Abstract

A 4-channel time-wavelength optical pulse interleaver is implemented on a silicon chip. The interleaver forms a train of pulses with periodically changing wavelengths by demultiplexing the input pulse train into several wavelength components, delaying these components with respect to each other, and multiplexing them back into a single path. The interleaver is integrated on a silicon chip, with two arrays of microring resonator filters performing multiplexing and demultiplexing, and long sections of silicon waveguides acting as delay lines. The 4-channel interleaver is designed for an input pulse train with 1 GHz repetition rate, and is measured to have 0.35% RMS pulse timing error, insertion loss between 1.6 dB and 5.8 dB in different channels, crosstalk below −24 dB, and 52 nm free spectral range achieved using the Vernier effect.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  2. R. Walden, “Analog-to-digital conversion in the early 21st century,” in Wiley Encyclopedia of Computer Science and Engineering (Wiley, 2008), pp. 126–138.
  3. A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Optical flywheels with attosecond jitter,” Nat. Photonics 6(2), 97–100 (2012).
    [Crossref]
  4. H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 260–267 (2014).
    [Crossref]
  5. M. Y. Frankel, J. U. Kang, and R. D. Esman, “High performance photonics analogue digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
    [Crossref]
  6. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
    [Crossref]
  7. A. Yariv and R. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998).
    [Crossref]
  8. J. U. Kang and R. D. Esman, “Demonstration of time interweaved photonic four-channel WDM sampler for hybrid analogue-digital converter,” Electron. Lett. 35(1), 60–61 (1999).
    [Crossref]
  9. F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pinna, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in Proceedings of IEEE Radar Conference (RADAR) (IEEE, 2013), pp. 1–5.
    [Crossref]
  10. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G. R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
    [Crossref] [PubMed]
  11. G. Wu, S. Li, X. Li, and J. Chen, “18 wavelengths 83.9Gs/s optical sampling clock for photonic A/D converters,” Opt. Express 18(20), 21162–21168 (2010).
    [Crossref] [PubMed]
  12. D. Sinefeld, Y. Fattal, and D. Marom, “Tunable group delay staircases for generation of WDM pulse bursts from short optical pulses,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America 2012), paper JTh2A.3.
    [Crossref]
  13. D. Sinefeld, D. Shayovitz, O. Golani, and D. M. Marom, “Adaptive rate and bandwidth WDM optical sampling pulse streams with LCoS-based photonic spectral processor,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu3C.2.
    [Crossref]
  14. M. P. Fok, K. L. Lee, and C. Shu, “4×2.5 GHz repetitive photonic sampler for high-speed A/D signal conversion,” IEEE Photonics Technol. Lett. 16, 876–878 (2004).
    [Crossref]
  15. H. Gevorgyan, K. Al Qubaisi, M. Dahlem, and A. Khilo, “Time-wavelength pulse interleaver on a silicon platform,” in Advanced Photonics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper IM2A.2.
  16. M. Y. Sander, S. Frolov, J. Shmulovich, E. P. Ippen, and F. X. Kärtner, “10 GHz femtosecond pulse interleaver in planar waveguide technology,” Opt. Express 20(4), 4102–4113 (2012).
    [Crossref] [PubMed]
  17. A. A. Aboketaf, A. W. Elshaari, and S. F. Preble, “Optical time division multiplexer on silicon chip,” Opt. Express 18(13), 13529–13535 (2010).
    [Crossref] [PubMed]
  18. S. Gupta and B. Jalali, “Time-warp correction and calibration in photonic time-stretch analog-to-digital converter,” Opt. Lett. 33(22), 2674–2676 (2008).
    [Crossref] [PubMed]
  19. W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M=41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE Photonics Technol. Lett. 24(14), 1185–1187 (2012).
    [Crossref]
  20. A. O. J. Wiberg, Z. Tong, L. Liu, J. L. Ponsetto, V. Ataie, E. Myslivets, N. Alic, and S. Radic, “Demonstration of 40 GHz analog-to-digital conversion using copy-and-sample-all parametric processing,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW3C.2.
    [Crossref]
  21. A. O. J. Wiberg, L. Liu, Z. Tong, E. Myslivets, V. Ataie, B. P.-P. Kuo, N. Alic, and S. Radic, “Photonic preprocessor for analog-to-digital-converter using a cavity-less pulse source,” Opt. Express 20(26), B419–B427 (2012).
    [Crossref] [PubMed]
  22. A. O. J. Wiberg, D. J. Esman, L. Liu, Z. Tong, E. Myslivets, N. Alic, and S. Radic, “Demonstration of 74 GHz parametric optical sampled analog-to-digital conversion,” in European Conference and Exhibition on Optical Communication (ECOC)2013, pp. 1–3.
    [Crossref]
  23. D. J. Esman, A. O. J. Wiberg, N. Alic, and S. Radic, “Highly linear broadband photonic-assisted Q-band ADC,” J. Lightwave Technol. 33(11), 2256–2262 (2015).
    [Crossref]
  24. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt. 49(29), 5577–5582 (2010).
    [Crossref] [PubMed]
  25. S. Spector, M. W. Geis, D. Lennon, R. C. Williamson, and T. M. Lyszczarz, “Hybrid multi-mode/single-mode waveguides for low loss,” in Optical Amplifiers and Their Applications/Integrated Photonics Research, Technical Digest (CD) (Optical Society of America, 2004), paper IThE5.
  26. K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 9(6), 728–736 (1991).
    [Crossref]
  27. L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University, 2014).

