Abstract

We have implemented a modified Young’s double slit experiment using pinholes with tunable separation distance coupled with compound refractive lens for hard X-ray spatial coherence characterization. Varying distance between the apertures provides a high sensitivity to the determination of spatial coherence across a wide range of experimental parameters. The use of refractive lenses as a Fourier transformer ensures far field registration conditions and allows the realization of a very compact experimental setup in comparison with the classical Young technique and its derivatives. The tunable double aperture interferometer was experimentally tested at the ESRF ID06 beamline in the energy range from 8 to 25 keV. The spatial coherence and the source size were measured by evaluating the visibility of the interference fringes at various separation distances between the apertures and this value agrees very well with the data obtained by other techniques. The proposed scheme can be used for comprehensive characterization of the coherence properties of the source on low emittance synchrotrons in the hard X-ray region.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
X-ray multilens interferometer based on Si refractive lenses

A. Snigirev, I. Snigireva, M. Lyubomirskiy, V. Kohn, V. Yunkin, and S. Kuznetsov
Opt. Express 22(21) 25842-25852 (2014)

Probing transverse coherence of x-ray beam with 2-D phase grating interferometer

Shashidhara Marathe, Xianbo Shi, Michael J. Wojcik, Naresh G. Kujala, Ralu Divan, Derrick C. Mancini, Albert T. Macrander, and Lahsen Assoufid
Opt. Express 22(12) 14041-14053 (2014)

Focusing high-energy x rays by compound refractive lenses

A. Snigirev, V. Kohn, I. Snigireva, A. Souvorov, and B. Lengeler
Appl. Opt. 37(4) 653-662 (1998)

References

  • View by:
  • |
  • |
  • |

  1. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486 (1995).
    [Crossref]
  2. M. Sutton, S. G. J. Mochrie, T. Greytak, S. E. Nagler, L. E. Berman, G. A. Held, and G. B. Stephenson, “Observation of speckle by diffraction with coherent X-rays,” Nature 352(6336), 608–610 (1991).
    [Crossref]
  3. J. W. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methotology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimes,” Nature 400(6742), 342–344 (1999).
    [Crossref]
  4. W. Leitenberger, S. M. Kuznetsov, and A. Snigirev, “Interferometric measurements with hard X-rays using a double slit,” Opt. Commun. 191(1-2), 91–96 (2001).
    [Crossref]
  5. C. David, B. Nohammer, H. H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287 (2002).
    [Crossref]
  6. A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
    [Crossref] [PubMed]
  7. A. Snigirev, I. Snigireva, M. Lyubomirskiy, V. Kohn, V. Yunkin, and S. Kuznetsov, “X-ray multilens interferometer based on Si refractive lenses,” Opt. Express 22(21), 25842–25852 (2014).
    [Crossref] [PubMed]
  8. M. Lyubomirskiy, I. Snigireva, S. Kuznetsov, V. Yunkin, and A. Snigirev, “Hard x-ray single crystal bi-mirror,” Opt. Lett. 40(10), 2205–2208 (2015).
    [Crossref] [PubMed]
  9. V. Kohn, I. Snigireva, and A. Snigirev, “Direct measurement of transverse coherence Length of hard X rays from interference fringes,” Phys. Rev. Lett. 85(13), 2745–2748 (2000).
    [Crossref] [PubMed]
  10. T. Weitkamp, O. Chubar, M. Drakopoulos, A. Souvorov, I. Snigireva, A. Snigirev, F. Günzler, C. Schroer, and B. Lengeler, “Refractive lens as a beam diagnostics tool for high-energy synchrotron radiation,” NIM A 467–468, 248 (2001).
  11. H. Yamazaki and T. Ishikawa, “Analysis of the mutual coherence function of X-ray using dynamical diffraction,” J. Appl. Cryst. 37(1), 48–51 (2004).
    [Crossref]
  12. J. P. Guigay, S. Zabler, P. Cloetens, C. David, R. Mokso, and M. Schlenker, “The partial Talbot effect and its use in measuring the coherence of synchrotron X-rays,” J. Synchrotron Radiat. 11(6), 476–482 (2004).
    [Crossref] [PubMed]
  13. F. Pfeiffer, O. Bunk, C. Schulze-Briese, A. Diaz, T. Weitkamp, C. David, J. F. van der Veen, I. Vartanyants, and I. K. Robinson, “Shearing interferometer for quantifying the coherence of hard X-ray beams,” Phys. Rev. Lett. 94(16), 164801 (2005).
    [Crossref] [PubMed]
  14. M. D. Alaimo, M. A. C. Potenza, M. Manfredda, G. Geloni, M. Sztucki, T. Narayanan, and M. Giglio, “Probing the transverse coherence of an undulator X-ray beam using brownian particles,” Phys. Rev. Lett. 103(19), 194805 (2009).
    [Crossref] [PubMed]
  15. C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
    [Crossref] [PubMed]
  16. S. Lee, W. Roseker, C. Gutt, B. Fisher, H. Conrad, F. Lehmkuhler, I. Steinke, D. Zhu, H. Lemke, M. Cammrata, D. M. Fritz, P. Wochner, M. Castro-Colin, S. O. Hruszkewycz, P. H. Fuoss, G. B. Stephenson, G. Grubel, and A. Robert, “Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS,” Opt. Express 21, 24647 (2013).
    [PubMed]
  17. F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
    [PubMed]
  18. C. Chang, P. Naulleau, E. Anderson, and D. Attwood, “Spatial coherence characterization of undulator radiation,” Opt. Commun. 182(1-3), 25–34 (2000).
    [Crossref]
  19. A. Singer, I. A. Vartanyants, M. Kuhlmann, S. Duesterer, R. Treusch, and J. Feldhaus, “Transverse-coherence properties of the Free-Electron-Laser FLASH at DESY,” Phys. Rev. Lett. 101(25), 254801 (2008).
    [Crossref] [PubMed]
  20. D. Paterson, B. E. Allman, P. J. McMahon, J. Lin, N. Moldovan, K. A. Nugent, I. McNulty, C. T. Chantler, C. C. Retsch, T. H. K. Irving, and D. C. Mancini, “Spatial coherence measurements of X-ray undulator radiation,” Opt. Commun. 195(1-4), 79–84 (2001).
    [Crossref]
  21. W. Leitenberger, H. Wendrock, L. Bischoff, and T. Weitkamp, “Pinhole interferometry with coherent hard X-rays,” J. Synchrotron Radiat. 11(2), 190–197 (2004).
    [Crossref] [PubMed]
  22. W. Leitenberger and U. Pietsch, “A monolithic Fresnel bimirror for hard X-rays and its application for coherence measurements,” J. Synchrotron Radiat. 14(2), 196–203 (2007).
    [Crossref] [PubMed]
  23. I. Inoue, K. Tono, Y. Joti, T. Kameshima, K. Ogawa, Y. Shinohara, Y. Amemiya, and M. Yabashi, “Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended Young’s experiment,” IUCrJ 2(6), 620–626 (2015).
    [Crossref] [PubMed]
  24. M. Françon, Optical Interferometry (Academic, 1966).
  25. A. Franchi, L. Farvacque, J. Chavanne, F. Ewald, B. Nash, K. Scheidt, and R. Tomás, “Vertical emittance reduction and preservation in electron storage rings via resonance driving terms corrections,” Phys. Rev. Spec. Top. Accel. Beams 14(3), 034002 (2011).
    [Crossref]
  26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Book Company, 1968).
  27. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
    [Crossref]
  28. V. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
    [Crossref]
  29. M. Drakopoulos, A. Snigirev, I. Snigireva, and J. Schilling, “X-ray high-resolution diffraction using refractive lenses,” Appl. Phys. Lett. 86(1), 014102 (2005).
    [Crossref]
  30. P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Cryst. 46(5), 1475–1480 (2013).
    [Crossref]
  31. I. Hughes and T. Hase, Measurements and Their Uncertainties: A Practical Guide to Modern Error Analysis (Oxford University, 2010).

