Abstract

Microfabrication by two-photon polymerization is investigated using resins based on thiol-ene chemistry. In particular, resins containing different amounts of a tetrafunctional acrylic monomer and a tetrafunctional thiol molecule are used to create complex microstructures. We observe the enhancement of several characteristics of two-photon polymerization when using thiol-acrylic resins. Specifically, microfabrication is carried out using higher writing velocities and it produces stronger polymeric microstructures. Furthermore, the amount of shrinkage typically observed in the production of three-dimensional microstructures is reduced also. By means of microspectrometry, we confirm that the thiol-acrylate mixture in TPP resins promote monomer conversion inducing a higher degree of cross-linked network formation.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

13 June 2016: A correction was made to the acknowledgments.


OSA Recommended Articles
Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy

Li Jia Jiang, Yun Shen Zhou, Wei Xiong, Yang Gao, Xi Huang, Lan Jiang, Tommaso Baldacchini, Jean-Francois Silvain, and Yong Feng Lu
Opt. Lett. 39(10) 3034-3037 (2014)

Two-photon polymerization with variable repetition rate bursts of femtosecond laser pulses

Tommaso Baldacchini, Scott Snider, and Ruben Zadoyan
Opt. Express 20(28) 29890-29899 (2012)

Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization

Eiji Hata, Ken Mitsube, Keisuke Momose, and Yasuo Tomita
Opt. Mater. Express 1(2) 207-222 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Baldacchini, Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications (Elsevier, 2015).
  2. J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36(11), 2059–2061 (2011).
    [Crossref] [PubMed]
  3. T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
    [Crossref] [PubMed]
  4. M. K. Driscoll, X. Sun, C. Guven, J. T. Fourkas, and W. Losert, “Cellular contact guidance through dynamic sensing of nanotopography,” ACS Nano 8(4), 3546–3555 (2014).
    [Crossref] [PubMed]
  5. C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
    [Crossref] [PubMed]
  6. J. T. Fourkas, “Fundamentals of two-photon fabrication” in Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications T. Baldacchini, ed. (Elsevier, 2015).
  7. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [Crossref] [PubMed]
  8. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 21, 10831–10840 (2013).
  9. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
    [Crossref]
  10. Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
    [Crossref] [PubMed]
  11. I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
    [Crossref] [PubMed]
  12. W. H. Teh, U. Dürig, U. Drechsler, C. G. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
    [Crossref]
  13. C. A. Coenjarts and C. K. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater. 16(26), 5556–5558 (2004).
    [Crossref]
  14. J. Torgersen, X.-H. Qin, Z. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for two-photon polymerization:a toolbox for mimicking the extracellular matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
    [Crossref]
  15. B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
    [Crossref] [PubMed]
  16. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
    [Crossref] [PubMed]
  17. T. Baldacchini, C. N. LaFratta, R. A farrer, M. C Teich, B. E. A Saleh, M. J Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
    [Crossref]
  18. L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
    [Crossref]
  19. C. Decker, “Photoinitiated curing of multifunctional monomers,” Acta Polym. 45(5), 333–347 (1994).
    [Crossref]
  20. C. Decker, “Photoinitiated crosslinking polymerization,” Prog. Polym. Sci. 21(4), 593–650 (1996).
    [Crossref]
  21. G. Odian, Principles of Polymerization (Wiley-Interscience, 2004).
  22. A. R. Kannurpatti, J. W. Anseth, and C. N. Bowman, “A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates,” Polymer (Guildf.) 39(12), 2507–2513 (1998).
    [Crossref]
  23. L. Gou, C. N. Coretsopoulos, and A. B. Scranton, “Measurement of the dissolved oxygen concentration in acrylate monomers with a novel photochemical method,” J. Polym. Sci. Pol. Chem. 42(5), 1285–1292 (2004).
    [Crossref]
  24. K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting: part II,” Prog. Org. Coat. 48(1), 101–111 (2003).
    [Crossref]
  25. H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21(12), 1129–1136 (2005).
    [Crossref] [PubMed]
  26. C. E. Hoyle and C. N. Bowman, “Thiol-ene click chemistry,” Angew. Chem. Int. Ed. Engl. 49(9), 1540–1573 (2010).
    [Crossref] [PubMed]
  27. C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Polym. Sci. Pol. Chem. 42(21), 5301–5338 (2004).
    [Crossref]
  28. A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
    [Crossref] [PubMed]
  29. R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
    [Crossref] [PubMed]
  30. Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16(13), 1739–1744 (2006).
    [Crossref]
  31. X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S. C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, and R. Liska, “Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization,” J. Polym, Sci. Polym. Chem. 51(22), 4799–4810 (2013).
    [Crossref]
  32. B. J. Adzima, C. J. Kloxin, C. A. DeForest, K. S. Anseth, and C. N. Bowman, “3D Photofixation Lithography in Diels-Alder Networks,” Macromol. Rapid Commun. 33(24), 2092–2096 (2012).
    [Crossref] [PubMed]
  33. T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
    [Crossref] [PubMed]
  34. L. J. Jiang, Y. S. Zhou, W. Xiong, Y. Gao, X. Huang, L. Jiang, T. Baldacchini, J.-F. Silvain, and Y. F. Lu, “Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy,” Opt. Lett. 39(10), 3034–3037 (2014).
    [Crossref] [PubMed]
  35. X. N. He, J. Allen, P. N. Black, T. Baldacchini, X. Huang, H. Huang, L. Jiang, and Y. F. Lu, “Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion,” Biomed. Opt. Express 3(11), 2896–2906 (2012).
    [Crossref] [PubMed]
  36. P. Esfandiari, S. C. Ligon, J. J. Lagref, R. Frantz, Z. Cherkaoui, and R. Liska, “Efficient stabilization of thiol-ene formulations in radicals photopolymerization,” J. Polym. Sci. Pol. Chem. 51(20), 4261–4266 (2013).
    [Crossref]
  37. C. N. LaFratta and L. Li, “Making two-photon polymerization faster,” in Three-Dimensional Microfabrication Using TwoPhoton Polymerization: Fundamentals, Technology, and Applications T. Baldacchini, ed. (Elsevier, 2015).
  38. A. F. Senyurt, H. Wei, C. E. Hoyle, S. G. Piland, and T. E. Gould, “Ternary thiol-ene/acrylate photopolymers: effect of acrylate structure on mechanical properties,” Macromolecules 40(14), 4901–4909 (2007).
    [Crossref]
  39. A. F. Senyurt, C. E. Hoyle, H. Wei, S. G. Piland, and T. E. Gould, “Thermal and mechanical properties of cross-linked photopolymers based on multifunctional thiol-urethane ene monomers,” Macromolecules 40(9), 3174–3182 (2007).
    [Crossref]
  40. A. K. O’Brien, N. B. Cramer, and C. N. Bowman, “Oxygen inhibition in thiol-acrylate photopolymerizations,” J. Polym. Sci. Pol. Chem. 44(6), 2007–2014 (2006).
    [Crossref]
  41. H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
    [Crossref]
  42. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
    [Crossref] [PubMed]
  43. M. P. Patel, M. Braden, and K. W. M. Davy, “Polymerization shrinkage of methacrylate esters,” Biomaterials 8(1), 53–56 (1987).
    [Crossref] [PubMed]
  44. A. Žukauskas, M. Malinauskas, E. Brasselet, and S. Juodkazis, “3D micro-optics via ultrafast laser writing: miniaturization, integration, and multifunctionalities” in Three-Dimensional Microfabrication Using Two Photon Polymerization: Fundamentals, Technology, and Applications T. Baldacchini, ed. (Elsevier, 2015).

