Abstract

Phase-change chalcogenide alloys, such as Ge2Sb2Te5 (GST), have very different optical properties in their amorphous and crystalline phases. The fact that such alloys can be switched, optically or electrically, between such phases rapidly and repeatedly means that they have much potential for applications as tunable photonic devices. Here we incorporate chalcogenide phase-change films into a metal-dielectric-metal metamaterial electromagnetic absorber structure and design absorbers and modulators for operation at technologically important near-infrared wavelengths, specifically 1550 nm. Our design not only exhibits excellent performance (e.g. a modulation depth of ~77% and an extinction ratio of ~20 dB) but also includes a suitable means for protecting the GST layer from environmental oxidation and is well-suited, as confirmed by electro-thermal and phase-transformation simulations, to in situ electrical switching. We also present a systematic study of design optimization, including the effects of expected manufacturing tolerances on device performance and, by means of a sensitivity analysis, identify the most critical design parameters.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Reconfigurable phase-change meta-absorbers with on-demand quality factor control

Santiago García-Cuevas Carrillo, Arseny M. Alexeev, Yat-Yin Au, and C. David Wright
Opt. Express 26(20) 25567-25581 (2018)

Multi-color modulation of solid-state display based on thermally induced color changes of indium tin oxide and phase changing materials

Yanbiao Lyu, Shenghong Mou, Zhigang Ni, Yu Bai, Ying Sun, and Zhiyuan Cheng
Opt. Express 25(2) 1405-1412 (2017)

Electrically actuated phase-change pixels for transmissive and reflective spatial light modulators in the near and mid infrared

Joshua Hendrickson, Haibo Liang, Richard Soref, and Jianwei Mu
Appl. Opt. 54(36) 10698-10704 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Avitzour, Y. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
    [Crossref]
  2. T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35(22), 3766–3768 (2010).
    [Crossref] [PubMed]
  3. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
    [Crossref] [PubMed]
  4. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
    [Crossref]
  5. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  6. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
    [Crossref] [PubMed]
  7. P. Anh Do, A. Hendaoui, E. Mortazy, M. Chaker, and A. Haché, “Vanadium dioxide spatial light modulator for applications beyond 1200nm,” Opt. Commun. 288, 23–26 (2013).
    [Crossref]
  8. L. Zou, M. Cryan, and M. Klemm, “Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects,” Opt. Express 22(20), 24142–24148 (2014).
    [Crossref] [PubMed]
  9. S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bull. 39(8), 703–710 (2014).
    [Crossref]
  10. C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
    [Crossref] [PubMed]
  11. P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
    [Crossref] [PubMed]
  12. C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
    [Crossref] [PubMed]
  13. C. D. Wright, P. Hosseini, and J. A. V. Diosdado, “Beyond von-Neumann computing with nanoscale phase-change memory devices,” Adv. Funct. Mater. 23(18), 2248–2254 (2013).
    [Crossref]
  14. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  15. S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
    [Crossref] [PubMed]
  16. T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101 (2013).
    [Crossref]
  17. T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).
    [Crossref] [PubMed]
  18. Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, and M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21(11), 13691–13698 (2013).
    [Crossref] [PubMed]
  19. A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
    [Crossref] [PubMed]
  20. G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).
  21. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
    [Crossref]
  22. R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: theory and applications,” Phys. Rev. B 91(11), 115119 (2015).
    [Crossref]
  23. T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search: new perspectives on some classical and modern methods,” Soc. Ind. Appl. Math. 45(3), 385–482 (2003).
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  25. A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  26. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090 (2011).
    [Crossref]
  27. F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
    [Crossref]
  28. L. Lin, F. Lai, Y. Qu, R. Gai, and Z. Huang, “Influence of annealing in N2 on the properties of In2O3:Sn thin films prepared by direct current magnetron sputtering,” Mater. Sci. Eng. B 138, 166–171 (2007).
  29. F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
    [Crossref]
  30. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
    [Crossref] [PubMed]
  31. J. A. Vázquez Diosdado, P. Ashwin, K. I. Kohary, and C. D. Wright, “Threshold switching via electric field induced crystallization in phase-change memory devices,” Appl. Phys. Lett. 100(25), 253105 (2012).
    [Crossref]
  32. P. Ashwin, B. S. V. Patnaik, and C. D. Wright, “Fast simulation of phase-change processes in chalcogenide alloys using a Gillespie-type cellular automata approach,” J. Appl. Phys. 104(8), 084901 (2008).
    [Crossref]
  33. L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express 14(26), 12770–12781 (2006).
    [Crossref] [PubMed]
  34. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]