2015 (2)

M. Lyubomirskiy, I. Snigireva, S. Kuznetsov, V. Yunkin, and A. Snigirev, “Hard x-ray single crystal bi-mirror,” Opt. Lett. 40(10), 2205–2208 (2015).
[Crossref] [PubMed]

I. Inoue, K. Tono, Y. Joti, T. Kameshima, K. Ogawa, Y. Shinohara, Y. Amemiya, and M. Yabashi, “Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended Young’s experiment,” IUCrJ 2(6), 620–626 (2015).
[Crossref] [PubMed]

2014 (2)

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

A. Snigirev, I. Snigireva, M. Lyubomirskiy, V. Kohn, V. Yunkin, and S. Kuznetsov, “X-ray multilens interferometer based on Si refractive lenses,” Opt. Express 22(21), 25842–25852 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

2011 (1)

A. Franchi, L. Farvacque, J. Chavanne, F. Ewald, B. Nash, K. Scheidt, and R. Tomás, “Vertical emittance reduction and preservation in electron storage rings via resonance driving terms corrections,” Phys. Rev. Spec. Top. Accel. Beams 14(3), 034002 (2011).
[Crossref]

2009 (2)

M. D. Alaimo, M. A. C. Potenza, M. Manfredda, G. Geloni, M. Sztucki, T. Narayanan, and M. Giglio, “Probing the transverse coherence of an undulator X-ray beam using brownian particles,” Phys. Rev. Lett. 103(19), 194805 (2009).
[Crossref] [PubMed]

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[Crossref] [PubMed]

2008 (1)

A. Singer, I. A. Vartanyants, M. Kuhlmann, S. Duesterer, R. Treusch, and J. Feldhaus, “Transverse-coherence properties of the Free-Electron-Laser FLASH at DESY,” Phys. Rev. Lett. 101(25), 254801 (2008).
[Crossref] [PubMed]

2007 (1)

W. Leitenberger and U. Pietsch, “A monolithic Fresnel bimirror for hard X-rays and its application for coherence measurements,” J. Synchrotron Radiat. 14(2), 196–203 (2007).
[Crossref] [PubMed]

2005 (2)

M. Drakopoulos, A. Snigirev, I. Snigireva, and J. Schilling, “X-ray high-resolution diffraction using refractive lenses,” Appl. Phys. Lett. 86(1), 014102 (2005).
[Crossref]

F. Pfeiffer, O. Bunk, C. Schulze-Briese, A. Diaz, T. Weitkamp, C. David, J. F. van der Veen, I. Vartanyants, and I. K. Robinson, “Shearing interferometer for quantifying the coherence of hard X-ray beams,” Phys. Rev. Lett. 94(16), 164801 (2005).
[Crossref] [PubMed]

2004 (3)

H. Yamazaki and T. Ishikawa, “Analysis of the mutual coherence function of X-ray using dynamical diffraction,” J. Appl. Cryst. 37(1), 48–51 (2004).
[Crossref]

J. P. Guigay, S. Zabler, P. Cloetens, C. David, R. Mokso, and M. Schlenker, “The partial Talbot effect and its use in measuring the coherence of synchrotron X-rays,” J. Synchrotron Radiat. 11(6), 476–482 (2004).
[Crossref] [PubMed]

W. Leitenberger, H. Wendrock, L. Bischoff, and T. Weitkamp, “Pinhole interferometry with coherent hard X-rays,” J. Synchrotron Radiat. 11(2), 190–197 (2004).
[Crossref] [PubMed]

2003 (1)

V. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

2002 (1)

C. David, B. Nohammer, H. H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287 (2002).
[Crossref]

2001 (3)

W. Leitenberger, S. M. Kuznetsov, and A. Snigirev, “Interferometric measurements with hard X-rays using a double slit,” Opt. Commun. 191(1-2), 91–96 (2001).
[Crossref]

T. Weitkamp, O. Chubar, M. Drakopoulos, A. Souvorov, I. Snigireva, A. Snigirev, F. Günzler, C. Schroer, and B. Lengeler, “Refractive lens as a beam diagnostics tool for high-energy synchrotron radiation,” NIM A 467–468, 248 (2001).

D. Paterson, B. E. Allman, P. J. McMahon, J. Lin, N. Moldovan, K. A. Nugent, I. McNulty, C. T. Chantler, C. C. Retsch, T. H. K. Irving, and D. C. Mancini, “Spatial coherence measurements of X-ray undulator radiation,” Opt. Commun. 195(1-4), 79–84 (2001).
[Crossref]

2000 (2)

C. Chang, P. Naulleau, E. Anderson, and D. Attwood, “Spatial coherence characterization of undulator radiation,” Opt. Commun. 182(1-3), 25–34 (2000).
[Crossref]

V. Kohn, I. Snigireva, and A. Snigirev, “Direct measurement of transverse coherence Length of hard X rays from interference fringes,” Phys. Rev. Lett. 85(13), 2745–2748 (2000).
[Crossref] [PubMed]

1999 (1)

J. W. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methotology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimes,” Nature 400(6742), 342–344 (1999).
[Crossref]

1996 (1)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

1995 (1)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486 (1995).
[Crossref]

1991 (1)

M. Sutton, S. G. J. Mochrie, T. Greytak, S. E. Nagler, L. E. Berman, G. A. Held, and G. B. Stephenson, “Observation of speckle by diffraction with coherent X-rays,” Nature 352(6336), 608–610 (1991).
[Crossref]

Alaimo, M. D.

M. D. Alaimo, M. A. C. Potenza, M. Manfredda, G. Geloni, M. Sztucki, T. Narayanan, and M. Giglio, “Probing the transverse coherence of an undulator X-ray beam using brownian particles,” Phys. Rev. Lett. 103(19), 194805 (2009).
[Crossref] [PubMed]

Allman, B. E.

D. Paterson, B. E. Allman, P. J. McMahon, J. Lin, N. Moldovan, K. A. Nugent, I. McNulty, C. T. Chantler, C. C. Retsch, T. H. K. Irving, and D. C. Mancini, “Spatial coherence measurements of X-ray undulator radiation,” Opt. Commun. 195(1-4), 79–84 (2001).
[Crossref]

Amemiya, Y.

I. Inoue, K. Tono, Y. Joti, T. Kameshima, K. Ogawa, Y. Shinohara, Y. Amemiya, and M. Yabashi, “Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended Young’s experiment,” IUCrJ 2(6), 620–626 (2015).
[Crossref] [PubMed]

Anderson, E.

C. Chang, P. Naulleau, E. Anderson, and D. Attwood, “Spatial coherence characterization of undulator radiation,” Opt. Commun. 182(1-3), 25–34 (2000).
[Crossref]

Attwood, D.

C. Chang, P. Naulleau, E. Anderson, and D. Attwood, “Spatial coherence characterization of undulator radiation,” Opt. Commun. 182(1-3), 25–34 (2000).
[Crossref]

Berman, L. E.

M. Sutton, S. G. J. Mochrie, T. Greytak, S. E. Nagler, L. E. Berman, G. A. Held, and G. B. Stephenson, “Observation of speckle by diffraction with coherent X-rays,” Nature 352(6336), 608–610 (1991).
[Crossref]

Bischoff, L.

