Abstract

Recent results on heterogeneous Si/III-V lasers and ultra-high Q Si3N4 resonators are implemented in a Pound-Drever-Hall frequency stabilization system to yield narrow linewidth characteristics for a stable on-chip laser reference. The high frequency filtering is performed with Si resonant mirrors in the laser cavity. To suppress close in noise and frequency walk off, the laser is locked to an ultra-high Q Si3N4 resonator with a 30 million quality factor. The laser shows high frequency noise levels of 60 × 103 Hz2/Hz corresponding to 160 kHz linewidth, and the low frequency noise is suppressed 33 dB to 103 Hz2/Hz with the PDH system.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Short fiber resonant optic gyroscope using the high-frequency Pound–Drever–Hall technique

Xiaojun Jin, Yi Lin, Ying Lu, Huilian Ma, and Zhonghe Jin
Appl. Opt. 57(20) 5789-5793 (2018)

Comb-assisted, Pound-Drever-Hall locked cavity ring-down spectrometer for high-performance retrieval of transition parameters

Ruimin Guo, Junheng Teng, Ke Cao, Hewei Dong, Wenchao Cui, and Tiqiang Zhang
Opt. Express 27(22) 31850-31863 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  2. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full Stabilization of a Microresonator-Based Optical Frequency Comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
    [Crossref] [PubMed]
  3. S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10 (2014).
    [Crossref]
  4. J. Li, S. Diddams, and K. J. Vahala, “Pump frequency noise coupling into a microcavity by thermo-optic locking,” Opt. Express 22(12), 14559–14567 (2014).
    [Crossref] [PubMed]
  5. A. J. Seeds and K. J. Williams, “Microwave Photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [Crossref]
  6. L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High Performance InP-Based Photonic ICs—A Tutorial,” J. Lightwave Technol. 29(4), 554–570 (2011).
    [Crossref]
  7. J.-F. Cliche, Y. Painchaud, C. Latrasse, M.-J. Picard, I. Alexandre, and M. Têtu, “Ultra-Narrow Bragg Grating for Active Semiconductor Laser Linewidth Reduction through Electrical Feedback,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (2007), p. BTuE2.
  8. A. Sivananthan, H. Park, M. Lu, J. S. Parker, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Monolithic Linewidth Narrowing of a Tunable SG-DBR Laser,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OTh3I.3.
    [Crossref]
  9. E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]
  10. W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1 × 10⁻⁶ for frequency modulation and laser stabilization,” Opt. Lett. 39(7), 1980–1983 (2014).
    [Crossref] [PubMed]
  11. D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1(3), 153–157 (2014).
    [Crossref]
  12. S. Srinivasan, M. Davenport, T. Komljenovic, J. Hulme, D. T. Spencer, and J. E. Bowers, “Coupled-Ring-Resonator-Mirror-Based Heterogeneous III–V Silicon Tunable Laser,” IEEE Photonics J. 7(3), 2700908 (2015).
    [Crossref]
  13. N. M. Sampas, “A ring laser gyroscope with optical subtraction,” (1990), Chap. II.5.
  14. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998), Chap. 5.
  15. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
    [Crossref] [PubMed]
  16. R. Fox, C. Oates, and L. Hollberg, “Stabilizing diode lasers to high-finesse cavities,” in Experimental Methods in the Physical Sciences: Cavity-Enhanced Spectroscopies, R. D. van Zee and J. P. Looney, eds. (Academic Press, 2003).
  17. H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
    [Crossref] [PubMed]
  18. M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
    [Crossref]
  19. M. Ohtsu, “Structure and Oscillation Mechanisms,” in Highly Coherent Semiconductor Lasers (Artech House, 1992).
  20. L. Chen, A. Sohdi, J. E. Bowers, L. Theogarajan, J. Roth, and G. Fish, “Electronic and photonic integrated circuits for fast data center optical circuit switches,” IEEE Commun. Mag. 51(9), 53–59 (2013).
    [Crossref]

2015 (1)

S. Srinivasan, M. Davenport, T. Komljenovic, J. Hulme, D. T. Spencer, and J. E. Bowers, “Coupled-Ring-Resonator-Mirror-Based Heterogeneous III–V Silicon Tunable Laser,” IEEE Photonics J. 7(3), 2700908 (2015).
[Crossref]

2014 (5)

2013 (2)

L. Chen, A. Sohdi, J. E. Bowers, L. Theogarajan, J. Roth, and G. Fish, “Electronic and photonic integrated circuits for fast data center optical circuit switches,” IEEE Commun. Mag. 51(9), 53–59 (2013).
[Crossref]

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[Crossref] [PubMed]

2011 (3)

2008 (1)

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full Stabilization of a Microresonator-Based Optical Frequency Comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

2006 (1)

2001 (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Arcizet, O.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full Stabilization of a Microresonator-Based Optical Frequency Comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Aspelmeyer, M.

Barton, J. S.

Bauters, J. F.

Beha, K.

Benko, C.

Black, E. D.

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Bloch, E.