2014 (3)

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[Crossref] [PubMed]

M. K. Driscoll, X. Sun, C. Guven, J. T. Fourkas, and W. Losert, “Cellular contact guidance through dynamic sensing of nanotopography,” ACS Nano 8(4), 3546–3555 (2014).
[Crossref] [PubMed]

L. J. Jiang, Y. S. Zhou, W. Xiong, Y. Gao, X. Huang, L. Jiang, T. Baldacchini, J.-F. Silvain, and Y. F. Lu, “Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy,” Opt. Lett. 39(10), 3034–3037 (2014).
[Crossref] [PubMed]

2013 (7)

P. Esfandiari, S. C. Ligon, J. J. Lagref, R. Frantz, Z. Cherkaoui, and R. Liska, “Efficient stabilization of thiol-ene formulations in radicals photopolymerization,” J. Polym. Sci. Pol. Chem. 51(20), 4261–4266 (2013).
[Crossref]

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S. C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, and R. Liska, “Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization,” J. Polym, Sci. Polym. Chem. 51(22), 4799–4810 (2013).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 21, 10831–10840 (2013).

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

J. Torgersen, X.-H. Qin, Z. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for two-photon polymerization:a toolbox for mimicking the extracellular matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

2012 (3)

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

B. J. Adzima, C. J. Kloxin, C. A. DeForest, K. S. Anseth, and C. N. Bowman, “3D Photofixation Lithography in Diels-Alder Networks,” Macromol. Rapid Commun. 33(24), 2092–2096 (2012).
[Crossref] [PubMed]

X. N. He, J. Allen, P. N. Black, T. Baldacchini, X. Huang, H. Huang, L. Jiang, and Y. F. Lu, “Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion,” Biomed. Opt. Express 3(11), 2896–2906 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

C. E. Hoyle and C. N. Bowman, “Thiol-ene click chemistry,” Angew. Chem. Int. Ed. Engl. 49(9), 1540–1573 (2010).
[Crossref] [PubMed]

2009 (1)

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

2008 (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

2007 (3)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

A. F. Senyurt, H. Wei, C. E. Hoyle, S. G. Piland, and T. E. Gould, “Ternary thiol-ene/acrylate photopolymers: effect of acrylate structure on mechanical properties,” Macromolecules 40(14), 4901–4909 (2007).
[Crossref]

A. F. Senyurt, C. E. Hoyle, H. Wei, S. G. Piland, and T. E. Gould, “Thermal and mechanical properties of cross-linked photopolymers based on multifunctional thiol-urethane ene monomers,” Macromolecules 40(9), 3174–3182 (2007).
[Crossref]

