Abstract

In this paper, the feasibility of space division multiplexing for optical wireless fronthaul systems is experimentally demonstrated by implementing high speed MIMO-OFDM/OQAM radio signals over 20km 7-core fiber and 0.4m wireless link. Moreover, the impact of optical inter-core crosstalk in multicore fibers on the proposed MIMO-OFDM/OQAM radio over fiber system is experimentally evaluated in both SISO and MIMO configurations for comparison. The experimental results show that the inter-core crosstalk tolerance of the proposed radio over fiber system can be relaxed to −10 dB by using the proposed MIMO-OFDM/OQAM processing. These results could guide high density multicore fiber design to support a large number of antenna modules and a higher density of radio-access points for potential applications in 5G cellular system.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of high spectral efficient 4 × 4 MIMO SCMA-OFDM/OQAM radio over multi-core fiber system

Chang Liu, Lei Deng, Jiale He, Di Li, Songnian Fu, Ming Tang, Mengfan Cheng, and Deming Liu
Opt. Express 25(15) 18431-18441 (2017)

2 × 2 MIMO OFDM/OQAM radio signals over an elliptical core few-mode fiber

Qi Mo, Jiale He, Dawei Yu, Lei Deng, Songnian Fu, Ming Tang, and Deming Liu
Opt. Lett. 41(19) 4546-4549 (2016)

2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON

Lei Deng, Xiaodan Pang, Ying Zhao, M. B. Othman, Jesper Bevensee Jensen, Darko Zibar, Xianbin Yu, Deming Liu, and Idelfonso Tafur Monroy
Opt. Express 20(4) 4369-4375 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
    [Crossref]
  2. D. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. Lightwave Technol. 28(16), 2456–2464 (2010).
    [Crossref]
  3. L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, “A novel radio-over-fiber system with wavelength reuse for upstream data connection,” IEEE Photonics Technol. Lett. 19(6), 387–389 (2007).
    [Crossref] [PubMed]
  4. L. Deng, X. Pang, Y. Zhao, M. B. Othman, J. B. Jensen, D. Zibar, X. Yu, D. Liu, and I. T. Monroy, “2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON,” Opt. Express 20(4), 4369–4375 (2012).
    [Crossref] [PubMed]
  5. S. E. Alavi, I. S. Amiri, M. Khalily, N. Fisal, A. S. M. Supa’at, H. Ahmad, and S. M. Idrus, “W-Band OFDM for radio-over-fiber direct-detection link enabled by frequency nonupling optical up-conversion,” IEEE Photonics J. 6(6), 1–7 (2014).
    [Crossref]
  6. Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, and S. Yu, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
    [Crossref] [PubMed]
  7. C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).
  8. C. Lélé, J. P. Javaudin, R. Legouable, A. Skrzypczak, and P. Siohan, “Channel estimation methods for preamble‐based OFDM/OQAM modulations,” Eur. Trans. Telecommun. 19(7), 741–750 (2008).
    [Crossref]
  9. P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the Horizon: key challenges for the radio-access network,” IEEE Veh. Technol. Mag. 8(3), 47–53 (2013).
    [Crossref]
  10. M. B. Othman, L. Deng, X. Pang, J. Caminos, W. Kozuch, K. Prince, X. Yu, J. B. Jensen, and I. T. Monroy, “MIMO-OFDM WDM PON with DM-VCSEL for femtocells application,” Opt. Express 19(26), B537–B542 (2011).
    [Crossref] [PubMed]
  11. G. S. Gordon, M. J. Crisp, R. V. Penty, T. D. Wilkinson, and I. H. White, “Feasibility demonstration of a mode-division multiplexed MIMO-enabled radio-over-fiber distributed antenna system,” J. Lightwave Technol. 32(20), 3521–3528 (2014).
    [Crossref]
  12. M. Morant, A. Macho, and R. Llorente, “On the suitability of multicore fiber for LTE-advanced MIMO optical fronthaul systems,” J. Lightwave Technol. 34(2), 676–682 (2016).
    [Crossref]
  13. T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, and F. Yamamoto, “Coupled multicore fiber design with low intercore differential mode delay for high-density space division multiplexing,” J. Lightwave Technol. 33(6), 1175–1181 (2015).
    [Crossref]
  14. J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014).
    [Crossref] [PubMed]
  15. A. Macho, M. Morant, and R. Llorente, “Experimental analysis of multicore crosstalk impact on MIMO LTE-a radio-over-fibre optical systems,” in Proceedings of IEEE International Conference on Communication Workshop (IEEE, 2015), pp. 329–333.
    [Crossref]
  16. X. Fang, Y. Xu, Z. Chen, and F. Zhang, “Frequency-domain channel estimation for polarization-division-multiplexed CO-OFDM/OQAM systems,” J. Lightwave Technol. 33(13), 2743–2750 (2015).
    [Crossref]
  17. P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filter bank theory,” IEEE T. Signal Process. 50(5), 1170–1183 (2002).
  18. B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
    [Crossref] [PubMed]
  19. Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
    [Crossref]
  20. C. Lélé, P. Siohan, and R. Legouable, “2 dB better than CP-OFDM with OFDM/OQAM for preamble-based channel estimation,” in Proceedings of IEEE International Conference on Communications (IEEE, 2008), pp. 1302–1306.
    [Crossref]
  21. J. Zhao, “DFT-based offset-QAM OFDM for optical communications,” Opt. Express 22(1), 1114–1126 (2014).
    [Crossref] [PubMed]
  22. L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
    [Crossref]
  23. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
    [Crossref] [PubMed]
  24. B. Li, L. Gan, S. Fu, Z. Xu, M. Tang, W. Tong, and P. Shum, “The role of effective area in the design of weakly coupled MCF: optimization guidance and OSNR improvement,” IEEE J. Sel. Top Quantum. 22(2), 1–7 (2016).
    [Crossref]
  25. R. Luis, B. Puttnam, A. Cartaxo, W. Klaus, J. Mendinueta, Y. Awaji, N. Wada, T. Nakanishi, T. Hayashi, and T. Sasaki, “Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers,” J. Lightwave Technol. 34(2), 441–447 (2016).
    [Crossref]
  26. J. Sakaguchi, W. Klaus, J. M. Delgado Mendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference, 2015 OSA Technical Digest Series (Optical Society of America, 2015), paper Th5C–2.
    [Crossref]