W. Leitenberger, H. Wendrock, L. Bischoff, and T. Weitkamp, “Pinhole interferometry with coherent hard X-rays,” J. Synchrotron Radiat. 11(2), 190–197 (2004).
[Crossref] [PubMed]

Bogle, S.

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Bunk, O.

F. Pfeiffer, O. Bunk, C. Schulze-Briese, A. Diaz, T. Weitkamp, C. David, J. F. van der Veen, I. Vartanyants, and I. K. Robinson, “Shearing interferometer for quantifying the coherence of hard X-ray beams,” Phys. Rev. Lett. 94(16), 164801 (2005).
[Crossref] [PubMed]

Cammarata, M.

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Cammrata, M.

Castro-Colin, M.

S. Lee, W. Roseker, C. Gutt, B. Fisher, H. Conrad, F. Lehmkuhler, I. Steinke, D. Zhu, H. Lemke, M. Cammrata, D. M. Fritz, P. Wochner, M. Castro-Colin, S. O. Hruszkewycz, P. H. Fuoss, G. B. Stephenson, G. Grubel, and A. Robert, “Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS,” Opt. Express 21, 24647 (2013).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Chang, C.

C. Chang, P. Naulleau, E. Anderson, and D. Attwood, “Spatial coherence characterization of undulator radiation,” Opt. Commun. 182(1-3), 25–34 (2000).
[Crossref]

Chantler, C. T.

D. Paterson, B. E. Allman, P. J. McMahon, J. Lin, N. Moldovan, K. A. Nugent, I. McNulty, C. T. Chantler, C. C. Retsch, T. H. K. Irving, and D. C. Mancini, “Spatial coherence measurements of X-ray undulator radiation,” Opt. Commun. 195(1-4), 79–84 (2001).
[Crossref]

Charalambous, P.

J. W. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methotology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimes,” Nature 400(6742), 342–344 (1999).
[Crossref]

Chavanne, J.

A. Franchi, L. Farvacque, J. Chavanne, F. Ewald, B. Nash, K. Scheidt, and R. Tomás, “Vertical emittance reduction and preservation in electron storage rings via resonance driving terms corrections,” Phys. Rev. Spec. Top. Accel. Beams 14(3), 034002 (2011).
[Crossref]

Chollet, M.

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

Chubar, O.

T. Weitkamp, O. Chubar, M. Drakopoulos, A. Souvorov, I. Snigireva, A. Snigirev, F. Günzler, C. Schroer, and B. Lengeler, “Refractive lens as a beam diagnostics tool for high-energy synchrotron radiation,” NIM A 467–468, 248 (2001).

Cloetens, P.

J. P. Guigay, S. Zabler, P. Cloetens, C. David, R. Mokso, and M. Schlenker, “The partial Talbot effect and its use in measuring the coherence of synchrotron X-rays,” J. Synchrotron Radiat. 11(6), 476–482 (2004).
[Crossref] [PubMed]

Conrad, H.

S. Lee, W. Roseker, C. Gutt, B. Fisher, H. Conrad, F. Lehmkuhler, I. Steinke, D. Zhu, H. Lemke, M. Cammrata, D. M. Fritz, P. Wochner, M. Castro-Colin, S. O. Hruszkewycz, P. H. Fuoss, G. B. Stephenson, G. Grubel, and A. Robert, “Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS,” Opt. Express 21, 24647 (2013).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

David, C.

F. Pfeiffer, O. Bunk, C. Schulze-Briese, A. Diaz, T. Weitkamp, C. David, J. F. van der Veen, I. Vartanyants, and I. K. Robinson, “Shearing interferometer for quantifying the coherence of hard X-ray beams,” Phys. Rev. Lett. 94(16), 164801 (2005).
[Crossref] [PubMed]

J. P. Guigay, S. Zabler, P. Cloetens, C. David, R. Mokso, and M. Schlenker, “The partial Talbot effect and its use in measuring the coherence of synchrotron X-rays,” J. Synchrotron Radiat. 11(6), 476–482 (2004).
[Crossref] [PubMed]

C. David, B. Nohammer, H. H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287 (2002).
[Crossref]

Detlefs, C.

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[Crossref] [PubMed]

Diaz, A.

F. Pfeiffer, O. Bunk, C. Schulze-Briese, A. Diaz, T. Weitkamp, C. David, J. F. van der Veen, I. Vartanyants, and I. K. Robinson, “Shearing interferometer for quantifying the coherence of hard X-ray beams,” Phys. Rev. Lett. 94(16), 164801 (2005).
[Crossref] [PubMed]

Drakopoulos, M.

M. Drakopoulos, A. Snigirev, I. Snigireva, and J. Schilling, “X-ray high-resolution diffraction using refractive lenses,” Appl. Phys. Lett. 86(1), 014102 (2005).
[Crossref]

T. Weitkamp, O. Chubar, M. Drakopoulos, A. Souvorov, I. Snigireva, A. Snigirev, F. Günzler, C. Schroer, and B. Lengeler, “Refractive lens as a beam diagnostics tool for high-energy synchrotron radiation,” NIM A 467–468, 248 (2001).

Duesterer, S.

A. Singer, I. A. Vartanyants, M. Kuhlmann, S. Duesterer, R. Treusch, and J. Feldhaus, “Transverse-coherence properties of the Free-Electron-Laser FLASH at DESY,” Phys. Rev. Lett. 101(25), 254801 (2008).
[Crossref] [PubMed]

Ershov, P.

P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Cryst. 46(5), 1475–1480 (2013).
[Crossref]

Ewald, F.

A. Franchi, L. Farvacque, J. Chavanne, F. Ewald, B. Nash, K. Scheidt, and R. Tomás, “Vertical emittance reduction and preservation in electron storage rings via resonance driving terms corrections,” Phys. Rev. Spec. Top. Accel. Beams 14(3), 034002 (2011).
[Crossref]

Farvacque, L.

A. Franchi, L. Farvacque, J. Chavanne, F. Ewald, B. Nash, K. Scheidt, and R. Tomás, “Vertical emittance reduction and preservation in electron storage rings via resonance driving terms corrections,” Phys. Rev. Spec. Top. Accel. Beams 14(3), 034002 (2011).
[Crossref]

Feldhaus, J.

A. Singer, I. A. Vartanyants, M. Kuhlmann, S. Duesterer, R. Treusch, and J. Feldhaus, “Transverse-coherence properties of the Free-Electron-Laser FLASH at DESY,” Phys. Rev. Lett. 101(25), 254801 (2008).
[Crossref] [PubMed]

Fischer, B.

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Fisher, B.

Franchi, A.

A. Franchi, L. Farvacque, J. Chavanne, F. Ewald, B. Nash, K. Scheidt, and R. Tomás, “Vertical emittance reduction and preservation in electron storage rings via resonance driving terms corrections,” Phys. Rev. Spec. Top. Accel. Beams 14(3), 034002 (2011).
[Crossref]

Fritz, D. M.

S. Lee, W. Roseker, C. Gutt, B. Fisher, H. Conrad, F. Lehmkuhler, I. Steinke, D. Zhu, H. Lemke, M. Cammrata, D. M. Fritz, P. Wochner, M. Castro-Colin, S. O. Hruszkewycz, P. H. Fuoss, G. B. Stephenson, G. Grubel, and A. Robert, “Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS,” Opt. Express 21, 24647 (2013).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Fuoss, P. H.