2015 (1)

2014 (1)

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 260–267 (2014).
[Crossref]

2012 (5)

2010 (3)

2008 (1)

2007 (1)

2004 (1)

M. P. Fok, K. L. Lee, and C. Shu, “4×2.5 GHz repetitive photonic sampler for high-speed A/D signal conversion,” IEEE Photonics Technol. Lett. 16, 876–878 (2004).
[Crossref]

2001 (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

1999 (1)

J. U. Kang and R. D. Esman, “Demonstration of time interweaved photonic four-channel WDM sampler for hybrid analogue-digital converter,” Electron. Lett. 35(1), 60–61 (1999).
[Crossref]

1998 (1)

A. Yariv and R. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998).
[Crossref]

1997 (1)

M. Y. Frankel, J. U. Kang, and R. D. Esman, “High performance photonics analogue digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
[Crossref]

1991 (1)

K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 9(6), 728–736 (1991).
[Crossref]

Aboketaf, A. A.

Alic, N.

Ataie, V.

Benedick, A. J.

A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Optical flywheels with attosecond jitter,” Nat. Photonics 6(2), 97–100 (2012).
[Crossref]

Betts, G. E.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Bogoni, A.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pinna, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in Proceedings of IEEE Radar Conference (RADAR) (IEEE, 2013), pp. 1–5.
[Crossref]

Byun, H.

Chen, J.

Dahlem, M. S.

DiLello, N. A.

Elshaari, A. W.

Esman, D. J.

D. J. Esman, A. O. J. Wiberg, N. Alic, and S. Radic, “Highly linear broadband photonic-assisted Q-band ADC,” J. Lightwave Technol. 33(11), 2256–2262 (2015).
[Crossref]

A. O. J. Wiberg, D. J. Esman, L. Liu, Z. Tong, E. Myslivets, N. Alic, and S. Radic, “Demonstration of 74 GHz parametric optical sampled analog-to-digital conversion,” in European Conference and Exhibition on Optical Communication (ECOC)2013, pp. 1–3.
[Crossref]

Esman, R. D.

J. U. Kang and R. D. Esman, “Demonstration of time interweaved photonic four-channel WDM sampler for hybrid analogue-digital converter,” Electron. Lett. 35(1), 60–61 (1999).
[Crossref]

M. Y. Frankel, J. U. Kang, and R. D. Esman, “High performance photonics analogue digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
[Crossref]

Fok, M. P.