2016 (4)

M. Morant, A. Macho, and R. Llorente, “On the suitability of multicore fiber for LTE-advanced MIMO optical fronthaul systems,” J. Lightwave Technol. 34(2), 676–682 (2016).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

B. Li, L. Gan, S. Fu, Z. Xu, M. Tang, W. Tong, and P. Shum, “The role of effective area in the design of weakly coupled MCF: optimization guidance and OSNR improvement,” IEEE J. Sel. Top Quantum. 22(2), 1–7 (2016).
[Crossref]

R. Luis, B. Puttnam, A. Cartaxo, W. Klaus, J. Mendinueta, Y. Awaji, N. Wada, T. Nakanishi, T. Hayashi, and T. Sasaki, “Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers,” J. Lightwave Technol. 34(2), 441–447 (2016).
[Crossref]

2015 (4)

2014 (6)

J. Zhao, “DFT-based offset-QAM OFDM for optical communications,” Opt. Express 22(1), 1114–1126 (2014).
[Crossref] [PubMed]

J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014).
[Crossref] [PubMed]

G. S. Gordon, M. J. Crisp, R. V. Penty, T. D. Wilkinson, and I. H. White, “Feasibility demonstration of a mode-division multiplexed MIMO-enabled radio-over-fiber distributed antenna system,” J. Lightwave Technol. 32(20), 3521–3528 (2014).
[Crossref]

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

S. E. Alavi, I. S. Amiri, M. Khalily, N. Fisal, A. S. M. Supa’at, H. Ahmad, and S. M. Idrus, “W-Band OFDM for radio-over-fiber direct-detection link enabled by frequency nonupling optical up-conversion,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