S. Lee, W. Roseker, C. Gutt, B. Fisher, H. Conrad, F. Lehmkuhler, I. Steinke, D. Zhu, H. Lemke, M. Cammrata, D. M. Fritz, P. Wochner, M. Castro-Colin, S. O. Hruszkewycz, P. H. Fuoss, G. B. Stephenson, G. Grubel, and A. Robert, “Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS,” Opt. Express 21, 24647 (2013).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Geloni, G.

M. D. Alaimo, M. A. C. Potenza, M. Manfredda, G. Geloni, M. Sztucki, T. Narayanan, and M. Giglio, “Probing the transverse coherence of an undulator X-ray beam using brownian particles,” Phys. Rev. Lett. 103(19), 194805 (2009).
[Crossref] [PubMed]

Giglio, M.

M. D. Alaimo, M. A. C. Potenza, M. Manfredda, G. Geloni, M. Sztucki, T. Narayanan, and M. Giglio, “Probing the transverse coherence of an undulator X-ray beam using brownian particles,” Phys. Rev. Lett. 103(19), 194805 (2009).
[Crossref] [PubMed]

Glownia, J.

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

Goikhman, A.

P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Cryst. 46(5), 1475–1480 (2013).
[Crossref]

Greytak, T.

M. Sutton, S. G. J. Mochrie, T. Greytak, S. E. Nagler, L. E. Berman, G. A. Held, and G. B. Stephenson, “Observation of speckle by diffraction with coherent X-rays,” Nature 352(6336), 608–610 (1991).
[Crossref]

Grigoriev, M. B.

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[Crossref] [PubMed]

Grubel, G.

Grübel, G.

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Guigay, J. P.

J. P. Guigay, S. Zabler, P. Cloetens, C. David, R. Mokso, and M. Schlenker, “The partial Talbot effect and its use in measuring the coherence of synchrotron X-rays,” J. Synchrotron Radiat. 11(6), 476–482 (2004).
[Crossref] [PubMed]

Günzler, F.

T. Weitkamp, O. Chubar, M. Drakopoulos, A. Souvorov, I. Snigireva, A. Snigirev, F. Günzler, C. Schroer, and B. Lengeler, “Refractive lens as a beam diagnostics tool for high-energy synchrotron radiation,” NIM A 467–468, 248 (2001).

Gutt, C.

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

S. Lee, W. Roseker, C. Gutt, B. Fisher, H. Conrad, F. Lehmkuhler, I. Steinke, D. Zhu, H. Lemke, M. Cammrata, D. M. Fritz, P. Wochner, M. Castro-Colin, S. O. Hruszkewycz, P. H. Fuoss, G. B. Stephenson, G. Grubel, and A. Robert, “Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS,” Opt. Express 21, 24647 (2013).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Held, G. A.

M. Sutton, S. G. J. Mochrie, T. Greytak, S. E. Nagler, L. E. Berman, G. A. Held, and G. B. Stephenson, “Observation of speckle by diffraction with coherent X-rays,” Nature 352(6336), 608–610 (1991).
[Crossref]

Hruszkewycz, S. O.

Inoue, I.

I. Inoue, K. Tono, Y. Joti, T. Kameshima, K. Ogawa, Y. Shinohara, Y. Amemiya, and M. Yabashi, “Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended Young’s experiment,” IUCrJ 2(6), 620–626 (2015).
[Crossref] [PubMed]

Irving, T. H. K.

D. Paterson, B. E. Allman, P. J. McMahon, J. Lin, N. Moldovan, K. A. Nugent, I. McNulty, C. T. Chantler, C. C. Retsch, T. H. K. Irving, and D. C. Mancini, “Spatial coherence measurements of X-ray undulator radiation,” Opt. Commun. 195(1-4), 79–84 (2001).
[Crossref]

Ishikawa, T.

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

H. Yamazaki and T. Ishikawa, “Analysis of the mutual coherence function of X-ray using dynamical diffraction,” J. Appl. Cryst. 37(1), 48–51 (2004).
[Crossref]

Joti, Y.

I. Inoue, K. Tono, Y. Joti, T. Kameshima, K. Ogawa, Y. Shinohara, Y. Amemiya, and M. Yabashi, “Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended Young’s experiment,” IUCrJ 2(6), 620–626 (2015).
[Crossref] [PubMed]

Kameshima, T.

I. Inoue, K. Tono, Y. Joti, T. Kameshima, K. Ogawa, Y. Shinohara, Y. Amemiya, and M. Yabashi, “Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended Young’s experiment,” IUCrJ 2(6), 620–626 (2015).
[Crossref] [PubMed]

Katayama, T.

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

Kirz, J.

J. W. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methotology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimes,” Nature 400(6742), 342–344 (1999).
[Crossref]

Kohn, V.

A. Snigirev, I. Snigireva, M. Lyubomirskiy, V. Kohn, V. Yunkin, and S. Kuznetsov, “X-ray multilens interferometer based on Si refractive lenses,” Opt. Express 22(21), 25842–25852 (2014).
[Crossref] [PubMed]

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[Crossref] [PubMed]

V. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

V. Kohn, I. Snigireva, and A. Snigirev, “Direct measurement of transverse coherence Length of hard X rays from interference fringes,” Phys. Rev. Lett. 85(13), 2745–2748 (2000).
[Crossref] [PubMed]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486 (1995).
[Crossref]

Kuhlmann, M.

A. Singer, I. A. Vartanyants, M. Kuhlmann, S. Duesterer, R. Treusch, and J. Feldhaus, “Transverse-coherence properties of the Free-Electron-Laser FLASH at DESY,” Phys. Rev. Lett. 101(25), 254801 (2008).
[Crossref] [PubMed]

Kuznetsov, S.

M. Lyubomirskiy, I. Snigireva, S. Kuznetsov, V. Yunkin, and A. Snigirev, “Hard x-ray single crystal bi-mirror,” Opt. Lett. 40(10), 2205–2208 (2015).
[Crossref] [PubMed]

A. Snigirev, I. Snigireva, M. Lyubomirskiy, V. Kohn, V. Yunkin, and S. Kuznetsov, “X-ray multilens interferometer based on Si refractive lenses,” Opt. Express 22(21), 25842–25852 (2014).
[Crossref] [PubMed]

P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Cryst. 46(5), 1475–1480 (2013).
[Crossref]

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[Crossref] [PubMed]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486 (1995).
[Crossref]

Kuznetsov, S. M.

W. Leitenberger, S. M. Kuznetsov, and A. Snigirev, “Interferometric measurements with hard X-rays using a double slit,” Opt. Commun. 191(1-2), 91–96 (2001).
[Crossref]

Lee, S.

S. Lee, W. Roseker, C. Gutt, B. Fisher, H. Conrad, F. Lehmkuhler, I. Steinke, D. Zhu, H. Lemke, M. Cammrata, D. M. Fritz, P. Wochner, M. Castro-Colin, S. O. Hruszkewycz, P. H. Fuoss, G. B. Stephenson, G. Grubel, and A. Robert, “Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS,” Opt. Express 21, 24647 (2013).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Lehmkuhler, F.

Lehmkühler, F.

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Leitenberger, W.

W. Leitenberger and U. Pietsch, “A monolithic Fresnel bimirror for hard X-rays and its application for coherence measurements,” J. Synchrotron Radiat. 14(2), 196–203 (2007).
[Crossref] [PubMed]

W. Leitenberger, H. Wendrock, L. Bischoff, and T. Weitkamp, “Pinhole interferometry with coherent hard X-rays,” J. Synchrotron Radiat. 11(2), 190–197 (2004).
[Crossref] [PubMed]

W. Leitenberger, S. M. Kuznetsov, and A. Snigirev, “Interferometric measurements with hard X-rays using a double slit,” Opt. Commun. 191(1-2), 91–96 (2001).
[Crossref]

Lemke, H.