2006 (4)

A. K. O’Brien, N. B. Cramer, and C. N. Bowman, “Oxygen inhibition in thiol-acrylate photopolymerizations,” J. Polym. Sci. Pol. Chem. 44(6), 2007–2014 (2006).
[Crossref]

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16(13), 1739–1744 (2006).
[Crossref]

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref] [PubMed]

2005 (3)

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[Crossref]

W. H. Teh, U. Dürig, U. Drechsler, C. G. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
[Crossref]

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21(12), 1129–1136 (2005).
[Crossref] [PubMed]

2004 (6)

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[Crossref]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Polym. Sci. Pol. Chem. 42(21), 5301–5338 (2004).
[Crossref]

L. Gou, C. N. Coretsopoulos, and A. B. Scranton, “Measurement of the dissolved oxygen concentration in acrylate monomers with a novel photochemical method,” J. Polym. Sci. Pol. Chem. 42(5), 1285–1292 (2004).
[Crossref]

C. A. Coenjarts and C. K. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater. 16(26), 5556–5558 (2004).
[Crossref]

T. Baldacchini, C. N. LaFratta, R. A farrer, M. C Teich, B. E. A Saleh, M. J Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

2003 (1)

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting: part II,” Prog. Org. Coat. 48(1), 101–111 (2003).
[Crossref]

2001 (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

1998 (1)

A. R. Kannurpatti, J. W. Anseth, and C. N. Bowman, “A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates,” Polymer (Guildf.) 39(12), 2507–2513 (1998).
[Crossref]

1996 (1)

C. Decker, “Photoinitiated crosslinking polymerization,” Prog. Polym. Sci. 21(4), 593–650 (1996).
[Crossref]

1994 (1)

C. Decker, “Photoinitiated curing of multifunctional monomers,” Acta Polym. 45(5), 333–347 (1994).
[Crossref]

1987 (1)

M. P. Patel, M. Braden, and K. W. M. Davy, “Polymerization shrinkage of methacrylate esters,” Biomaterials 8(1), 53–56 (1987).
[Crossref] [PubMed]

Adzima, B. J.

B. J. Adzima, C. J. Kloxin, C. A. DeForest, K. S. Anseth, and C. N. Bowman, “3D Photofixation Lithography in Diels-Alder Networks,” Macromol. Rapid Commun. 33(24), 2092–2096 (2012).
[Crossref] [PubMed]

Allen, J.

Allen, R.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref] [PubMed]

Anseth, J. W.

A. R. Kannurpatti, J. W. Anseth, and C. N. Bowman, “A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates,” Polymer (Guildf.) 39(12), 2507–2513 (1998).
[Crossref]

Anseth, K. S.

B. J. Adzima, C. J. Kloxin, C. A. DeForest, K. S. Anseth, and C. N. Bowman, “3D Photofixation Lithography in Diels-Alder Networks,” Macromol. Rapid Commun. 33(24), 2092–2096 (2012).
[Crossref] [PubMed]

Baldacchini, T.

L. J. Jiang, Y. S. Zhou, W. Xiong, Y. Gao, X. Huang, L. Jiang, T. Baldacchini, J.-F. Silvain, and Y. F. Lu, “Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy,” Opt. Lett. 39(10), 3034–3037 (2014).
[Crossref] [PubMed]

X. N. He, J. Allen, P. N. Black, T. Baldacchini, X. Huang, H. Huang, L. Jiang, and Y. F. Lu, “Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion,” Biomed. Opt. Express 3(11), 2896–2906 (2012).
[Crossref] [PubMed]

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

T. Baldacchini, C. N. LaFratta, R. A farrer, M. C Teich, B. E. A Saleh, M. J Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Barner-Kowollik, C.

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

Beck, E.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting: part II,” Prog. Org. Coat. 48(1), 101–111 (2003).
[Crossref]

Bityurin, N.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

Black, P. N.

Bowman, C. N.

B. J. Adzima, C. J. Kloxin, C. A. DeForest, K. S. Anseth, and C. N. Bowman, “3D Photofixation Lithography in Diels-Alder Networks,” Macromol. Rapid Commun. 33(24), 2092–2096 (2012).
[Crossref] [PubMed]

C. E. Hoyle and C. N. Bowman, “Thiol-ene click chemistry,” Angew. Chem. Int. Ed. Engl. 49(9), 1540–1573 (2010).
[Crossref] [PubMed]

A. K. O’Brien, N. B. Cramer, and C. N. Bowman, “Oxygen inhibition in thiol-acrylate photopolymerizations,” J. Polym. Sci. Pol. Chem. 44(6), 2007–2014 (2006).
[Crossref]

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21(12), 1129–1136 (2005).
[Crossref] [PubMed]

A. R. Kannurpatti, J. W. Anseth, and C. N. Bowman, “A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates,” Polymer (Guildf.) 39(12), 2507–2513 (1998).
[Crossref]

Braden, M.

M. P. Patel, M. Braden, and K. W. M. Davy, “Polymerization shrinkage of methacrylate esters,” Biomaterials 8(1), 53–56 (1987).
[Crossref] [PubMed]

Bückmann, T.