2013 (2)

P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the Horizon: key challenges for the radio-access network,” IEEE Veh. Technol. Mag. 8(3), 47–53 (2013).
[Crossref]

Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, and S. Yu, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

2010 (1)

2008 (1)

C. Lélé, J. P. Javaudin, R. Legouable, A. Skrzypczak, and P. Siohan, “Channel estimation methods for preamble‐based OFDM/OQAM modulations,” Eur. Trans. Telecommun. 19(7), 741–750 (2008).
[Crossref]

2007 (1)

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, “A novel radio-over-fiber system with wavelength reuse for upstream data connection,” IEEE Photonics Technol. Lett. 19(6), 387–389 (2007).
[Crossref] [PubMed]

2002 (1)

P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filter bank theory,” IEEE T. Signal Process. 50(5), 1170–1183 (2002).

Ahmad, H.

S. E. Alavi, I. S. Amiri, M. Khalily, N. Fisal, A. S. M. Supa’at, H. Ahmad, and S. M. Idrus, “W-Band OFDM for radio-over-fiber direct-detection link enabled by frequency nonupling optical up-conversion,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

Alavi, S. E.

S. E. Alavi, I. S. Amiri, M. Khalily, N. Fisal, A. S. M. Supa’at, H. Ahmad, and S. M. Idrus, “W-Band OFDM for radio-over-fiber direct-detection link enabled by frequency nonupling optical up-conversion,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

Amiri, I. S.

S. E. Alavi, I. S. Amiri, M. Khalily, N. Fisal, A. S. M. Supa’at, H. Ahmad, and S. M. Idrus, “W-Band OFDM for radio-over-fiber direct-detection link enabled by frequency nonupling optical up-conversion,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

Andrews, J. G.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Awaji, Y.

Buzzi, S.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Caminos, J.

Cartaxo, A.

Chen, L.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, “A novel radio-over-fiber system with wavelength reuse for upstream data connection,” IEEE Photonics Technol. Lett. 19(6), 387–389 (2007).
[Crossref] [PubMed]

Chen, Z.

Choi, W.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Crisp, M. J.

Demestichas, P.

P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the Horizon: key challenges for the radio-access network,” IEEE Veh. Technol. Mag. 8(3), 47–53 (2013).
[Crossref]

Deng, L.

Duan, L.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Fang, X.

Feng, Z.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Fisal, N.

S. E. Alavi, I. S. Amiri, M. Khalily, N. Fisal, A. S. M. Supa’at, H. Ahmad, and S. M. Idrus, “W-Band OFDM for radio-over-fiber direct-detection link enabled by frequency nonupling optical up-conversion,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

Fu, S.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

B. Li, L. Gan, S. Fu, Z. Xu, M. Tang, W. Tong, and P. Shum, “The role of effective area in the design of weakly coupled MCF: optimization guidance and OSNR improvement,” IEEE J. Sel. Top Quantum. 22(2), 1–7 (2016).
[Crossref]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

Gan, L.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

B. Li, L. Gan, S. Fu, Z. Xu, M. Tang, W. Tong, and P. Shum, “The role of effective area in the design of weakly coupled MCF: optimization guidance and OSNR improvement,” IEEE J. Sel. Top Quantum. 22(2), 1–7 (2016).
[Crossref]

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

Georgakopoulos, A.

P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the Horizon: key challenges for the radio-access network,” IEEE Veh. Technol. Mag. 8(3), 47–53 (2013).
[Crossref]

Gomes, N. J.

Gordon, G. S.

Hanly, S.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Hayashi, T.

Hu, R.

Idrus, S. M.

S. E. Alavi, I. S. Amiri, M. Khalily, N. Fisal, A. S. M. Supa’at, H. Ahmad, and S. M. Idrus, “W-Band OFDM for radio-over-fiber direct-detection link enabled by frequency nonupling optical up-conversion,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

Javaudin, J. P.