S. Lee, W. Roseker, C. Gutt, B. Fisher, H. Conrad, F. Lehmkuhler, I. Steinke, D. Zhu, H. Lemke, M. Cammrata, D. M. Fritz, P. Wochner, M. Castro-Colin, S. O. Hruszkewycz, P. H. Fuoss, G. B. Stephenson, G. Grubel, and A. Robert, “Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS,” Opt. Express 21, 24647 (2013).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Lengeler, B.

T. Weitkamp, O. Chubar, M. Drakopoulos, A. Souvorov, I. Snigireva, A. Snigirev, F. Günzler, C. Schroer, and B. Lengeler, “Refractive lens as a beam diagnostics tool for high-energy synchrotron radiation,” NIM A 467–468, 248 (2001).

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Lin, J.

D. Paterson, B. E. Allman, P. J. McMahon, J. Lin, N. Moldovan, K. A. Nugent, I. McNulty, C. T. Chantler, C. C. Retsch, T. H. K. Irving, and D. C. Mancini, “Spatial coherence measurements of X-ray undulator radiation,” Opt. Commun. 195(1-4), 79–84 (2001).
[Crossref]

Lyubomirskiy, M.

Mancini, D. C.

D. Paterson, B. E. Allman, P. J. McMahon, J. Lin, N. Moldovan, K. A. Nugent, I. McNulty, C. T. Chantler, C. C. Retsch, T. H. K. Irving, and D. C. Mancini, “Spatial coherence measurements of X-ray undulator radiation,” Opt. Commun. 195(1-4), 79–84 (2001).
[Crossref]

Manfredda, M.

M. D. Alaimo, M. A. C. Potenza, M. Manfredda, G. Geloni, M. Sztucki, T. Narayanan, and M. Giglio, “Probing the transverse coherence of an undulator X-ray beam using brownian particles,” Phys. Rev. Lett. 103(19), 194805 (2009).
[Crossref] [PubMed]

McMahon, P. J.

D. Paterson, B. E. Allman, P. J. McMahon, J. Lin, N. Moldovan, K. A. Nugent, I. McNulty, C. T. Chantler, C. C. Retsch, T. H. K. Irving, and D. C. Mancini, “Spatial coherence measurements of X-ray undulator radiation,” Opt. Commun. 195(1-4), 79–84 (2001).
[Crossref]

McNulty, I.

D. Paterson, B. E. Allman, P. J. McMahon, J. Lin, N. Moldovan, K. A. Nugent, I. McNulty, C. T. Chantler, C. C. Retsch, T. H. K. Irving, and D. C. Mancini, “Spatial coherence measurements of X-ray undulator radiation,” Opt. Commun. 195(1-4), 79–84 (2001).
[Crossref]

Miao, J. W.

J. W. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methotology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimes,” Nature 400(6742), 342–344 (1999).
[Crossref]

Mochrie, S. G. J.

M. Sutton, S. G. J. Mochrie, T. Greytak, S. E. Nagler, L. E. Berman, G. A. Held, and G. B. Stephenson, “Observation of speckle by diffraction with coherent X-rays,” Nature 352(6336), 608–610 (1991).
[Crossref]

Mokso, R.

J. P. Guigay, S. Zabler, P. Cloetens, C. David, R. Mokso, and M. Schlenker, “The partial Talbot effect and its use in measuring the coherence of synchrotron X-rays,” J. Synchrotron Radiat. 11(6), 476–482 (2004).
[Crossref] [PubMed]

Moldovan, N.

D. Paterson, B. E. Allman, P. J. McMahon, J. Lin, N. Moldovan, K. A. Nugent, I. McNulty, C. T. Chantler, C. C. Retsch, T. H. K. Irving, and D. C. Mancini, “Spatial coherence measurements of X-ray undulator radiation,” Opt. Commun. 195(1-4), 79–84 (2001).
[Crossref]

Nagler, S. E.

M. Sutton, S. G. J. Mochrie, T. Greytak, S. E. Nagler, L. E. Berman, G. A. Held, and G. B. Stephenson, “Observation of speckle by diffraction with coherent X-rays,” Nature 352(6336), 608–610 (1991).
[Crossref]

Narayanan, T.

M. D. Alaimo, M. A. C. Potenza, M. Manfredda, G. Geloni, M. Sztucki, T. Narayanan, and M. Giglio, “Probing the transverse coherence of an undulator X-ray beam using brownian particles,” Phys. Rev. Lett. 103(19), 194805 (2009).
[Crossref] [PubMed]

Nash, B.

A. Franchi, L. Farvacque, J. Chavanne, F. Ewald, B. Nash, K. Scheidt, and R. Tomás, “Vertical emittance reduction and preservation in electron storage rings via resonance driving terms corrections,” Phys. Rev. Spec. Top. Accel. Beams 14(3), 034002 (2011).
[Crossref]

Naulleau, P.

C. Chang, P. Naulleau, E. Anderson, and D. Attwood, “Spatial coherence characterization of undulator radiation,” Opt. Commun. 182(1-3), 25–34 (2000).
[Crossref]

Nelson, S.

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

Nohammer, B.

C. David, B. Nohammer, H. H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287 (2002).
[Crossref]

Nugent, K. A.

D. Paterson, B. E. Allman, P. J. McMahon, J. Lin, N. Moldovan, K. A. Nugent, I. McNulty, C. T. Chantler, C. C. Retsch, T. H. K. Irving, and D. C. Mancini, “Spatial coherence measurements of X-ray undulator radiation,” Opt. Commun. 195(1-4), 79–84 (2001).
[Crossref]

Ogawa, K.

I. Inoue, K. Tono, Y. Joti, T. Kameshima, K. Ogawa, Y. Shinohara, Y. Amemiya, and M. Yabashi, “Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended Young’s experiment,” IUCrJ 2(6), 620–626 (2015).
[Crossref] [PubMed]

Paterson, D.

D. Paterson, B. E. Allman, P. J. McMahon, J. Lin, N. Moldovan, K. A. Nugent, I. McNulty, C. T. Chantler, C. C. Retsch, T. H. K. Irving, and D. C. Mancini, “Spatial coherence measurements of X-ray undulator radiation,” Opt. Commun. 195(1-4), 79–84 (2001).
[Crossref]

Pfeiffer, F.

F. Pfeiffer, O. Bunk, C. Schulze-Briese, A. Diaz, T. Weitkamp, C. David, J. F. van der Veen, I. Vartanyants, and I. K. Robinson, “Shearing interferometer for quantifying the coherence of hard X-ray beams,” Phys. Rev. Lett. 94(16), 164801 (2005).
[Crossref] [PubMed]

Pietsch, U.

W. Leitenberger and U. Pietsch, “A monolithic Fresnel bimirror for hard X-rays and its application for coherence measurements,” J. Synchrotron Radiat. 14(2), 196–203 (2007).
[Crossref] [PubMed]

Potenza, M. A. C.

M. D. Alaimo, M. A. C. Potenza, M. Manfredda, G. Geloni, M. Sztucki, T. Narayanan, and M. Giglio, “Probing the transverse coherence of an undulator X-ray beam using brownian particles,” Phys. Rev. Lett. 103(19), 194805 (2009).
[Crossref] [PubMed]

Retsch, C. C.

D. Paterson, B. E. Allman, P. J. McMahon, J. Lin, N. Moldovan, K. A. Nugent, I. McNulty, C. T. Chantler, C. C. Retsch, T. H. K. Irving, and D. C. Mancini, “Spatial coherence measurements of X-ray undulator radiation,” Opt. Commun. 195(1-4), 79–84 (2001).
[Crossref]

Robert, A.