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[Crossref] [PubMed]

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Cao, Y.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Carioscia, J. A.

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21(12), 1129–1136 (2005).
[Crossref] [PubMed]

Chen, Y.-S.

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16(13), 1739–1744 (2006).
[Crossref]

Cherkaoui, Z.

P. Esfandiari, S. C. Ligon, J. J. Lagref, R. Frantz, Z. Cherkaoui, and R. Liska, “Efficient stabilization of thiol-ene formulations in radicals photopolymerization,” J. Polym. Sci. Pol. Chem. 51(20), 4261–4266 (2013).
[Crossref]

Chichkov, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Coenjarts, C. A.

C. A. Coenjarts and C. K. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater. 16(26), 5556–5558 (2004).
[Crossref]

Coretsopoulos, C. N.

L. Gou, C. N. Coretsopoulos, and A. B. Scranton, “Measurement of the dissolved oxygen concentration in acrylate monomers with a novel photochemical method,” J. Polym. Sci. Pol. Chem. 42(5), 1285–1292 (2004).
[Crossref]

Cramer, N. B.

A. K. O’Brien, N. B. Cramer, and C. N. Bowman, “Oxygen inhibition in thiol-acrylate photopolymerizations,” J. Polym. Sci. Pol. Chem. 44(6), 2007–2014 (2006).
[Crossref]

Davy, K. W. M.

M. P. Patel, M. Braden, and K. W. M. Davy, “Polymerization shrinkage of methacrylate esters,” Biomaterials 8(1), 53–56 (1987).
[Crossref] [PubMed]

Decker, C.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting: part II,” Prog. Org. Coat. 48(1), 101–111 (2003).
[Crossref]

C. Decker, “Photoinitiated crosslinking polymerization,” Prog. Polym. Sci. 21(4), 593–650 (1996).
[Crossref]

C. Decker, “Photoinitiated curing of multifunctional monomers,” Acta Polym. 45(5), 333–347 (1994).
[Crossref]

DeForest, C. A.

B. J. Adzima, C. J. Kloxin, C. A. DeForest, K. S. Anseth, and C. N. Bowman, “3D Photofixation Lithography in Diels-Alder Networks,” Macromol. Rapid Commun. 33(24), 2092–2096 (2012).
[Crossref] [PubMed]

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Drechsler, U.

W. H. Teh, U. Dürig, U. Drechsler, C. G. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
[Crossref]

Driscoll, M. K.

M. K. Driscoll, X. Sun, C. Guven, J. T. Fourkas, and W. Losert, “Cellular contact guidance through dynamic sensing of nanotopography,” ACS Nano 8(4), 3546–3555 (2014).
[Crossref] [PubMed]

Dürig, U.

W. H. Teh, U. Dürig, U. Drechsler, C. G. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
[Crossref]

Ergin, T.

Ertas, N.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref] [PubMed]

Esfandiari, P.

P. Esfandiari, S. C. Ligon, J. J. Lagref, R. Frantz, Z. Cherkaoui, and R. Liska, “Efficient stabilization of thiol-ene formulations in radicals photopolymerization,” J. Polym. Sci. Pol. Chem. 51(20), 4261–4266 (2013).
[Crossref]

Evans, R. A.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

farrer, R. A

T. Baldacchini, C. N. LaFratta, R. A farrer, M. C Teich, B. E. A Saleh, M. J Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Farrer, R. A.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

Farsari, M.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Fischer, J.

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 21, 10831–10840 (2013).

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36(11), 2059–2061 (2011).
[Crossref] [PubMed]

Fotakis, C.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Fourkas, J. T.

M. K. Driscoll, X. Sun, C. Guven, J. T. Fourkas, and W. Losert, “Cellular contact guidance through dynamic sensing of nanotopography,” ACS Nano 8(4), 3546–3555 (2014).
[Crossref] [PubMed]

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

T. Baldacchini, C. N. LaFratta, R. A farrer, M. C Teich, B. E. A Saleh, M. J Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Frantz, R.

P. Esfandiari, S. C. Ligon, J. J. Lagref, R. Frantz, Z. Cherkaoui, and R. Liska, “Efficient stabilization of thiol-ene formulations in radicals photopolymerization,” J. Polym. Sci. Pol. Chem. 51(20), 4261–4266 (2013).
[Crossref]

Gan, Z.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Gao, Y.

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Gou, L.

L. Gou, C. N. Coretsopoulos, and A. B. Scranton, “Measurement of the dissolved oxygen concentration in acrylate monomers with a novel photochemical method,” J. Polym. Sci. Pol. Chem. 42(5), 1285–1292 (2004).
[Crossref]

Gould, T. E.

A. F. Senyurt, H. Wei, C. E. Hoyle, S. G. Piland, and T. E. Gould, “Ternary thiol-ene/acrylate photopolymers: effect of acrylate structure on mechanical properties,” Macromolecules 40(14), 4901–4909 (2007).
[Crossref]

A. F. Senyurt, C. E. Hoyle, H. Wei, S. G. Piland, and T. E. Gould, “Thermal and mechanical properties of cross-linked photopolymers based on multifunctional thiol-urethane ene monomers,” Macromolecules 40(9), 3174–3182 (2007).
[Crossref]

Gray, D.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Gu, M.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[Crossref]

Güntherodt, H.-J.