C. Lélé, J. P. Javaudin, R. Legouable, A. Skrzypczak, and P. Siohan, “Channel estimation methods for preamble‐based OFDM/OQAM modulations,” Eur. Trans. Telecommun. 19(7), 741–750 (2008).
[Crossref]

Jensen, J. B.

Jiang, T.

Karvounas, D.

P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the Horizon: key challenges for the radio-access network,” IEEE Veh. Technol. Mag. 8(3), 47–53 (2013).
[Crossref]

Khalily, M.

S. E. Alavi, I. S. Amiri, M. Khalily, N. Fisal, A. S. M. Supa’at, H. Ahmad, and S. M. Idrus, “W-Band OFDM for radio-over-fiber direct-detection link enabled by frequency nonupling optical up-conversion,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

Klaus, W.

Kozuch, W.

Lacaille, N.

P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filter bank theory,” IEEE T. Signal Process. 50(5), 1170–1183 (2002).

Legouable, R.

C. Lélé, J. P. Javaudin, R. Legouable, A. Skrzypczak, and P. Siohan, “Channel estimation methods for preamble‐based OFDM/OQAM modulations,” Eur. Trans. Telecommun. 19(7), 741–750 (2008).
[Crossref]

C. Lélé, P. Siohan, and R. Legouable, “2 dB better than CP-OFDM with OFDM/OQAM for preamble-based channel estimation,” in Proceedings of IEEE International Conference on Communications (IEEE, 2008), pp. 1302–1306.
[Crossref]

Lei, X.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, “A novel radio-over-fiber system with wavelength reuse for upstream data connection,” IEEE Photonics Technol. Lett. 19(6), 387–389 (2007).
[Crossref] [PubMed]

Lélé, C.

C. Lélé, J. P. Javaudin, R. Legouable, A. Skrzypczak, and P. Siohan, “Channel estimation methods for preamble‐based OFDM/OQAM modulations,” Eur. Trans. Telecommun. 19(7), 741–750 (2008).
[Crossref]

C. Lélé, P. Siohan, and R. Legouable, “2 dB better than CP-OFDM with OFDM/OQAM for preamble-based channel estimation,” in Proceedings of IEEE International Conference on Communications (IEEE, 2008), pp. 1302–1306.
[Crossref]

Li, B.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

B. Li, L. Gan, S. Fu, Z. Xu, M. Tang, W. Tong, and P. Shum, “The role of effective area in the design of weakly coupled MCF: optimization guidance and OSNR improvement,” IEEE J. Sel. Top Quantum. 22(2), 1–7 (2016).
[Crossref]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

Li, C.

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, and S. Yu, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
[Crossref] [PubMed]

Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, and S. Yu, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
[Crossref] [PubMed]

Li, H.

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, and S. Yu, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
[Crossref] [PubMed]

Li, Z.

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, and S. Yu, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
[Crossref] [PubMed]

Lin, R.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

Liu, D.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

L. Deng, X. Pang, Y. Zhao, M. B. Othman, J. B. Jensen, D. Zibar, X. Yu, D. Liu, and I. T. Monroy, “2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON,” Opt. Express 20(4), 4369–4375 (2012).
[Crossref] [PubMed]

Liu, S.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Llorente, R.

M. Morant, A. Macho, and R. Llorente, “On the suitability of multicore fiber for LTE-advanced MIMO optical fronthaul systems,” J. Lightwave Technol. 34(2), 676–682 (2016).
[Crossref]

A. Macho, M. Morant, and R. Llorente, “Experimental analysis of multicore crosstalk impact on MIMO LTE-a radio-over-fibre optical systems,” in Proceedings of IEEE International Conference on Communication Workshop (IEEE, 2015), pp. 329–333.
[Crossref]

Long, S.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

Lou, M.

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

Lozano, A.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Lu, J.

P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the Horizon: key challenges for the radio-access network,” IEEE Veh. Technol. Mag. 8(3), 47–53 (2013).
[Crossref]

Luis, R.

Luo, M.

Macho, A.