A. Sivananthan, H. Park, M. Lu, J. S. Parker, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Monolithic Linewidth Narrowing of a Tunable SG-DBR Laser,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OTh3I.3.
[Crossref]

Blumenthal, D. J.

Bowers, J. E.

S. Srinivasan, M. Davenport, T. Komljenovic, J. Hulme, D. T. Spencer, and J. E. Bowers, “Coupled-Ring-Resonator-Mirror-Based Heterogeneous III–V Silicon Tunable Laser,” IEEE Photonics J. 7(3), 2700908 (2015).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1(3), 153–157 (2014).
[Crossref]

L. Chen, A. Sohdi, J. E. Bowers, L. Theogarajan, J. Roth, and G. Fish, “Electronic and photonic integrated circuits for fast data center optical circuit switches,” IEEE Commun. Mag. 51(9), 53–59 (2013).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

Bruinink, C. M.

Chen, L.

L. Chen, A. Sohdi, J. E. Bowers, L. Theogarajan, J. Roth, and G. Fish, “Electronic and photonic integrated circuits for fast data center optical circuit switches,” IEEE Commun. Mag. 51(9), 53–59 (2013).
[Crossref]

Chen, T.

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[Crossref] [PubMed]

Coldren, L. A.

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High Performance InP-Based Photonic ICs—A Tutorial,” J. Lightwave Technol. 29(4), 554–570 (2011).
[Crossref]

A. Sivananthan, H. Park, M. Lu, J. S. Parker, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Monolithic Linewidth Narrowing of a Tunable SG-DBR Laser,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OTh3I.3.
[Crossref]

Cole, G. D.

Davenport, M.

S. Srinivasan, M. Davenport, T. Komljenovic, J. Hulme, D. T. Spencer, and J. E. Bowers, “Coupled-Ring-Resonator-Mirror-Based Heterogeneous III–V Silicon Tunable Laser,” IEEE Photonics J. 7(3), 2700908 (2015).
[Crossref]

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

Del’Haye, P.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10 (2014).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full Stabilization of a Microresonator-Based Optical Frequency Comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Diddams, S.

Diddams, S. A.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10 (2014).
[Crossref]

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Fish, G.

L. Chen, A. Sohdi, J. E. Bowers, L. Theogarajan, J. Roth, and G. Fish, “Electronic and photonic integrated circuits for fast data center optical circuit switches,” IEEE Commun. Mag. 51(9), 53–59 (2013).
[Crossref]

Guzzon, R. S.

Hagemann, C.

Hall, J. L.

Heck, M. J. R.

Heideman, R. G.

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full Stabilization of a Microresonator-Based Optical Frequency Comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Hulme, J.

S. Srinivasan, M. Davenport, T. Komljenovic, J. Hulme, D. T. Spencer, and J. E. Bowers, “Coupled-Ring-Resonator-Mirror-Based Heterogeneous III–V Silicon Tunable Laser,” IEEE Photonics J. 7(3), 2700908 (2015).
[Crossref]

Johansson, L.

Johansson, L. A.

A. Sivananthan, H. Park, M. Lu, J. S. Parker, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Monolithic Linewidth Narrowing of a Tunable SG-DBR Laser,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OTh3I.3.
[Crossref]

John, D. D.

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full Stabilization of a Microresonator-Based Optical Frequency Comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Komljenovic, T.

S. Srinivasan, M. Davenport, T. Komljenovic, J. Hulme, D. T. Spencer, and J. E. Bowers, “Coupled-Ring-Resonator-Mirror-Based Heterogeneous III–V Silicon Tunable Laser,” IEEE Photonics J. 7(3), 2700908 (2015).
[Crossref]

Krishnamachari, U.

Lee, H.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1(1), 10 (2014).
[Crossref]

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[Crossref] [PubMed]

Legero, T.

Leinse, A.

Li, J.

J. Li, S. Diddams, and K. J. Vahala, “Pump frequency noise coupling into a microcavity by thermo-optic locking,” Opt. Express 22(12), 14559–14567 (2014).
[Crossref] [PubMed]

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[Crossref] [PubMed]

Lu, M.

A. Sivananthan, H. Park, M. Lu, J. S. Parker, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Monolithic Linewidth Narrowing of a Tunable SG-DBR Laser,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OTh3I.3.
[Crossref]

Martin, M. J.

Nicholes, S. C.

Norberg, E. J.

Papp, S. B.

Park, H.

A. Sivananthan, H. Park, M. Lu, J. S. Parker, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Monolithic Linewidth Narrowing of a Tunable SG-DBR Laser,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OTh3I.3.
[Crossref]

Parker, J. S.

A. Sivananthan, H. Park, M. Lu, J. S. Parker, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Monolithic Linewidth Narrowing of a Tunable SG-DBR Laser,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OTh3I.3.
[Crossref]

Quinlan, F.

Riehle, F.

Ristic, S.

Rodwell, M. J.

A. Sivananthan, H. Park, M. Lu, J. S. Parker, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Monolithic Linewidth Narrowing of a Tunable SG-DBR Laser,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OTh3I.3.
[Crossref]

Roth, J.