M. P. Fok, K. L. Lee, and C. Shu, “4×2.5 GHz repetitive photonic sampler for high-speed A/D signal conversion,” IEEE Photonics Technol. Lett. 16, 876–878 (2004).
[Crossref]

Frankel, M. Y.

M. Y. Frankel, J. U. Kang, and R. D. Esman, “High performance photonics analogue digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
[Crossref]

Frolov, S.

Fujimoto, J. G.

A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Optical flywheels with attosecond jitter,” Nat. Photonics 6(2), 97–100 (2012).
[Crossref]

Geis, M. W.

Ghelfi, P.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pinna, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in Proceedings of IEEE Radar Conference (RADAR) (IEEE, 2013), pp. 1–5.
[Crossref]

Grein, M. E.

Gupta, S.

Hargreaves, J. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Holzwarth, C. W.

Hoyt, J. L.

Ippen, E. P.

Jalali, B.

Jung, K.

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 260–267 (2014).
[Crossref]

Juodawlkis, P. W.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Kang, J. U.

J. U. Kang and R. D. Esman, “Demonstration of time interweaved photonic four-channel WDM sampler for hybrid analogue-digital converter,” Electron. Lett. 35(1), 60–61 (1999).
[Crossref]

M. Y. Frankel, J. U. Kang, and R. D. Esman, “High performance photonics analogue digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
[Crossref]

Kärtner, F. X.

Khilo, A.

Kim, C.

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 260–267 (2014).
[Crossref]

Kim, H.

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 260–267 (2014).
[Crossref]

Kim, J.

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 260–267 (2014).
[Crossref]

Kolodziejski, L. A.

Koumans, R.

A. Yariv and R. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998).
[Crossref]

Kuo, B. P.-P.

Laghezza, F.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pinna, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in Proceedings of IEEE Radar Conference (RADAR) (IEEE, 2013), pp. 1–5.
[Crossref]

Lee, K. L.

M. P. Fok, K. L. Lee, and C. Shu, “4×2.5 GHz repetitive photonic sampler for high-speed A/D signal conversion,” IEEE Photonics Technol. Lett. 16, 876–878 (2004).
[Crossref]

Li, S.

Li, X.

Liu, L.

A. O. J. Wiberg, L. Liu, Z. Tong, E. Myslivets, V. Ataie, B. P.-P. Kuo, N. Alic, and S. Radic, “Photonic preprocessor for analog-to-digital-converter using a cavity-less pulse source,” Opt. Express 20(26), B419–B427 (2012).
[Crossref] [PubMed]

A. O. J. Wiberg, D. J. Esman, L. Liu, Z. Tong, E. Myslivets, N. Alic, and S. Radic, “Demonstration of 74 GHz parametric optical sampled analog-to-digital conversion,” in European Conference and Exhibition on Optical Communication (ECOC)2013, pp. 1–3.
[Crossref]

Lyszczarz, T. M.

Motamedi, A.

Myslivets, E.

A. O. J. Wiberg, L. Liu, Z. Tong, E. Myslivets, V. Ataie, B. P.-P. Kuo, N. Alic, and S. Radic, “Photonic preprocessor for analog-to-digital-converter using a cavity-less pulse source,” Opt. Express 20(26), B419–B427 (2012).
[Crossref] [PubMed]

A. O. J. Wiberg, D. J. Esman, L. Liu, Z. Tong, E. Myslivets, N. Alic, and S. Radic, “Demonstration of 74 GHz parametric optical sampled analog-to-digital conversion,” in European Conference and Exhibition on Optical Communication (ECOC)2013, pp. 1–3.
[Crossref]

Nejadmalayeri, A. H.

Ng, W.

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M=41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE Photonics Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

O’Donnell, F. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Oda, K.

K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 9(6), 728–736 (1991).
[Crossref]

Orcutt, J. S.

Peng, M. Y.

Perrott, M.

Petrich, G. S.