W. H. Teh, U. Dürig, U. Drechsler, C. G. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
[Crossref]

Guven, C.

M. K. Driscoll, X. Sun, C. Guven, J. T. Fourkas, and W. Losert, “Cellular contact guidance through dynamic sensing of nanotopography,” ACS Nano 8(4), 3546–3555 (2014).
[Crossref] [PubMed]

He, X. N.

Hill, R. T.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref] [PubMed]

Holnthoner, W.

X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S. C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, and R. Liska, “Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization,” J. Polym, Sci. Polym. Chem. 51(22), 4799–4810 (2013).
[Crossref]

Hoyle, C. E.

C. E. Hoyle and C. N. Bowman, “Thiol-ene click chemistry,” Angew. Chem. Int. Ed. Engl. 49(9), 1540–1573 (2010).
[Crossref] [PubMed]

A. F. Senyurt, C. E. Hoyle, H. Wei, S. G. Piland, and T. E. Gould, “Thermal and mechanical properties of cross-linked photopolymers based on multifunctional thiol-urethane ene monomers,” Macromolecules 40(9), 3174–3182 (2007).
[Crossref]

A. F. Senyurt, H. Wei, C. E. Hoyle, S. G. Piland, and T. E. Gould, “Ternary thiol-ene/acrylate photopolymers: effect of acrylate structure on mechanical properties,” Macromolecules 40(14), 4901–4909 (2007).
[Crossref]

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Polym. Sci. Pol. Chem. 42(21), 5301–5338 (2004).
[Crossref]

Huang, H.

Huang, X.

Jiang, L.

Jiang, L. J.

Kabouraki, E.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

Kadic, M.

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[Crossref] [PubMed]

Kaehr, B.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref] [PubMed]

Kannurpatti, A. R.

A. R. Kannurpatti, J. W. Anseth, and C. N. Bowman, “A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates,” Polymer (Guildf.) 39(12), 2507–2513 (1998).
[Crossref]

Kawata, S.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[Crossref]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Kim, M. S.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[Crossref]

Kloxin, C. J.

B. J. Adzima, C. J. Kloxin, C. A. DeForest, K. S. Anseth, and C. N. Bowman, “3D Photofixation Lithography in Diels-Alder Networks,” Macromol. Rapid Commun. 33(24), 2092–2096 (2012).
[Crossref] [PubMed]

Kuebler, S. M.

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16(13), 1739–1744 (2006).
[Crossref]

Kuo, C.-H.

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

LaFratta, C. N.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

T. Baldacchini, C. N. LaFratta, R. A farrer, M. C Teich, B. E. A Saleh, M. J Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Lagref, J. J.

P. Esfandiari, S. C. Ligon, J. J. Lagref, R. Frantz, Z. Cherkaoui, and R. Liska, “Efficient stabilization of thiol-ene formulations in radicals photopolymerization,” J. Polym. Sci. Pol. Chem. 51(20), 4261–4266 (2013).
[Crossref]

Lee, K. S.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[Crossref]

Lee, T. Y.

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Polym. Sci. Pol. Chem. 42(21), 5301–5338 (2004).
[Crossref]

Li, L.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

Li, Z.

J. Torgersen, X.-H. Qin, Z. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for two-photon polymerization:a toolbox for mimicking the extracellular matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

Ligon, S. C.

P. Esfandiari, S. C. Ligon, J. J. Lagref, R. Frantz, Z. Cherkaoui, and R. Liska, “Efficient stabilization of thiol-ene formulations in radicals photopolymerization,” J. Polym. Sci. Pol. Chem. 51(20), 4261–4266 (2013).
[Crossref]

X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S. C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, and R. Liska, “Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization,” J. Polym, Sci. Polym. Chem. 51(22), 4799–4810 (2013).
[Crossref]

Liska, R.

X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S. C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, and R. Liska, “Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization,” J. Polym, Sci. Polym. Chem. 51(22), 4799–4810 (2013).
[Crossref]

J. Torgersen, X.-H. Qin, Z. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for two-photon polymerization:a toolbox for mimicking the extracellular matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

P. Esfandiari, S. C. Ligon, J. J. Lagref, R. Frantz, Z. Cherkaoui, and R. Liska, “Efficient stabilization of thiol-ene formulations in radicals photopolymerization,” J. Polym. Sci. Pol. Chem. 51(20), 4261–4266 (2013).
[Crossref]

Losert, W.

M. K. Driscoll, X. Sun, C. Guven, J. T. Fourkas, and W. Losert, “Cellular contact guidance through dynamic sensing of nanotopography,” ACS Nano 8(4), 3546–3555 (2014).
[Crossref] [PubMed]

Lu, H.

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21(12), 1129–1136 (2005).
[Crossref] [PubMed]

Lu, Y. F.

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Mühleder, S.