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

S. Lee, W. Roseker, C. Gutt, B. Fisher, H. Conrad, F. Lehmkuhler, I. Steinke, D. Zhu, H. Lemke, M. Cammrata, D. M. Fritz, P. Wochner, M. Castro-Colin, S. O. Hruszkewycz, P. H. Fuoss, G. B. Stephenson, G. Grubel, and A. Robert, “Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS,” Opt. Express 21, 24647 (2013).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Robinson, I. K.

F. Pfeiffer, O. Bunk, C. Schulze-Briese, A. Diaz, T. Weitkamp, C. David, J. F. van der Veen, I. Vartanyants, and I. K. Robinson, “Shearing interferometer for quantifying the coherence of hard X-ray beams,” Phys. Rev. Lett. 94(16), 164801 (2005).
[Crossref] [PubMed]

Roseker, W.

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

S. Lee, W. Roseker, C. Gutt, B. Fisher, H. Conrad, F. Lehmkuhler, I. Steinke, D. Zhu, H. Lemke, M. Cammrata, D. M. Fritz, P. Wochner, M. Castro-Colin, S. O. Hruszkewycz, P. H. Fuoss, G. B. Stephenson, G. Grubel, and A. Robert, “Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS,” Opt. Express 21, 24647 (2013).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Roth, T.

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[Crossref] [PubMed]

Sayre, D.

J. W. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methotology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimes,” Nature 400(6742), 342–344 (1999).
[Crossref]

Scheidt, K.

A. Franchi, L. Farvacque, J. Chavanne, F. Ewald, B. Nash, K. Scheidt, and R. Tomás, “Vertical emittance reduction and preservation in electron storage rings via resonance driving terms corrections,” Phys. Rev. Spec. Top. Accel. Beams 14(3), 034002 (2011).
[Crossref]

Schelokov, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486 (1995).
[Crossref]

Schilling, J.

M. Drakopoulos, A. Snigirev, I. Snigireva, and J. Schilling, “X-ray high-resolution diffraction using refractive lenses,” Appl. Phys. Lett. 86(1), 014102 (2005).
[Crossref]

Schlenker, M.

J. P. Guigay, S. Zabler, P. Cloetens, C. David, R. Mokso, and M. Schlenker, “The partial Talbot effect and its use in measuring the coherence of synchrotron X-rays,” J. Synchrotron Radiat. 11(6), 476–482 (2004).
[Crossref] [PubMed]

Schroer, C.

T. Weitkamp, O. Chubar, M. Drakopoulos, A. Souvorov, I. Snigireva, A. Snigirev, F. Günzler, C. Schroer, and B. Lengeler, “Refractive lens as a beam diagnostics tool for high-energy synchrotron radiation,” NIM A 467–468, 248 (2001).

Schroer, M. A.

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

Schulze-Briese, C.

F. Pfeiffer, O. Bunk, C. Schulze-Briese, A. Diaz, T. Weitkamp, C. David, J. F. van der Veen, I. Vartanyants, and I. K. Robinson, “Shearing interferometer for quantifying the coherence of hard X-ray beams,” Phys. Rev. Lett. 94(16), 164801 (2005).
[Crossref] [PubMed]

Shinohara, Y.

I. Inoue, K. Tono, Y. Joti, T. Kameshima, K. Ogawa, Y. Shinohara, Y. Amemiya, and M. Yabashi, “Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended Young’s experiment,” IUCrJ 2(6), 620–626 (2015).
[Crossref] [PubMed]

Sikorski, M.

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

Singer, A.

A. Singer, I. A. Vartanyants, M. Kuhlmann, S. Duesterer, R. Treusch, and J. Feldhaus, “Transverse-coherence properties of the Free-Electron-Laser FLASH at DESY,” Phys. Rev. Lett. 101(25), 254801 (2008).
[Crossref] [PubMed]

Snigirev, A.

M. Lyubomirskiy, I. Snigireva, S. Kuznetsov, V. Yunkin, and A. Snigirev, “Hard x-ray single crystal bi-mirror,” Opt. Lett. 40(10), 2205–2208 (2015).
[Crossref] [PubMed]

A. Snigirev, I. Snigireva, M. Lyubomirskiy, V. Kohn, V. Yunkin, and S. Kuznetsov, “X-ray multilens interferometer based on Si refractive lenses,” Opt. Express 22(21), 25842–25852 (2014).
[Crossref] [PubMed]

P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Cryst. 46(5), 1475–1480 (2013).
[Crossref]

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[Crossref] [PubMed]

M. Drakopoulos, A. Snigirev, I. Snigireva, and J. Schilling, “X-ray high-resolution diffraction using refractive lenses,” Appl. Phys. Lett. 86(1), 014102 (2005).
[Crossref]

V. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

T. Weitkamp, O. Chubar, M. Drakopoulos, A. Souvorov, I. Snigireva, A. Snigirev, F. Günzler, C. Schroer, and B. Lengeler, “Refractive lens as a beam diagnostics tool for high-energy synchrotron radiation,” NIM A 467–468, 248 (2001).

W. Leitenberger, S. M. Kuznetsov, and A. Snigirev, “Interferometric measurements with hard X-rays using a double slit,” Opt. Commun. 191(1-2), 91–96 (2001).
[Crossref]

V. Kohn, I. Snigireva, and A. Snigirev, “Direct measurement of transverse coherence Length of hard X rays from interference fringes,” Phys. Rev. Lett. 85(13), 2745–2748 (2000).
[Crossref] [PubMed]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486 (1995).
[Crossref]

Snigireva, I.

M. Lyubomirskiy, I. Snigireva, S. Kuznetsov, V. Yunkin, and A. Snigirev, “Hard x-ray single crystal bi-mirror,” Opt. Lett. 40(10), 2205–2208 (2015).
[Crossref] [PubMed]

A. Snigirev, I. Snigireva, M. Lyubomirskiy, V. Kohn, V. Yunkin, and S. Kuznetsov, “X-ray multilens interferometer based on Si refractive lenses,” Opt. Express 22(21), 25842–25852 (2014).
[Crossref] [PubMed]

P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Cryst. 46(5), 1475–1480 (2013).
[Crossref]

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[Crossref] [PubMed]

M. Drakopoulos, A. Snigirev, I. Snigireva, and J. Schilling, “X-ray high-resolution diffraction using refractive lenses,” Appl. Phys. Lett. 86(1), 014102 (2005).
[Crossref]

V. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

T. Weitkamp, O. Chubar, M. Drakopoulos, A. Souvorov, I. Snigireva, A. Snigirev, F. Günzler, C. Schroer, and B. Lengeler, “Refractive lens as a beam diagnostics tool for high-energy synchrotron radiation,” NIM A 467–468, 248 (2001).

V. Kohn, I. Snigireva, and A. Snigirev, “Direct measurement of transverse coherence Length of hard X rays from interference fringes,” Phys. Rev. Lett. 85(13), 2745–2748 (2000).
[Crossref] [PubMed]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486 (1995).
[Crossref]

Solak, H. H.

C. David, B. Nohammer, H. H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287 (2002).
[Crossref]

Song, S.

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

Souvorov, A.

T. Weitkamp, O. Chubar, M. Drakopoulos, A. Souvorov, I. Snigireva, A. Snigirev, F. Günzler, C. Schroer, and B. Lengeler, “Refractive lens as a beam diagnostics tool for high-energy synchrotron radiation,” NIM A 467–468, 248 (2001).