Pinna, S.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pinna, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in Proceedings of IEEE Radar Conference (RADAR) (IEEE, 2013), pp. 1–5.
[Crossref]

Popovic, M. A.

Preble, S. F.

Qin, P.

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 260–267 (2014).
[Crossref]

Radic, S.

Ram, R. J.

Ray, K. G.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Rockwood, T. D.

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M=41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE Photonics Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

Sander, M. Y.

Scotti, F.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pinna, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in Proceedings of IEEE Radar Conference (RADAR) (IEEE, 2013), pp. 1–5.
[Crossref]

Sefler, G. A.

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M=41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE Photonics Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

Shen, H.

Shin, J.

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 260–267 (2014).
[Crossref]

Shmulovich, J.

Shu, C.

M. P. Fok, K. L. Lee, and C. Shu, “4×2.5 GHz repetitive photonic sampler for high-speed A/D signal conversion,” IEEE Photonics Technol. Lett. 16, 876–878 (2004).
[Crossref]

Smith, H. I.

Song, Y.

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 260–267 (2014).
[Crossref]

Sorace-Agaskar, C. M.

Spector, S. J.

Sun, J.

Takato, N.

K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 9(6), 728–736 (1991).
[Crossref]

Toba, H.

K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 9(6), 728–736 (1991).
[Crossref]

Tong, Z.

A. O. J. Wiberg, L. Liu, Z. Tong, E. Myslivets, V. Ataie, B. P.-P. Kuo, N. Alic, and S. Radic, “Photonic preprocessor for analog-to-digital-converter using a cavity-less pulse source,” Opt. Express 20(26), B419–B427 (2012).
[Crossref] [PubMed]

A. O. J. Wiberg, D. J. Esman, L. Liu, Z. Tong, E. Myslivets, N. Alic, and S. Radic, “Demonstration of 74 GHz parametric optical sampled analog-to-digital conversion,” in European Conference and Exhibition on Optical Communication (ECOC)2013, pp. 1–3.
[Crossref]

Twichell, J. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Valley, G. C.

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M=41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE Photonics Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref] [PubMed]

Wang, C.

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 260–267 (2014).
[Crossref]

Wang, J. P.

Wasserman, J. L.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Wiberg, A. O. J.

Williamson, R. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Wu, G.

Yang, H.

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 260–267 (2014).
[Crossref]

Yariv, A.

A. Yariv and R. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998).
[Crossref]

Yoon, J. U.

Younger, R. D.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Zhou, G. R.

Appl. Opt. (1)

Electron. Lett. (3)

M. Y. Frankel, J. U. Kang, and R. D. Esman, “High performance photonics analogue digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
[Crossref]

A. Yariv and R. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998).
[Crossref]

J. U. Kang and R. D. Esman, “Demonstration of time interweaved photonic four-channel WDM sampler for hybrid analogue-digital converter,” Electron. Lett. 35(1), 60–61 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Kim, P. Qin, Y. Song, H. Yang, J. Shin, C. Kim, K. Jung, C. Wang, and J. Kim, “Sub-20-attosecond timing jitter mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 260–267 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. P. Fok, K. L. Lee, and C. Shu, “4×2.5 GHz repetitive photonic sampler for high-speed A/D signal conversion,” IEEE Photonics Technol. Lett. 16, 876–878 (2004).
[Crossref]

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M=41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE Photonics Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

J. Lightwave Technol. (2)

K. Oda, N. Takato, and H. Toba, “A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 9(6), 728–736 (1991).
[Crossref]

D. J. Esman, A. O. J. Wiberg, N. Alic, and S. Radic, “Highly linear broadband photonic-assisted Q-band ADC,” J. Lightwave Technol. 33(11), 2256–2262 (2015).
[Crossref]

Nat. Photonics (1)

A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Optical flywheels with attosecond jitter,” Nat. Photonics 6(2), 97–100 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Other (9)

H. Gevorgyan, K. Al Qubaisi, M. Dahlem, and A. Khilo, “Time-wavelength pulse interleaver on a silicon platform,” in Advanced Photonics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper IM2A.2.