2015 (3)

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: theory and applications,” Phys. Rev. B 91(11), 115119 (2015).
[Crossref]

2014 (6)

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).
[Crossref] [PubMed]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

L. Zou, M. Cryan, and M. Klemm, “Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects,” Opt. Express 22(20), 24142–24148 (2014).
[Crossref] [PubMed]

S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bull. 39(8), 703–710 (2014).
[Crossref]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

2013 (6)

Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, and M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21(11), 13691–13698 (2013).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101 (2013).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

P. Anh Do, A. Hendaoui, E. Mortazy, M. Chaker, and A. Haché, “Vanadium dioxide spatial light modulator for applications beyond 1200nm,” Opt. Commun. 288, 23–26 (2013).
[Crossref]

C. D. Wright, P. Hosseini, and J. A. V. Diosdado, “Beyond von-Neumann computing with nanoscale phase-change memory devices,” Adv. Funct. Mater. 23(18), 2248–2254 (2013).
[Crossref]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

2012 (3)

J. A. Vázquez Diosdado, P. Ashwin, K. I. Kohary, and C. D. Wright, “Threshold switching via electric field induced crystallization in phase-change memory devices,” Appl. Phys. Lett. 100(25), 253105 (2012).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

2011 (2)

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090 (2011).
[Crossref]

2010 (4)

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35(22), 3766–3768 (2010).
[Crossref] [PubMed]

2009 (1)

Y. Avitzour, Y. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

2008 (2)

P. Ashwin, B. S. V. Patnaik, and C. D. Wright, “Fast simulation of phase-change processes in chalcogenide alloys using a Gillespie-type cellular automata approach,” J. Appl. Phys. 104(8), 084901 (2008).
[Crossref]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

2007 (3)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

L. Lin, F. Lai, Y. Qu, R. Gai, and Z. Huang, “Influence of annealing in N2 on the properties of In2O3:Sn thin films prepared by direct current magnetron sputtering,” Mater. Sci. Eng. B 138, 166–171 (2007).

2006 (1)

2003 (1)

T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search: new perspectives on some classical and modern methods,” Soc. Ind. Appl. Math. 45(3), 385–482 (2003).

1998 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Alaee, R.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: theory and applications,” Phys. Rev. B 91(11), 115119 (2015).
[Crossref]

Albooyeh, M.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: theory and applications,” Phys. Rev. B 91(11), 115119 (2015).
[Crossref]

Anh Do, P.

P. Anh Do, A. Hendaoui, E. Mortazy, M. Chaker, and A. Haché, “Vanadium dioxide spatial light modulator for applications beyond 1200nm,” Opt. Commun. 288, 23–26 (2013).
[Crossref]

Ashwin, P.

J. A. Vázquez Diosdado, P. Ashwin, K. I. Kohary, and C. D. Wright, “Threshold switching via electric field induced crystallization in phase-change memory devices,” Appl. Phys. Lett. 100(25), 253105 (2012).
[Crossref]

P. Ashwin, B. S. V. Patnaik, and C. D. Wright, “Fast simulation of phase-change processes in chalcogenide alloys using a Gillespie-type cellular automata approach,” J. Appl. Phys. 104(8), 084901 (2008).
[Crossref]

Avitzour, Y.

Y. Avitzour, Y. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Aziz, M. M.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Bhaskaran, H.

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Blanchard, R.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Boltasseva, A.

Breitwisch, M. J.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).

Brueckl, H.

Burr, G. W.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).

Cao, T.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101 (2013).
[Crossref]

Capasso, F.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Chaker, M.

P. Anh Do, A. Hendaoui, E. Mortazy, M. Chaker, and A. Haché, “Vanadium dioxide spatial light modulator for applications beyond 1200nm,” Opt. Commun. 288, 23–26 (2013).
[Crossref]

Chen, Y. G.

Chin, M. K.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cryan, M.

Cryan, M. J.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101 (2013).
[Crossref]

Cubukcu, E.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Cueff, S.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Cui, L.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Darmawan, S.

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Diosdado, J. A. V.

C. D. Wright, P. Hosseini, and J. A. V. Diosdado, “Beyond von-Neumann computing with nanoscale phase-change memory devices,” Adv. Funct. Mater. 23(18), 2248–2254 (2013).
[Crossref]

Djurišic, A. B.