L. Chen, A. Sohdi, J. E. Bowers, L. Theogarajan, J. Roth, and G. Fish, “Electronic and photonic integrated circuits for fast data center optical circuit switches,” IEEE Commun. Mag. 51(9), 53–59 (2013).
[Crossref]

Schliesser, A.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full Stabilization of a Microresonator-Based Optical Frequency Comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Seeds, A. J.

Sivananthan, A.

A. Sivananthan, H. Park, M. Lu, J. S. Parker, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Monolithic Linewidth Narrowing of a Tunable SG-DBR Laser,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OTh3I.3.
[Crossref]

Sohdi, A.

L. Chen, A. Sohdi, J. E. Bowers, L. Theogarajan, J. Roth, and G. Fish, “Electronic and photonic integrated circuits for fast data center optical circuit switches,” IEEE Commun. Mag. 51(9), 53–59 (2013).
[Crossref]

Spencer, D. T.

S. Srinivasan, M. Davenport, T. Komljenovic, J. Hulme, D. T. Spencer, and J. E. Bowers, “Coupled-Ring-Resonator-Mirror-Based Heterogeneous III–V Silicon Tunable Laser,” IEEE Photonics J. 7(3), 2700908 (2015).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1(3), 153–157 (2014).
[Crossref]

Srinivasan, S.

S. Srinivasan, M. Davenport, T. Komljenovic, J. Hulme, D. T. Spencer, and J. E. Bowers, “Coupled-Ring-Resonator-Mirror-Based Heterogeneous III–V Silicon Tunable Laser,” IEEE Photonics J. 7(3), 2700908 (2015).
[Crossref]

Sterr, U.

Suh, M.-G.

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[Crossref] [PubMed]

Theogarajan, L.

L. Chen, A. Sohdi, J. E. Bowers, L. Theogarajan, J. Roth, and G. Fish, “Electronic and photonic integrated circuits for fast data center optical circuit switches,” IEEE Commun. Mag. 51(9), 53–59 (2013).
[Crossref]

Vahala, K. J.

Williams, K. J.

Ye, J.

Zhang, W.

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

IEEE Commun. Mag. (1)

L. Chen, A. Sohdi, J. E. Bowers, L. Theogarajan, J. Roth, and G. Fish, “Electronic and photonic integrated circuits for fast data center optical circuit switches,” IEEE Commun. Mag. 51(9), 53–59 (2013).
[Crossref]

IEEE Photonics J. (1)

S. Srinivasan, M. Davenport, T. Komljenovic, J. Hulme, D. T. Spencer, and J. E. Bowers, “Coupled-Ring-Resonator-Mirror-Based Heterogeneous III–V Silicon Tunable Laser,” IEEE Photonics J. 7(3), 2700908 (2015).
[Crossref]

J. Lightwave Technol. (2)

Laser Photonics Rev. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

Nat. Commun. (1)

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, and K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Optica (2)

Phys. Rev. Lett. (1)

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full Stabilization of a Microresonator-Based Optical Frequency Comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Other (6)

J.-F. Cliche, Y. Painchaud, C. Latrasse, M.-J. Picard, I. Alexandre, and M. Têtu, “Ultra-Narrow Bragg Grating for Active Semiconductor Laser Linewidth Reduction through Electrical Feedback,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (2007), p. BTuE2.

A. Sivananthan, H. Park, M. Lu, J. S. Parker, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Monolithic Linewidth Narrowing of a Tunable SG-DBR Laser,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (OSA, 2013), p. OTh3I.3.
[Crossref]

N. M. Sampas, “A ring laser gyroscope with optical subtraction,” (1990), Chap. II.5.

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998), Chap. 5.

R. Fox, C. Oates, and L. Hollberg, “Stabilizing diode lasers to high-finesse cavities,” in Experimental Methods in the Physical Sciences: Cavity-Enhanced Spectroscopies, R. D. van Zee and J. P. Looney, eds. (Academic Press, 2003).

M. Ohtsu, “Structure and Oscillation Mechanisms,” in Highly Coherent Semiconductor Lasers (Artech House, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the PDH setup. The coupled ring resonator (CRR) laser is isolated from any spurious reflections and the resonator is packaged with cleaved fiber. Optical fibers are shown in red, with electronic signals shown in black. The black and red bubbles denote monitor points in the system.
Fig. 2
Fig. 2 Bode plots of the CRR laser FM tuning, Vescent servo supply, loop filter electronics, and total transfer function of the feedback loop used in this study. Dotted lines correspond to measurements using a SRS 770 (500 Hz – 100 kHz), and solid lines using a HP 4396B (100 kHz – 20 MHz).
Fig. 3
Fig. 3 Open loop calibration of the through port, error signal, and drop port with a ramp signal applied to the laser servo.
Fig. 4
Fig. 4 PSD of the PDH system measured through an unbalanced MZI. At quadrature, the unlocked (blue) and locked (red) FM PSD is given, while the locked AM PSD (black) is measured at the peak of the MZI.
Fig. 5
Fig. 5 In-loop characterization of the 30 MHz RF signal in linear (inset) and log scale.

Metrics