D. Sinefeld, Y. Fattal, and D. Marom, “Tunable group delay staircases for generation of WDM pulse bursts from short optical pulses,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America 2012), paper JTh2A.3.
[Crossref]

D. Sinefeld, D. Shayovitz, O. Golani, and D. M. Marom, “Adaptive rate and bandwidth WDM optical sampling pulse streams with LCoS-based photonic spectral processor,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu3C.2.
[Crossref]

R. Walden, “Analog-to-digital conversion in the early 21st century,” in Wiley Encyclopedia of Computer Science and Engineering (Wiley, 2008), pp. 126–138.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pinna, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in Proceedings of IEEE Radar Conference (RADAR) (IEEE, 2013), pp. 1–5.
[Crossref]

A. O. J. Wiberg, D. J. Esman, L. Liu, Z. Tong, E. Myslivets, N. Alic, and S. Radic, “Demonstration of 74 GHz parametric optical sampled analog-to-digital conversion,” in European Conference and Exhibition on Optical Communication (ECOC)2013, pp. 1–3.
[Crossref]

A. O. J. Wiberg, Z. Tong, L. Liu, J. L. Ponsetto, V. Ataie, E. Myslivets, N. Alic, and S. Radic, “Demonstration of 40 GHz analog-to-digital conversion using copy-and-sample-all parametric processing,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW3C.2.
[Crossref]

L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University, 2014).

S. Spector, M. W. Geis, D. Lennon, R. C. Williamson, and T. M. Lyszczarz, “Hybrid multi-mode/single-mode waveguides for low loss,” in Optical Amplifiers and Their Applications/Integrated Photonics Research, Technical Digest (CD) (Optical Society of America, 2004), paper IThE5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Layout of a 4-channel wavelength-interleaved photonic ADC system. This work focuses on one component of this ADC – the time-wavelength pulse interleaver.

Fig. 2
Fig. 2

Diagram of the 4-channel interleaver implemented on a silicon chip. The input wavelength demultiplexer and the output wavelength multiplexer are implemented as arrays of microring resonator filters, and the delay lines are realized as long sections of Si waveguides.

Fig. 3
Fig. 3

Layout of the 4-channel time-wavelength interleaver, extracted from the GDSII file. Waveguides belonging to different channels are shown in different colors.

Fig. 4
Fig. 4

Transmission spectrum of the interleaver: (a) drop-port response, indicating the free spectral range; (b) central region of the spectrum, with transmission peaks of the 4 channels and the through-port response of the filter bank at the input of the interleaver (“input through” curve) and the output of the interleaver (“output through” curve); (c) zoom-ins of the 4 peaks.

Figure 5
Figure 5

Group delay of the interleaver measured with an optical vector analyzer. The spectral regions outside the passbands of the filters are shaded in gray; these regions carry almost no optical power and the output of the optical vector analyzer is very noisy. The relevant spectral regions within the passbands of the filters are highlighted in color.

Fig. 6
Fig. 6

Timings of the sampling pulses at the output of the interleaver, derived from the group delay measurements (shown in red), relative to the uniform timing grid (shown in green). Not to scale.

Fig. 7
Fig. 7

Interleaver crosstalk analysis: (a) measured frequency response of the interleaver (blue line) fitted with the theoretical model (grey line) that calculates the interleaver response by combining the responses of the input and output arrays of single-ring resonator filters and the respective delay lines; (b) frequency responses of the individual channels acquired from the model. The blue, green, yellow, and red colors represent the power delayed by the delay lines 1, 2, 3, and 4, respectively. The crosstalk of the interleaver is determined by the blue peak that can be seen under the red peak at λ4; this blue peak represents the signal that should travel through the delay line 4, but travels through the delay line 1 instead.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α i = InsertionLos s i InsertionLos s 1 Lengt h i Lengt h 1 , i=2..4.

Metrics