Elazar, J. M.

Franceschini, M.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Gai, R.

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

L. Lin, F. Lai, Y. Qu, R. Gai, and Z. Huang, “Influence of annealing in N2 on the properties of In2O3:Sn thin films prepared by direct current magnetron sputtering,” Mater. Sci. Eng. B 138, 166–171 (2007).

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Garetto, D.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).

Genevet, P.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Gholipour, B.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Giessen, H.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Gopalakrishnan, K.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Haché, A.

P. Anh Do, A. Hendaoui, E. Mortazy, M. Chaker, and A. Haché, “Vanadium dioxide spatial light modulator for applications beyond 1200nm,” Opt. Commun. 288, 23–26 (2013).
[Crossref]

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Hendaoui, A.

P. Anh Do, A. Hendaoui, E. Mortazy, M. Chaker, and A. Haché, “Vanadium dioxide spatial light modulator for applications beyond 1200nm,” Opt. Commun. 288, 23–26 (2013).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hewak, D. W.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Hicken, R. J.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Hong, M. H.

Hosseini, P.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

C. D. Wright, P. Hosseini, and J. A. V. Diosdado, “Beyond von-Neumann computing with nanoscale phase-change memory devices,” Adv. Funct. Mater. 23(18), 2248–2254 (2013).
[Crossref]

Huang, Z.

L. Lin, F. Lai, Y. Qu, R. Gai, and Z. Huang, “Influence of annealing in N2 on the properties of In2O3:Sn thin films prepared by direct current magnetron sputtering,” Mater. Sci. Eng. B 138, 166–171 (2007).

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

Jackson, B.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Kao, T. S.

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Kim, J.

Klemm, M.

Kohary, K. I.

J. A. Vázquez Diosdado, P. Ashwin, K. I. Kohary, and C. D. Wright, “Threshold switching via electric field induced crystallization in phase-change memory devices,” Appl. Phys. Lett. 100(25), 253105 (2012).
[Crossref]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Kolda, T. G.

T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search: new perspectives on some classical and modern methods,” Soc. Ind. Appl. Math. 45(3), 385–482 (2003).

Komjani, N.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: theory and applications,” Phys. Rev. B 91(11), 115119 (2015).
[Crossref]

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Kurdi, B.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).

Kurvits, J. A.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Lai, F.

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

L. Lin, F. Lai, Y. Qu, R. Gai, and Z. Huang, “Influence of annealing in N2 on the properties of In2O3:Sn thin films prepared by direct current magnetron sputtering,” Mater. Sci. Eng. B 138, 166–171 (2007).

Lam, C.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).

Lastras, L. A.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).

Lederer, F.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: theory and applications,” Phys. Rev. B 91(11), 115119 (2015).
[Crossref]

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Lewis, R. M.

T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search: new perspectives on some classical and modern methods,” Soc. Ind. Appl. Math. 45(3), 385–482 (2003).

Li, D.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Li, X.

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Lin, L.

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

L. Lin, F. Lai, Y. Qu, R. Gai, and Z. Huang, “Influence of annealing in N2 on the properties of In2O3:Sn thin films prepared by direct current magnetron sputtering,” Mater. Sci. Eng. B 138, 166–171 (2007).

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Liu, Y.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B.

Luo, X. G.

MacDonald, K. F.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Maier, S. A.

Maier, T.

Majewski, M. L.

Mario, L. Y.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Michel, A.-K. U.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Mortazy, E.

P. Anh Do, A. Hendaoui, E. Mortazy, M. Chaker, and A. Haché, “Vanadium dioxide spatial light modulator for applications beyond 1200nm,” Opt. Commun. 288, 23–26 (2013).
[Crossref]

Naik, G. V.

Neubrech, F.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Ng, B.

Padilla, A.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).

Patnaik, B. S. V.

P. Ashwin, B. S. V. Patnaik, and C. D. Wright, “Fast simulation of phase-change processes in chalcogenide alloys using a Gillespie-type cellular automata approach,” J. Appl. Phys. 104(8), 084901 (2008).
[Crossref]

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Pernice, W. H. P.

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

Pop, E.

S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bull. 39(8), 703–710 (2014).
[Crossref]

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Qu, Y.

