certain classes of nematic liquid crystal,” Proc. IEEE 56(7), 1162–1171 (1968).
[Crossref]

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Allabergenov, B.

H. Shim, H.-K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).
[Crossref]

Bailey, C. A.

V. T. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D. Ke-Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

Barret, S.

S. Barret, F. Gaspard, R. Herino, and F. Mondon, “Dynamic scattering in nematic liquid crystals under dc conditions. I. Monitoring of electrode processes and lifetime investigation,” J. Appl. Phys. 47(6), 2375–2377 (1976).
[Crossref]

S. Barret, F. Gaspard, R. Herino, and F. Mondon, “Dynamic scattering in nematic liquid crystals under dc conditions. II. Monitoring of electrode processes and lifetime investigation,” J. Appl. Phys. 47(6), 2378–2381 (1976).
[Crossref]

Barton, L. A.

G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Further studies of the dynamic scattering mode in nematic liquid crystals,” IEEE T. Electron Dev. Ed 17(1), 22–26 (1970).
[Crossref]

G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Dynamic scattering: a new electrooptic effect in certain classes of nematic liquid crystal,” Proc. IEEE 56(7), 1162–1171 (1968).
[Crossref]

Borshch, V.

B.-X. Li, V. Borshch, S. V. Shiyanovskii, S.-B. Liu, and O. D. Lavrentovich, “Electro-optic switching of dielectrically negative nematic through nanosecond electric modification of order parameter,” Appl. Phys. Lett. 104(20), 201105 (2014).
[Crossref]

Bunning, J.

J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCS),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Bunning, T. J.

V. T. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D. Ke-Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Choi, B.

H. Shim, H.-K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).
[Crossref]

Creagh, L. T.

L. T. Creagh, A. R. Kmetz, and R. A. Reynolds, “Performance characteristics of nematic liquid crystal display devices,” IEEE Trans. Electron Dev. ED-18(9), 672–679 (1971).
[Crossref]

Duning, M. M.

V. T. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D. Ke-Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

Garbovskiy, Y.

H. Shim, H.-K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).
[Crossref]

Gaspard, F.

S. Barret, F. Gaspard, R. Herino, and F. Mondon, “Dynamic scattering in nematic liquid crystals under dc conditions. II. Monitoring of electrode processes and lifetime investigation,” J. Appl. Phys. 47(6), 2378–2381 (1976).
[Crossref]

S. Barret, F. Gaspard, R. Herino, and F. Mondon, “Dynamic scattering in nematic liquid crystals under dc conditions. I. Monitoring of electrode processes and lifetime investigation,” J. Appl. Phys. 47(6), 2375–2377 (1976).
[Crossref]

Geis, M. W.

Glushchenko, A.

H. Shim, H.-K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).
[Crossref]

Graube, A.

H. S. Lim, J. D. Margerum, and A. Graube, “Electrochemical properties of dopants and the D-C dynamic scattering of a nematic liquid crystal,” Elec. Soc. S. 124(9), 1389–1394 (1977).
[Crossref]

Heilmeier, G. H.

G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Further studies of the dynamic scattering mode in nematic liquid crystals,” IEEE T. Electron Dev. Ed 17(1), 22–26 (1970).
[Crossref]

G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Dynamic scattering: a new electrooptic effect in certain classes of nematic liquid crystal,” Proc. IEEE 56(7), 1162–1171 (1968).
[Crossref]

Helfrich, W.

W. Helfrich, “Conduction-induced alignment of nematic liquid crystals: basic model and stability considerations,” J. Chem. Phys. 51(9), 4092–4105 (1969).
[Crossref]

Herino, R.

S. Barret, F. Gaspard, R. Herino, and F. Mondon, “Dynamic scattering in nematic liquid crystals under dc conditions. I. Monitoring of electrode processes and lifetime investigation,” J. Appl. Phys. 47(6), 2375–2377 (1976).
[Crossref]

S. Barret, F. Gaspard, R. Herino, and F. Mondon, “Dynamic scattering in nematic liquid crystals under dc conditions. II. Monitoring of electrode processes and lifetime investigation,” J. Appl. Phys. 47(6), 2378–2381 (1976).
[Crossref]

Hérino, R.