Sprung, M.

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Steinke, I.

S. Lee, W. Roseker, C. Gutt, B. Fisher, H. Conrad, F. Lehmkuhler, I. Steinke, D. Zhu, H. Lemke, M. Cammrata, D. M. Fritz, P. Wochner, M. Castro-Colin, S. O. Hruszkewycz, P. H. Fuoss, G. B. Stephenson, G. Grubel, and A. Robert, “Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS,” Opt. Express 21, 24647 (2013).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Stephenson, G. B.

S. Lee, W. Roseker, C. Gutt, B. Fisher, H. Conrad, F. Lehmkuhler, I. Steinke, D. Zhu, H. Lemke, M. Cammrata, D. M. Fritz, P. Wochner, M. Castro-Colin, S. O. Hruszkewycz, P. H. Fuoss, G. B. Stephenson, G. Grubel, and A. Robert, “Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS,” Opt. Express 21, 24647 (2013).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

M. Sutton, S. G. J. Mochrie, T. Greytak, S. E. Nagler, L. E. Berman, G. A. Held, and G. B. Stephenson, “Observation of speckle by diffraction with coherent X-rays,” Nature 352(6336), 608–610 (1991).
[Crossref]

Sutton, M.

M. Sutton, S. G. J. Mochrie, T. Greytak, S. E. Nagler, L. E. Berman, G. A. Held, and G. B. Stephenson, “Observation of speckle by diffraction with coherent X-rays,” Nature 352(6336), 608–610 (1991).
[Crossref]

Sztucki, M.

M. D. Alaimo, M. A. C. Potenza, M. Manfredda, G. Geloni, M. Sztucki, T. Narayanan, and M. Giglio, “Probing the transverse coherence of an undulator X-ray beam using brownian particles,” Phys. Rev. Lett. 103(19), 194805 (2009).
[Crossref] [PubMed]

Tomás, R.

A. Franchi, L. Farvacque, J. Chavanne, F. Ewald, B. Nash, K. Scheidt, and R. Tomás, “Vertical emittance reduction and preservation in electron storage rings via resonance driving terms corrections,” Phys. Rev. Spec. Top. Accel. Beams 14(3), 034002 (2011).
[Crossref]

Tono, K.

I. Inoue, K. Tono, Y. Joti, T. Kameshima, K. Ogawa, Y. Shinohara, Y. Amemiya, and M. Yabashi, “Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended Young’s experiment,” IUCrJ 2(6), 620–626 (2015).
[Crossref] [PubMed]

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

Treusch, R.

A. Singer, I. A. Vartanyants, M. Kuhlmann, S. Duesterer, R. Treusch, and J. Feldhaus, “Transverse-coherence properties of the Free-Electron-Laser FLASH at DESY,” Phys. Rev. Lett. 101(25), 254801 (2008).
[Crossref] [PubMed]

van der Veen, J. F.

F. Pfeiffer, O. Bunk, C. Schulze-Briese, A. Diaz, T. Weitkamp, C. David, J. F. van der Veen, I. Vartanyants, and I. K. Robinson, “Shearing interferometer for quantifying the coherence of hard X-ray beams,” Phys. Rev. Lett. 94(16), 164801 (2005).
[Crossref] [PubMed]

Vartanyants, I.

F. Pfeiffer, O. Bunk, C. Schulze-Briese, A. Diaz, T. Weitkamp, C. David, J. F. van der Veen, I. Vartanyants, and I. K. Robinson, “Shearing interferometer for quantifying the coherence of hard X-ray beams,” Phys. Rev. Lett. 94(16), 164801 (2005).
[Crossref] [PubMed]

Vartanyants, I. A.

A. Singer, I. A. Vartanyants, M. Kuhlmann, S. Duesterer, R. Treusch, and J. Feldhaus, “Transverse-coherence properties of the Free-Electron-Laser FLASH at DESY,” Phys. Rev. Lett. 101(25), 254801 (2008).
[Crossref] [PubMed]

Vaughan, G.

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[Crossref] [PubMed]

Weitkamp, T.

F. Pfeiffer, O. Bunk, C. Schulze-Briese, A. Diaz, T. Weitkamp, C. David, J. F. van der Veen, I. Vartanyants, and I. K. Robinson, “Shearing interferometer for quantifying the coherence of hard X-ray beams,” Phys. Rev. Lett. 94(16), 164801 (2005).
[Crossref] [PubMed]

W. Leitenberger, H. Wendrock, L. Bischoff, and T. Weitkamp, “Pinhole interferometry with coherent hard X-rays,” J. Synchrotron Radiat. 11(2), 190–197 (2004).
[Crossref] [PubMed]

T. Weitkamp, O. Chubar, M. Drakopoulos, A. Souvorov, I. Snigireva, A. Snigirev, F. Günzler, C. Schroer, and B. Lengeler, “Refractive lens as a beam diagnostics tool for high-energy synchrotron radiation,” NIM A 467–468, 248 (2001).

Wendrock, H.

W. Leitenberger, H. Wendrock, L. Bischoff, and T. Weitkamp, “Pinhole interferometry with coherent hard X-rays,” J. Synchrotron Radiat. 11(2), 190–197 (2004).
[Crossref] [PubMed]

Wochner, P.

S. Lee, W. Roseker, C. Gutt, B. Fisher, H. Conrad, F. Lehmkuhler, I. Steinke, D. Zhu, H. Lemke, M. Cammrata, D. M. Fritz, P. Wochner, M. Castro-Colin, S. O. Hruszkewycz, P. H. Fuoss, G. B. Stephenson, G. Grubel, and A. Robert, “Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS,” Opt. Express 21, 24647 (2013).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Yabashi, M.

I. Inoue, K. Tono, Y. Joti, T. Kameshima, K. Ogawa, Y. Shinohara, Y. Amemiya, and M. Yabashi, “Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended Young’s experiment,” IUCrJ 2(6), 620–626 (2015).
[Crossref] [PubMed]

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

Yamazaki, H.

H. Yamazaki and T. Ishikawa, “Analysis of the mutual coherence function of X-ray using dynamical diffraction,” J. Appl. Cryst. 37(1), 48–51 (2004).
[Crossref]

Yunkin, V.

M. Lyubomirskiy, I. Snigireva, S. Kuznetsov, V. Yunkin, and A. Snigirev, “Hard x-ray single crystal bi-mirror,” Opt. Lett. 40(10), 2205–2208 (2015).
[Crossref] [PubMed]

A. Snigirev, I. Snigireva, M. Lyubomirskiy, V. Kohn, V. Yunkin, and S. Kuznetsov, “X-ray multilens interferometer based on Si refractive lenses,” Opt. Express 22(21), 25842–25852 (2014).
[Crossref] [PubMed]

P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Cryst. 46(5), 1475–1480 (2013).
[Crossref]

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[Crossref] [PubMed]

Zabler, S.

J. P. Guigay, S. Zabler, P. Cloetens, C. David, R. Mokso, and M. Schlenker, “The partial Talbot effect and its use in measuring the coherence of synchrotron X-rays,” J. Synchrotron Radiat. 11(6), 476–482 (2004).
[Crossref] [PubMed]

Zhu, D.

S. Lee, W. Roseker, C. Gutt, B. Fisher, H. Conrad, F. Lehmkuhler, I. Steinke, D. Zhu, H. Lemke, M. Cammrata, D. M. Fritz, P. Wochner, M. Castro-Colin, S. O. Hruszkewycz, P. H. Fuoss, G. B. Stephenson, G. Grubel, and A. Robert, “Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS,” Opt. Express 21, 24647 (2013).
[PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Ziegler, E.