L. Lin, F. Lai, Y. Qu, R. Gai, and Z. Huang, “Influence of annealing in N2 on the properties of In2O3:Sn thin films prepared by direct current magnetron sputtering,” Mater. Sci. Eng. B 138, 166–171 (2007).

Rajendran, B.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).

Rakic, A. D.

Ramanathan, S.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Raoux, S.

S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bull. 39(8), 703–710 (2014).
[Crossref]

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Reed, J. C.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Rios, C.

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Rockstuhl, C.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: theory and applications,” Phys. Rev. B 91(11), 115119 (2015).
[Crossref]

Schäferling, M.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Shenoy, R. S.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).

Shim, E.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Shvets, G.

Y. Avitzour, Y. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Simovski, C.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: theory and applications,” Phys. Rev. B 91(11), 115119 (2015).
[Crossref]

Simpson, R. E.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101 (2013).
[Crossref]

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Taubner, T.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Tittl, A.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Torczon, V.

T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search: new perspectives on some classical and modern methods,” Soc. Ind. Appl. Math. 45(3), 385–482 (2003).

Urzhumov, Y.

Y. Avitzour, Y. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Vázquez Diosdado, J. A.

J. A. Vázquez Diosdado, P. Ashwin, K. I. Kohary, and C. D. Wright, “Threshold switching via electric field induced crystallization in phase-change memory devices,” Appl. Phys. Lett. 100(25), 253105 (2012).
[Crossref]

Wang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Wei, C.

Wei, C. W.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).
[Crossref] [PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Woda, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Wong, F. J.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Wright, C. D.

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

C. D. Wright, P. Hosseini, and J. A. V. Diosdado, “Beyond von-Neumann computing with nanoscale phase-change memory devices,” Adv. Funct. Mater. 23(18), 2248–2254 (2013).
[Crossref]

J. A. Vázquez Diosdado, P. Ashwin, K. I. Kohary, and C. D. Wright, “Threshold switching via electric field induced crystallization in phase-change memory devices,” Appl. Phys. Lett. 100(25), 253105 (2012).
[Crossref]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

P. Ashwin, B. S. V. Patnaik, and C. D. Wright, “Fast simulation of phase-change processes in chalcogenide alloys using a Gillespie-type cellular automata approach,” J. Appl. Phys. 104(8), 084901 (2008).
[Crossref]

Wuttig, M.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bull. 39(8), 703–710 (2014).
[Crossref]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Xiong, F.

S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bull. 39(8), 703–710 (2014).
[Crossref]

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Yazdi, M.

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: theory and applications,” Phys. Rev. B 91(11), 115119 (2015).
[Crossref]

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yi, F.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Yin, X.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Zhang, J.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Zhang, L.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3(8), 1101 (2013).
[Crossref]

Zhang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Zhou, Y.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Zhu, A. Y.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Zhu, H.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Zia, R.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Zou, L.

Adv. Funct. Mater. (1)

C. D. Wright, P. Hosseini, and J. A. V. Diosdado, “Beyond von-Neumann computing with nanoscale phase-change memory devices,” Adv. Funct. Mater. 23(18), 2248–2254 (2013).
[Crossref]

Adv. Mater. (5)

C. Rios, P. Hosseini, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “On-chip photonic memory elements employing phase-change materials,” Adv. Mater. 26(9), 1372–1377 (2014).
[Crossref] [PubMed]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

J. A. Vázquez Diosdado, P. Ashwin, K. I. Kohary, and C. D. Wright, “Threshold switching via electric field induced crystallization in phase-change memory devices,” Appl. Phys. Lett. 100(25), 253105 (2012).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

J. Appl. Phys. (1)

P. Ashwin, B. S. V. Patnaik, and C. D. Wright, “Fast simulation of phase-change processes in chalcogenide alloys using a Gillespie-type cellular automata approach,” J. Appl. Phys. 104(8), 084901 (2008).
[Crossref]

J. Vac. Sci. Technol. B (1)

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology”,J. Vac. Sci. Technol. B 28(2), 223–262 (2010).

Laser Photonics Rev. (1)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Mater. Sci. Eng. B (1)

L. Lin, F. Lai, Y. Qu, R. Gai, and Z. Huang, “Influence of annealing in N2 on the properties of In2O3:Sn thin films prepared by direct current magnetron sputtering,” Mater. Sci. Eng. B 138, 166–171 (2007).