R. Hérino, “Further investigations and comments on the dynamic scattering mode in nematic liquid crystals,” J. Appl. Phys. 52(5), 3690–3692 (1981).
[Crossref]

Hirakawa, K.

S. Kai, K. Yamaguchi, and K. Hirakawa, “Observation of flow figures on nematic liquid crystal MBBA,” J. Appl. Phys. 14(11), 1653–1658 (1975).
[Crossref]

Kai, S.

S. Kai and W. Zimmermann, “Pattern dynamics in the electrodynamics on nematic liquid crystals,” Prog. Theor. Phys. Suppl. 99, 458–491 (1989).
[Crossref]

S. Kai, K. Yamaguchi, and K. Hirakawa, “Observation of flow figures on nematic liquid crystal MBBA,” J. Appl. Phys. 14(11), 1653–1658 (1975).
[Crossref]

Kawamoto, H.

H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
[Crossref]

Ke-Yang, D.

V. T. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D. Ke-Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

Kimball, B. R.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

M. W. Geis, T. M. Lyszczarz, R. M. Osgood, and B. R. Kimball, “30 to 50 ns liquid-crystal optical switches,” Opt. Express 18(18), 18886–18893 (2010).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. 18(1), 1–47 (2009).
[Crossref]

Kmetz, A. R.

L. T. Creagh, A. R. Kmetz, and R. A. Reynolds, “Performance characteristics of nematic liquid crystal display devices,” IEEE Trans. Electron Dev. ED-18(9), 672–679 (1971).
[Crossref]

Kobayashi, S.

Lavrentovich, O. D.

B.-X. Li, V. Borshch, S. V. Shiyanovskii, S.-B. Liu, and O. D. Lavrentovich, “Electro-optic switching of dielectrically negative nematic through nanosecond electric modification of order parameter,” Appl. Phys. Lett. 104(20), 201105 (2014).
[Crossref]

Li, B.-X.

B.-X. Li, V. Borshch, S. V. Shiyanovskii, S.-B. Liu, and O. D. Lavrentovich, “Electro-optic switching of dielectrically negative nematic through nanosecond electric modification of order parameter,” Appl. Phys. Lett. 104(20), 201105 (2014).
[Crossref]

Lim, H. S.

H. S. Lim, J. D. Margerum, and A. Graube, “Electrochemical properties of dopants and the D-C dynamic scattering of a nematic liquid crystal,” Elec. Soc. S. 124(9), 1389–1394 (1977).
[Crossref]

Liu, S.-B.

B.-X. Li, V. Borshch, S. V. Shiyanovskii, S.-B. Liu, and O. D. Lavrentovich, “Electro-optic switching of dielectrically negative nematic through nanosecond electric modification of order parameter,” Appl. Phys. Lett. 104(20), 201105 (2014).
[Crossref]

Lyszczarz, T. M.

Lyu, H.-K.

H. Shim, H.-K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).
[Crossref]

Margerum, J. D.

H. S. Lim, J. D. Margerum, and A. Graube, “Electrochemical properties of dopants and the D-C dynamic scattering of a nematic liquid crystal,” Elec. Soc. S. 124(9), 1389–1394 (1977).
[Crossref]

Mondon, F.

S. Barret, F. Gaspard, R. Herino, and F. Mondon, “Dynamic scattering in nematic liquid crystals under dc conditions. II. Monitoring of electrode processes and lifetime investigation,” J. Appl. Phys. 47(6), 2378–2381 (1976).
[Crossref]

S. Barret, F. Gaspard, R. Herino, and F. Mondon, “Dynamic scattering in nematic liquid crystals under dc conditions. I. Monitoring of electrode processes and lifetime investigation,” J. Appl. Phys. 47(6), 2375–2377 (1976).
[Crossref]

Natarajan, L. V.