C. David, B. Nohammer, H. H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287 (2002).
[Crossref]

Appl. Phys. Lett. (2)

C. David, B. Nohammer, H. H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287 (2002).
[Crossref]

M. Drakopoulos, A. Snigirev, I. Snigireva, and J. Schilling, “X-ray high-resolution diffraction using refractive lenses,” Appl. Phys. Lett. 86(1), 014102 (2005).
[Crossref]

IUCrJ (1)

I. Inoue, K. Tono, Y. Joti, T. Kameshima, K. Ogawa, Y. Shinohara, Y. Amemiya, and M. Yabashi, “Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended Young’s experiment,” IUCrJ 2(6), 620–626 (2015).
[Crossref] [PubMed]

J. Appl. Cryst. (2)

P. Ershov, S. Kuznetsov, I. Snigireva, V. Yunkin, A. Goikhman, and A. Snigirev, “Fourier crystal diffractometry based on refractive optics,” J. Appl. Cryst. 46(5), 1475–1480 (2013).
[Crossref]

H. Yamazaki and T. Ishikawa, “Analysis of the mutual coherence function of X-ray using dynamical diffraction,” J. Appl. Cryst. 37(1), 48–51 (2004).
[Crossref]

J. Synchrotron Radiat. (3)

J. P. Guigay, S. Zabler, P. Cloetens, C. David, R. Mokso, and M. Schlenker, “The partial Talbot effect and its use in measuring the coherence of synchrotron X-rays,” J. Synchrotron Radiat. 11(6), 476–482 (2004).
[Crossref] [PubMed]

W. Leitenberger, H. Wendrock, L. Bischoff, and T. Weitkamp, “Pinhole interferometry with coherent hard X-rays,” J. Synchrotron Radiat. 11(2), 190–197 (2004).
[Crossref] [PubMed]

W. Leitenberger and U. Pietsch, “A monolithic Fresnel bimirror for hard X-rays and its application for coherence measurements,” J. Synchrotron Radiat. 14(2), 196–203 (2007).
[Crossref] [PubMed]

Nature (3)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

M. Sutton, S. G. J. Mochrie, T. Greytak, S. E. Nagler, L. E. Berman, G. A. Held, and G. B. Stephenson, “Observation of speckle by diffraction with coherent X-rays,” Nature 352(6336), 608–610 (1991).
[Crossref]

J. W. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methotology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimes,” Nature 400(6742), 342–344 (1999).
[Crossref]

NIM A (1)

T. Weitkamp, O. Chubar, M. Drakopoulos, A. Souvorov, I. Snigireva, A. Snigirev, F. Günzler, C. Schroer, and B. Lengeler, “Refractive lens as a beam diagnostics tool for high-energy synchrotron radiation,” NIM A 467–468, 248 (2001).

Opt. Commun. (4)

W. Leitenberger, S. M. Kuznetsov, and A. Snigirev, “Interferometric measurements with hard X-rays using a double slit,” Opt. Commun. 191(1-2), 91–96 (2001).
[Crossref]

C. Chang, P. Naulleau, E. Anderson, and D. Attwood, “Spatial coherence characterization of undulator radiation,” Opt. Commun. 182(1-3), 25–34 (2000).
[Crossref]

V. Kohn, I. Snigireva, and A. Snigirev, “Diffraction theory of imaging with X-ray compound refractive lens,” Opt. Commun. 216(4-6), 247–260 (2003).
[Crossref]

D. Paterson, B. E. Allman, P. J. McMahon, J. Lin, N. Moldovan, K. A. Nugent, I. McNulty, C. T. Chantler, C. C. Retsch, T. H. K. Irving, and D. C. Mancini, “Spatial coherence measurements of X-ray undulator radiation,” Opt. Commun. 195(1-4), 79–84 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (6)

V. Kohn, I. Snigireva, and A. Snigirev, “Direct measurement of transverse coherence Length of hard X rays from interference fringes,” Phys. Rev. Lett. 85(13), 2745–2748 (2000).
[Crossref] [PubMed]

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[Crossref] [PubMed]

A. Singer, I. A. Vartanyants, M. Kuhlmann, S. Duesterer, R. Treusch, and J. Feldhaus, “Transverse-coherence properties of the Free-Electron-Laser FLASH at DESY,” Phys. Rev. Lett. 101(25), 254801 (2008).
[Crossref] [PubMed]

F. Pfeiffer, O. Bunk, C. Schulze-Briese, A. Diaz, T. Weitkamp, C. David, J. F. van der Veen, I. Vartanyants, and I. K. Robinson, “Shearing interferometer for quantifying the coherence of hard X-ray beams,” Phys. Rev. Lett. 94(16), 164801 (2005).
[Crossref] [PubMed]

M. D. Alaimo, M. A. C. Potenza, M. Manfredda, G. Geloni, M. Sztucki, T. Narayanan, and M. Giglio, “Probing the transverse coherence of an undulator X-ray beam using brownian particles,” Phys. Rev. Lett. 103(19), 194805 (2009).
[Crossref] [PubMed]

C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung, W. Roseker, D. Zhu, H. Lemke, S. Bogle, P. H. Fuoss, G. B. Stephenson, M. Cammarata, D. M. Fritz, A. Robert, and G. Grübel, “Single shot spatial and temporal coherence properties of the SLAC Linac Coherent Light Source in the hard X-ray regime,” Phys. Rev. Lett. 108(2), 024801 (2012).
[Crossref] [PubMed]

Phys. Rev. Spec. Top. Accel. Beams (1)

A. Franchi, L. Farvacque, J. Chavanne, F. Ewald, B. Nash, K. Scheidt, and R. Tomás, “Vertical emittance reduction and preservation in electron storage rings via resonance driving terms corrections,” Phys. Rev. Spec. Top. Accel. Beams 14(3), 034002 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486 (1995).
[Crossref]

Sci. Rep. (1)

F. Lehmkühler, C. Gutt, B. Fischer, M. A. Schroer, M. Sikorski, S. Song, W. Roseker, J. Glownia, M. Chollet, S. Nelson, K. Tono, T. Katayama, M. Yabashi, T. Ishikawa, A. Robert, and G. Grübel, “Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime,” Sci. Rep. 4, 5234 (2014).
[PubMed]

Other (3)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Book Company, 1968).

M. Françon, Optical Interferometry (Academic, 1966).

I. Hughes and T. Hase, Measurements and Their Uncertainties: A Practical Guide to Modern Error Analysis (Oxford University, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) SEM image of the cutout platinum aperture. (b), (c) Schematic view of possible apertures arrangements.
Fig. 2
Fig. 2 (a) The sketch of the Young double slit interferometer setup. (b) The 90 degree rotated registered interference pattern for 90 µm separation of pinholes. (c) The intensity variation obtained for the line though the centre of the fringe pattern
Fig. 3
Fig. 3 (a) The experimental setup for the lens coupled tunable Young double pinhole system. (b, c) Interference patterns rotated by 90 degree recorded with the aperture separation of 90 μm with and without CRL. (d, e) Intensity distribution across the interference patterns shown in (b) and (c) respectively.
Fig. 4
Fig. 4 Measured fringe visibility (dots) as a function of the slits separation. Error bar represent the standard deviation of the fringe contrast. The solid line is a theoretical fit for the source size of 39.7 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I( x )= I 0 [ sin( k d x) k d x ] 2 [ 1+Vcos( k D x) ]+ I b , k D = 2πD λL , k d = 2πd λL ,V= sin(πsD/λ L s ) πsD/λ L s

Metrics