X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S. C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, and R. Liska, “Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization,” J. Polym, Sci. Polym. Chem. 51(22), 4799–4810 (2013).
[Crossref]

Naughton, M. J

T. Baldacchini, C. N. LaFratta, R. A farrer, M. C Teich, B. E. A Saleh, M. J Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Naughton, M. J.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

Nguyen, L. H.

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[Crossref]

Nielson, R.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref] [PubMed]

O’Brien, A. K.

A. K. O’Brien, N. B. Cramer, and C. N. Bowman, “Oxygen inhibition in thiol-acrylate photopolymerizations,” J. Polym. Sci. Pol. Chem. 44(6), 2007–2014 (2006).
[Crossref]

Ober, C. K.

C. A. Coenjarts and C. K. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater. 16(26), 5556–5558 (2004).
[Crossref]

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Ovsianikov, A.

J. Torgersen, X.-H. Qin, Z. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for two-photon polymerization:a toolbox for mimicking the extracellular matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S. C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, and R. Liska, “Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization,” J. Polym, Sci. Polym. Chem. 51(22), 4799–4810 (2013).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Patel, M. P.

M. P. Patel, M. Braden, and K. W. M. Davy, “Polymerization shrinkage of methacrylate esters,” Biomaterials 8(1), 53–56 (1987).
[Crossref] [PubMed]

Pauloehrl, T.

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Pikulin, A.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

Piland, S. G.

A. F. Senyurt, C. E. Hoyle, H. Wei, S. G. Piland, and T. E. Gould, “Thermal and mechanical properties of cross-linked photopolymers based on multifunctional thiol-urethane ene monomers,” Macromolecules 40(9), 3174–3182 (2007).
[Crossref]

A. F. Senyurt, H. Wei, C. E. Hoyle, S. G. Piland, and T. E. Gould, “Ternary thiol-ene/acrylate photopolymers: effect of acrylate structure on mechanical properties,” Macromolecules 40(14), 4901–4909 (2007).
[Crossref]

Plenert, M.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref] [PubMed]

Potma, E. O.

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

Praino, J.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

Pucher, N.

X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S. C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, and R. Liska, “Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization,” J. Polym, Sci. Polym. Chem. 51(22), 4799–4810 (2013).
[Crossref]

Purlys, V.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

Qin, X.-H.

J. Torgersen, X.-H. Qin, Z. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for two-photon polymerization:a toolbox for mimicking the extracellular matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S. C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, and R. Liska, “Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization,” J. Polym, Sci. Polym. Chem. 51(22), 4799–4810 (2013).
[Crossref]

Quick, A. S.

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

Redl, H.

X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S. C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, and R. Liska, “Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization,” J. Polym, Sci. Polym. Chem. 51(22), 4799–4810 (2013).
[Crossref]

Richter, B.

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

Roper, T.

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Polym. Sci. Pol. Chem. 42(21), 5301–5338 (2004).
[Crossref]

Saf, R.

X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S. C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, and R. Liska, “Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization,” J. Polym, Sci. Polym. Chem. 51(22), 4799–4810 (2013).
[Crossref]

Sakellari, I.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Saleh, B. E. A

T. Baldacchini, C. N. LaFratta, R. A farrer, M. C Teich, B. E. A Saleh, M. J Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Saleh, B. E. A.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

Schittny, R.

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[Crossref] [PubMed]

Schwalm, R.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting: part II,” Prog. Org. Coat. 48(1), 101–111 (2003).
[Crossref]

Scranton, A. B.

L. Gou, C. N. Coretsopoulos, and A. B. Scranton, “Measurement of the dissolved oxygen concentration in acrylate monomers with a novel photochemical method,” J. Polym. Sci. Pol. Chem. 42(5), 1285–1292 (2004).
[Crossref]

Senyurt, A. F.

A. F. Senyurt, C. E. Hoyle, H. Wei, S. G. Piland, and T. E. Gould, “Thermal and mechanical properties of cross-linked photopolymers based on multifunctional thiol-urethane ene monomers,” Macromolecules 40(9), 3174–3182 (2007).
[Crossref]

A. F. Senyurt, H. Wei, C. E. Hoyle, S. G. Piland, and T. E. Gould, “Ternary thiol-ene/acrylate photopolymers: effect of acrylate structure on mechanical properties,” Macromolecules 40(14), 4901–4909 (2007).
[Crossref]

Shear, J. B.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref] [PubMed]

Silvain, J.-F.

Smith, C. G.

W. H. Teh, U. Dürig, U. Drechsler, C. G. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
[Crossref]

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Stampfl, J.

J. Torgersen, X.-H. Qin, Z. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for two-photon polymerization:a toolbox for mimicking the extracellular matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S. C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, and R. Liska, “Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization,” J. Polym, Sci. Polym. Chem. 51(22), 4799–4810 (2013).
[Crossref]

Stansbury, J. W.

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21(12), 1129–1136 (2005).
[Crossref] [PubMed]

Straub, M.

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[Crossref]

Studer, K.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting: part II,” Prog. Org. Coat. 48(1), 101–111 (2003).
[Crossref]

Sun, H. B.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[Crossref]

Sun, H.-B.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Sun, X.