V. T. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D. Ke-Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCS),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Nersisyan, S. R.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. 18(1), 1–47 (2009).
[Crossref]

Osgood, R. M.

Reynolds, R. A.

L. T. Creagh, A. R. Kmetz, and R. A. Reynolds, “Performance characteristics of nematic liquid crystal display devices,” IEEE Trans. Electron Dev. ED-18(9), 672–679 (1971).
[Crossref]

Schadt, M.

M. Schadt and C. von Planta, “Conductivity relaxation in positive dielectric liquid crystals,” J. Chem. Phys. 63(10), 4379–4383 (1975).
[Crossref]

Shim, H.

H. Shim, H.-K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).
[Crossref]

Shimomura, T.

Shiyanovskii, S. V.

B.-X. Li, V. Borshch, S. V. Shiyanovskii, S.-B. Liu, and O. D. Lavrentovich, “Electro-optic switching of dielectrically negative nematic through nanosecond electric modification of order parameter,” Appl. Phys. Lett. 104(20), 201105 (2014).
[Crossref]

Steeves, D. M.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. 18(1), 1–47 (2009).
[Crossref]

Sutherland, R. L.

V. T. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D. Ke-Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCS),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Tabiryan, N. V.

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. 18(1), 1–47 (2009).
[Crossref]

Tondiglia, V. P.

J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCS),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Tondiglia, V. T.

V. T. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D. Ke-Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

Voevodin, A.

V. T. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D. Ke-Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

von Planta, C.

M. Schadt and C. von Planta, “Conductivity relaxation in positive dielectric liquid crystals,” J. Chem. Phys. 63(10), 4379–4383 (1975).
[Crossref]

West, J. L.

J. L. West, “Phase separation of liquid crystals in polymers,” Mol. Cyst. Liq. Cryst. 157, 427–441 (1988).

White, T. J.

V. T. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D. Ke-Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

Yamaguchi, K.

S. Kai, K. Yamaguchi, and K. Hirakawa, “Observation of flow figures on nematic liquid crystal MBBA,” J. Appl. Phys. 14(11), 1653–1658 (1975).
[Crossref]

Zanoni, L. A.

G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Further studies of the dynamic scattering mode in nematic liquid crystals,” IEEE T. Electron Dev. Ed 17(1), 22–26 (1970).
[Crossref]

G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Dynamic scattering: a new electrooptic effect in certain classes of nematic liquid crystal,” Proc. IEEE 56(7), 1162–1171 (1968).
[Crossref]

Zimmermann, W.

S. Kai and W. Zimmermann, “Pattern dynamics in the electrodynamics on nematic liquid crystals,” Prog. Theor. Phys. Suppl. 99, 458–491 (1989).
[Crossref]

AIP Adv. (1)

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

Annu. Rev. Mater. Sci. (1)

J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCS),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

B.-X. Li, V. Borshch, S. V. Shiyanovskii, S.-B. Liu, and O. D. Lavrentovich, “Electro-optic switching of dielectrically negative nematic through nanosecond electric modification of order parameter,” Appl. Phys. Lett. 104(20), 201105 (2014).
[Crossref]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Elec. Soc. S. (1)

H. S. Lim, J. D. Margerum, and A. Graube, “Electrochemical properties of dopants and the D-C dynamic scattering of a nematic liquid crystal,” Elec. Soc. S. 124(9), 1389–1394 (1977).
[Crossref]

IEEE T. Electron Dev. Ed (1)

G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Further studies of the dynamic scattering mode in nematic liquid crystals,” IEEE T. Electron Dev. Ed 17(1), 22–26 (1970).
[Crossref]

IEEE Trans. Electron Dev. (1)

L. T. Creagh, A. R. Kmetz, and R. A. Reynolds, “Performance characteristics of nematic liquid crystal display devices,” IEEE Trans. Electron Dev. ED-18(9), 672–679 (1971).
[Crossref]