MRS Bull. (1)

S. Raoux, F. Xiong, M. Wuttig, and E. Pop, “Phase change materials and phase change memory,” MRS Bull. 39(8), 703–710 (2014).
[Crossref]

Nano Lett. (2)

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Nature (1)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

P. Anh Do, A. Hendaoui, E. Mortazy, M. Chaker, and A. Haché, “Vanadium dioxide spatial light modulator for applications beyond 1200nm,” Opt. Commun. 288, 23–26 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

R. Alaee, M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, “Magnetoelectric coupling in nonidentical plasmonic nanoparticles: theory and applications,” Phys. Rev. B 91(11), 115119 (2015).
[Crossref]

Y. Avitzour, Y. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Sci. Rep. (1)

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4, 3955 (2014).
[Crossref] [PubMed]

Soc. Ind. Appl. Math. (1)

T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search: new perspectives on some classical and modern methods,” Soc. Ind. Appl. Math. 45(3), 385–482 (2003).

Thin Solid Films (1)

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of a thin-film phase-change metamaterial absorber/modulator (inset shows the top metal layer patterned into squares for a polarization insensitive design). (b) 2D cross section of the phase-change NIR absorber/modulator studied here and having a bottom metal layer (here shown as Au) of fixed thickness 80 nm, a top metal layer (again here shown as Au) of fixed thickness 30 nm (both gold layers have a 5 nm Ti adhesion layer not included in the figure for clarity) patterned into strips of variable width wP, and GST and ITO layers with variable thicknesses tGST and tITO respectively. For the design simulations a unit cell of width wUC is used, with periodic boundary conditions (PBC) of Bloch-Floquet type assumed and a perfect matching layer (PML) placed at the top and bottom of the structure.
Fig. 2
Fig. 2 (a) Simulated reflectance spectrum for the design in Fig. 1 with Au top and bottom metal layers and with the phase-change layer in both the crystalline and amorphous states. The chalcogenide phase-change layer here is Ge2Sb2Te5 (GST) and the design was optimized for maximum modulation depth (MD) at 1550 nm. Also shown (b) is the extinction ratio.
Fig. 3
Fig. 3 The reflectance spectrum of the modulator for different incident polarizations and with the top layer patterned into (a) strips (of the same width and spacing as in Fig. 2) and (b) squares (with sides of length equal to the width of the strips in Fig. 2). The polarization angles in each case are, going from left to right, 0 degrees (electric field perpendicular to the strips), 30 degrees, 60 degrees and 90 degrees (electric field parallel to strips). It is clear that in the case of the top metal layer patterned into squares the design is polarization independent (for normal incidence). In all cases red lines show results for the GST layer in the crystalline phase and blue the amorphous phase.
Fig. 4
Fig. 4 The reflectance spectrum for optimized (in terms of MD at 1550 nm) phase-change modulators of the form of Fig. 1 but with (a) Al top and bottom metal layers, (b) (i) W top and bottom layers (dotted lines) and (ii) W top and Au bottom layers (solid lines) and (c) (i) TiN top and bottom layers (dotted lines) and (ii) TiN top and Au bottom layers (solid lines). In all cases red lines show results for the GST layer in the crystalline phase and blue the amorphous phase.
Fig. 5
Fig. 5 Scatter plot showing the variation of the phase-change metadevice modulation depth (MD) when typical manufacturing tolerances are included in the design and for the key parameters of (a) unit cell width wUC, (b) width of top metal strips wP, (c) thickenss of the ITO layer, tITO and (d) thickness of the GST layer, tGST.
Fig. 6
Fig. 6 (a) Simulated temperature distributions in the structure of Fig. 1(b) for the case of electrical excitation (assuming an electrically pixelated structure with pixel size equal to the unit-cell size) for (left) a RESET (amorphization) pulse of 2.4V/50 ns and (right) a SET (crystallization) pulse of 1.4V/100ns respectively. (b) The starting and finishing phase-states of the GST layer after a sequence of RESET/SET/RESET electrical excitations: the GST layer starts in the fully crystalline state (shown brown); after the application of a first RESET pulse the GST layer is fully amorphized (shown blue); after the application of a SET pulse the GST layer is fully re-crystallized (into a number of crystallites, as shown by the different colors); finally, after the receipt of a second RESET pulse the GST layer is fully re-amorphized.

Tables (1)

Tables Icon

Table 1 Materials parameters used in phase-switching simulations of Fig. 6

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

MD= P max P min P inc = R cr R am
ER=10 log 10 P max P min =10 log 10 R cr R am

Metrics