M. K. Driscoll, X. Sun, C. Guven, J. T. Fourkas, and W. Losert, “Cellular contact guidance through dynamic sensing of nanotopography,” ACS Nano 8(4), 3546–3555 (2014).
[Crossref] [PubMed]

Suwa, T.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[Crossref]

Takada, K.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[Crossref]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Tal, A.

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16(13), 1739–1744 (2006).
[Crossref]

Tanaka, T.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Teh, W. H.

W. H. Teh, U. Dürig, U. Drechsler, C. G. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
[Crossref]

Teich, M. C

T. Baldacchini, C. N. LaFratta, R. A farrer, M. C Teich, B. E. A Saleh, M. J Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Teich, M. C.

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

Thiel, M.

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[Crossref] [PubMed]

Torgersen, J.

J. Torgersen, X.-H. Qin, Z. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for two-photon polymerization:a toolbox for mimicking the extracellular matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S. C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, and R. Liska, “Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization,” J. Polym, Sci. Polym. Chem. 51(22), 4799–4810 (2013).
[Crossref]

Torrance, D. B.

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16(13), 1739–1744 (2006).
[Crossref]

Trouillet, V.

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

Vamvakaki, M.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

von Freymann, G.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Wegener, M.

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[Crossref] [PubMed]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 21, 10831–10840 (2013).

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36(11), 2059–2061 (2011).
[Crossref] [PubMed]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Wei, H.

A. F. Senyurt, C. E. Hoyle, H. Wei, S. G. Piland, and T. E. Gould, “Thermal and mechanical properties of cross-linked photopolymers based on multifunctional thiol-urethane ene monomers,” Macromolecules 40(9), 3174–3182 (2007).
[Crossref]

A. F. Senyurt, H. Wei, C. E. Hoyle, S. G. Piland, and T. E. Gould, “Ternary thiol-ene/acrylate photopolymers: effect of acrylate structure on mechanical properties,” Macromolecules 40(14), 4901–4909 (2007).
[Crossref]

Xiong, W.

Zaccaria, R. P.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[Crossref]

Zadoyan, R.

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

Zhou, Y. S.

Zimmerley, M.

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

ACS Nano (3)

M. K. Driscoll, X. Sun, C. Guven, J. T. Fourkas, and W. Losert, “Cellular contact guidance through dynamic sensing of nanotopography,” ACS Nano 8(4), 3546–3555 (2014).
[Crossref] [PubMed]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano 6(3), 2302–2311 (2012).
[Crossref] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Acta Polym. (1)

C. Decker, “Photoinitiated curing of multifunctional monomers,” Acta Polym. 45(5), 333–347 (1994).
[Crossref]

Adv. Funct. Mater. (3)

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[Crossref]

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16(13), 1739–1744 (2006).
[Crossref]

J. Torgersen, X.-H. Qin, Z. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for two-photon polymerization:a toolbox for mimicking the extracellular matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

Anal. Chem. (1)

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

C. E. Hoyle and C. N. Bowman, “Thiol-ene click chemistry,” Angew. Chem. Int. Ed. Engl. 49(9), 1540–1573 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004).
[Crossref]

Biomaterials (1)

M. P. Patel, M. Braden, and K. W. M. Davy, “Polymerization shrinkage of methacrylate esters,” Biomaterials 8(1), 53–56 (1987).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Chem. Mater. (1)

C. A. Coenjarts and C. K. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater. 16(26), 5556–5558 (2004).
[Crossref]

Dent. Mater. (1)

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21(12), 1129–1136 (2005).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (2)

W. H. Teh, U. Dürig, U. Drechsler, C. G. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
[Crossref]

T. Baldacchini, C. N. LaFratta, R. A farrer, M. C Teich, B. E. A Saleh, M. J Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

J. Phys. Chem. B (1)

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref] [PubMed]

J. Polym, Sci. Polym. Chem. (1)

X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S. C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, and R. Liska, “Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization,” J. Polym, Sci. Polym. Chem. 51(22), 4799–4810 (2013).
[Crossref]

J. Polym. Sci. Pol. Chem. (4)

P. Esfandiari, S. C. Ligon, J. J. Lagref, R. Frantz, Z. Cherkaoui, and R. Liska, “Efficient stabilization of thiol-ene formulations in radicals photopolymerization,” J. Polym. Sci. Pol. Chem. 51(20), 4261–4266 (2013).
[Crossref]

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Polym. Sci. Pol. Chem. 42(21), 5301–5338 (2004).
[Crossref]

L. Gou, C. N. Coretsopoulos, and A. B. Scranton, “Measurement of the dissolved oxygen concentration in acrylate monomers with a novel photochemical method,” J. Polym. Sci. Pol. Chem. 42(5), 1285–1292 (2004).
[Crossref]

A. K. O’Brien, N. B. Cramer, and C. N. Bowman, “Oxygen inhibition in thiol-acrylate photopolymerizations,” J. Polym. Sci. Pol. Chem. 44(6), 2007–2014 (2006).
[Crossref]

Laser Photonics Rev. (1)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

Macromol. Rapid Commun. (2)

A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, “Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry,” Macromol. Rapid Commun. 34(4), 335–340 (2013).
[Crossref] [PubMed]