J. Appl. Phys. (5)

S. Barret, F. Gaspard, R. Herino, and F. Mondon, “Dynamic scattering in nematic liquid crystals under dc conditions. I. Monitoring of electrode processes and lifetime investigation,” J. Appl. Phys. 47(6), 2375–2377 (1976).
[Crossref]

S. Barret, F. Gaspard, R. Herino, and F. Mondon, “Dynamic scattering in nematic liquid crystals under dc conditions. II. Monitoring of electrode processes and lifetime investigation,” J. Appl. Phys. 47(6), 2378–2381 (1976).
[Crossref]

S. Kai, K. Yamaguchi, and K. Hirakawa, “Observation of flow figures on nematic liquid crystal MBBA,” J. Appl. Phys. 14(11), 1653–1658 (1975).
[Crossref]

R. Hérino, “Further investigations and comments on the dynamic scattering mode in nematic liquid crystals,” J. Appl. Phys. 52(5), 3690–3692 (1981).
[Crossref]

V. T. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D. Ke-Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

J. Chem. Phys. (2)

W. Helfrich, “Conduction-induced alignment of nematic liquid crystals: basic model and stability considerations,” J. Chem. Phys. 51(9), 4092–4105 (1969).
[Crossref]

M. Schadt and C. von Planta, “Conductivity relaxation in positive dielectric liquid crystals,” J. Chem. Phys. 63(10), 4379–4383 (1975).
[Crossref]

J. Nonlinear Opt. Phys. (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. 18(1), 1–47 (2009).
[Crossref]

Liq. Cryst. (1)

H. Shim, H.-K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko, and B. Choi, “Enhancement of frequency modulation response time for polymer-dispersed liquid crystal,” Liq. Cryst. 5377, 1–7 (2016).
[Crossref]

Mol. Cyst. Liq. Cryst. (1)

J. L. West, “Phase separation of liquid crystals in polymers,” Mol. Cyst. Liq. Cryst. 157, 427–441 (1988).

Opt. Express (1)

Proc. IEEE (2)

G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Dynamic scattering: a new electrooptic effect in certain classes of nematic liquid crystal,” Proc. IEEE 56(7), 1162–1171 (1968).
[Crossref]

H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
[Crossref]

Prog. Theor. Phys. Suppl. (1)

S. Kai and W. Zimmermann, “Pattern dynamics in the electrodynamics on nematic liquid crystals,” Prog. Theor. Phys. Suppl. 99, 458–491 (1989).
[Crossref]

Other (5)

B. Bahadur, “Dynamic scattering mode LCDs,” in Liquid Crystals Applications and Uses, Vol. 1, B. Birendra, ed. (World Scientific Publishing Co. Pte. Ltd., 1995).

L. M. Blinov and V. G. Chigrinov, “Modulated and nonuniform structures in nematic liquid crystals,” in Electrooptic Effects in Liquid Crystal Materials, L. M. Blinov and V.G. Chigrinov, ed. (Springer-Verlag New York, Inc., 1994).

S. Heusing and M. A. Aegerter, “Sol-gel coatings for electrochromic devices,” in Sol-Gel Processing for Conventional and Alternative Energy, M. Aparicio, A. Jitianu and L. C. Klein, ed. (Springer Science Business Media, 2012).

“Physical properties of liquid crystals,” in Springer Handbook of Condensed Matter and Materials Data, Werner Martienssen, and Hans Warlimont, ed. (Springer Science & Business Media, 2006).

H. V. Ivashchenko and V. G. Rumyantsev, “Molecular Crystals and Liquid Crystals Dyes” in Liquid Crystals, G. H. Dienes, ed. (Gordon and Breach Science Publishers S.A., 1987).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (21822 KB)      Movie of transmitted light throught cell while the voltage is sweep from 0 to100 and back to 0 V.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic diagram of dynamic scattering mode, DSM, cells, based on two clear states: (a) homeotropic, where the LC director is perpendicular to cell windows, and (b) homogeneous, where the LC director is parallel to cell windows. (c) When a voltage of > 10 V is applied across the cell, the ions in the LC, represented by the blue and red spheres, move under the electric field, forming ion channels as shown by the colored arrows. The ion movement disrupts the director, creating microcrystalline regions, which scatter the incoming light. The positive and negative ions are believed to form separate conduction channels between the electrodes [13–15]. Drawings adapted from references 13 through 15.
Fig. 2
Fig. 2 Homeotropic LC cell 50-μm-thick of ZLI-4330 (ZLI) doped with (2,4,7-trinitro-9- fluoroenylidene)malononitrile (TFM) and n-butylferrocene (BTF). (a) Helium–neon, 633-nm laser passes through the cell in its clear state. (b) Same cell in the scattering state with the application of 150 V across the cell ITO windows.
Fig. 3
Fig. 3 Transmission of 633-nm light as a function of bias voltage for three dopant concentrations. The dopants by weight are: 0.2% TFM an electron acceptor, 0.2% BTF an electron donor and 0.1% of TFM and BTF in ZLI. The cell-photodiode distance for these measurements was approximately 15 cm.
Fig. 4
Fig. 4 Comparison of on-axis optical transmission of 633 nm laser light through homogeneous DSM LC cells of MBBA and ZLI. The insert compares the current through the cell during the measurements
Fig. 5
Fig. 5 Comparison of optical transmission of 633-nm laser light through homeotropic and homogeneous DSM LC cells of ZLI. The insert compares the current through the cells during the measurements.
Fig. 6
Fig. 6 Switching time to reduce transmitted light to 10% of its clear state as a function of the switching voltage, which consisted of a square wave with time duration sufficient to reduce the transmission to < 10%. The curves are a power-law fit to the data.
Fig. 7
Fig. 7 Optical transmission as a function of time for the highest voltage step used in these studies, 660 V, in a homeotropic cell containing ZLI and a homogeneous cell containing MBBA.
Fig. 8
Fig. 8 Setup to measure scattering angle of light using a 1 cm diameter photodiode. The photodiode response was measured as a function of cell AC bias voltage for several distances between the cell and the photodiode, (X).
Fig. 9
Fig. 9 Normalized scattered light intensities (photodiode current) as a function of AC bias voltage for a homeotropic ZLI cell at several cell-photodiode distances.
Fig. 10
Fig. 10 Optical energy density as a function of scattering angle from the cell‘s optical axis, θ, for several AC bias voltages. Curves are an empirical power law fit to the data. The maximum scatter limit, Lambert cosine law, of a black body is shown for comparison.
Fig. 11
Fig. 11 Transmission of an empty cell and a cell filled with ZLI and dopants. The colored bars on the top of the graphs indicate the visible spectrum.
Fig. 12
Fig. 12 Transmitted spectrum of 50-μm-thick homogeneous LC cells at several bias voltages from 350 to 1700 nm (a) for ZLI with dopants 0.1% by weight of TFN and BTF and (b) MBBA. The colored bars on the top of the graphs indicate the visible spectrum.
Fig. 13
Fig. 13 Difference in optical densities at 0 V and 20 V bias voltages for homogeneous cells filled with MBBA, or ZLI.
Fig. 14
Fig. 14 Photograph with supplemental visualization of ~50-mW 780-nm laser beam on screen after passing through a 50-μm-thick homogeneous MBBA cell. The intensity of the laser beam saturates the movie camera and generates a halo artifact in the recorded image when the cell is in the clear state. Supplement visualization is 92 s long as the bias voltage on the LC cell is sweep from 0 to 100 V and back to 0 V at a rate that varied from 2 to 3 V s−1. See Visualization 1.

Tables (1)

Tables Icon

Table 1 Properties of LCs MBBA and ZLI 4330.

Metrics