B. J. Adzima, C. J. Kloxin, C. A. DeForest, K. S. Anseth, and C. N. Bowman, “3D Photofixation Lithography in Diels-Alder Networks,” Macromol. Rapid Commun. 33(24), 2092–2096 (2012).
[Crossref] [PubMed]

Macromolecules (2)

A. F. Senyurt, H. Wei, C. E. Hoyle, S. G. Piland, and T. E. Gould, “Ternary thiol-ene/acrylate photopolymers: effect of acrylate structure on mechanical properties,” Macromolecules 40(14), 4901–4909 (2007).
[Crossref]

A. F. Senyurt, C. E. Hoyle, H. Wei, S. G. Piland, and T. E. Gould, “Thermal and mechanical properties of cross-linked photopolymers based on multifunctional thiol-urethane ene monomers,” Macromolecules 40(9), 3174–3182 (2007).
[Crossref]

Nat. Commun. (2)

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref] [PubMed]

Nature (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (1)

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 21, 10831–10840 (2013).

Polymer (Guildf.) (1)

A. R. Kannurpatti, J. W. Anseth, and C. N. Bowman, “A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates,” Polymer (Guildf.) 39(12), 2507–2513 (1998).
[Crossref]

Prog. Org. Coat. (1)

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting: part II,” Prog. Org. Coat. 48(1), 101–111 (2003).
[Crossref]

Prog. Polym. Sci. (1)

C. Decker, “Photoinitiated crosslinking polymerization,” Prog. Polym. Sci. 21(4), 593–650 (1996).
[Crossref]

Other (5)

G. Odian, Principles of Polymerization (Wiley-Interscience, 2004).

C. N. LaFratta and L. Li, “Making two-photon polymerization faster,” in Three-Dimensional Microfabrication Using TwoPhoton Polymerization: Fundamentals, Technology, and Applications T. Baldacchini, ed. (Elsevier, 2015).

T. Baldacchini, Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications (Elsevier, 2015).

J. T. Fourkas, “Fundamentals of two-photon fabrication” in Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications T. Baldacchini, ed. (Elsevier, 2015).

A. Žukauskas, M. Malinauskas, E. Brasselet, and S. Juodkazis, “3D micro-optics via ultrafast laser writing: miniaturization, integration, and multifunctionalities” in Three-Dimensional Microfabrication Using Two Photon Polymerization: Fundamentals, Technology, and Applications T. Baldacchini, ed. (Elsevier, 2015).

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (8966 KB)      Video demonstration of fabrication time difference when using acrylate and thiol-acrylate resins in two-photon polymerization

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 SEM images of arrays of woodpile microstructures fabricated by TPP using different writing conditions. Resins Acry and AcryS are used in (a) and (b), respectively. Microstructures that survived the fabrication process unaltered are highlighted in green.
Fig. 2
Fig. 2 (a) Dependence of polymerization thresholds and minimum feature size on thiol concentration used in TPP resins. While polymerization thresholds decrease with increasing thiol concentration, the smallest linewidth is obtained at a thiol concentration of 30% by weight. (b) SEM images of suspended lines fabricated with the Acry resin and with the AcryS resin containing 30% by weight of the multifunctional thiol molecule.
Fig. 3
Fig. 3 (a) TPP writing critical speed dependence on the concentration of multifunctional thiol molecule used in resins. The red line is a linear regression. (b) SEM images of representative micro-gear structures used to extrapolate critical speeds for three of five resins used in this study (scale bars 20 µm). The images in each row represent microstructures fabricated out of the same material but with different writing speeds. The weight percentages on the top left images are the concentrations of the multifunctional thiol molecule used in the three resins (see Visualization 1).
Fig. 4
Fig. 4 (a) SEM of micro bridges fabricated by TPP using the Acry resin (top image) and the AcryS resin (bottom image) containing 30% in weight of the multifunctional thiol molecule. (b) Reduced Young’s modulus (Er) and Hardness (H) values retrieved from TPP microstructures built from resins containing varied concentration of the multifunctional thiol molecule. SEM of the test microstructure used in the nanoindentation measurements is shown in the figure’s inset (scale bar 10 µm).
Fig. 5
Fig. 5 Shrinkage of a woodpile microstructure fabricated by TPP using acrylic resins with different concentrations of multifunctional thiol molecule. The data is fitted to an exponential decay (red line) to guide the eye. A SEM image of the test microstructure with the definition of percentage of shrinkage (PS) used in this study is shown in the inset.
Fig. 6
Fig. 6 Raman spectra of TPP microstructures fabricated using the Acry resin and AcryS resins with different concentrations of the multifunctional thiol molecule. Each peak is label with the chemical moiety responsible for that vibration mode. (b) Degree of conversion (left) and fluorescence (right) of TPP microstructures as a function of thiol concentration. The black and blue lines are drawn only to guide the eye.
Fig. 7
Fig. 7 SEM and TPM images of micro-cars fabricated by TPP (LUT shown in far right). The numbers in the fluorescence images reflect the thiol concentration in the Acry and AcryS resins employed for this experiment (scale bars: 10 µm).

Metrics