M. Morant, A. Macho, and R. Llorente, “On the suitability of multicore fiber for LTE-advanced MIMO optical fronthaul systems,” J. Lightwave Technol. 34(2), 676–682 (2016).
[Crossref]

A. Macho, M. Morant, and R. Llorente, “Experimental analysis of multicore crosstalk impact on MIMO LTE-a radio-over-fibre optical systems,” in Proceedings of IEEE International Conference on Communication Workshop (IEEE, 2015), pp. 329–333.
[Crossref]

Matsuo, S.

Mendinueta, J.

Monroy, I. T.

Morant, M.

M. Morant, A. Macho, and R. Llorente, “On the suitability of multicore fiber for LTE-advanced MIMO optical fronthaul systems,” J. Lightwave Technol. 34(2), 676–682 (2016).
[Crossref]

A. Macho, M. Morant, and R. Llorente, “Experimental analysis of multicore crosstalk impact on MIMO LTE-a radio-over-fibre optical systems,” in Proceedings of IEEE International Conference on Communication Workshop (IEEE, 2015), pp. 329–333.
[Crossref]

Mori, T.

Nakanishi, T.

Nkansah, A.

Othman, M. B.

Pang, X.

Penty, R. V.

Prince, K.

Puttnam, B.

Saitoh, K.

Sakamoto, T.

Sasaki, T.

Sasaoka, E.

Shao, Y.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, “A novel radio-over-fiber system with wavelength reuse for upstream data connection,” IEEE Photonics Technol. Lett. 19(6), 387–389 (2007).
[Crossref] [PubMed]

Shimakawa, O.

Shum, P.

B. Li, L. Gan, S. Fu, Z. Xu, M. Tang, W. Tong, and P. Shum, “The role of effective area in the design of weakly coupled MCF: optimization guidance and OSNR improvement,” IEEE J. Sel. Top Quantum. 22(2), 1–7 (2016).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Shum, P. P.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Siclet, C.

P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filter bank theory,” IEEE T. Signal Process. 50(5), 1170–1183 (2002).

Siohan, P.

C. Lélé, J. P. Javaudin, R. Legouable, A. Skrzypczak, and P. Siohan, “Channel estimation methods for preamble‐based OFDM/OQAM modulations,” Eur. Trans. Telecommun. 19(7), 741–750 (2008).
[Crossref]

P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filter bank theory,” IEEE T. Signal Process. 50(5), 1170–1183 (2002).

C. Lélé, P. Siohan, and R. Legouable, “2 dB better than CP-OFDM with OFDM/OQAM for preamble-based channel estimation,” in Proceedings of IEEE International Conference on Communications (IEEE, 2008), pp. 1302–1306.
[Crossref]

Skrzypczak, A.

C. Lélé, J. P. Javaudin, R. Legouable, A. Skrzypczak, and P. Siohan, “Channel estimation methods for preamble‐based OFDM/OQAM modulations,” Eur. Trans. Telecommun. 19(7), 741–750 (2008).
[Crossref]

Soong, A. C. K.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Stavroulaki, V.

P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the Horizon: key challenges for the radio-access network,” IEEE Veh. Technol. Mag. 8(3), 47–53 (2013).
[Crossref]

Supa’at, A. S. M.

S. E. Alavi, I. S. Amiri, M. Khalily, N. Fisal, A. S. M. Supa’at, H. Ahmad, and S. M. Idrus, “W-Band OFDM for radio-over-fiber direct-detection link enabled by frequency nonupling optical up-conversion,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

Takenaga, K.

Tang, M.

B. Li, L. Gan, S. Fu, Z. Xu, M. Tang, W. Tong, and P. Shum, “The role of effective area in the design of weakly coupled MCF: optimization guidance and OSNR improvement,” IEEE J. Sel. Top Quantum. 22(2), 1–7 (2016).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Taru, T.

Tong, W.

B. Li, L. Gan, S. Fu, Z. Xu, M. Tang, W. Tong, and P. Shum, “The role of effective area in the design of weakly coupled MCF: optimization guidance and OSNR improvement,” IEEE J. Sel. Top Quantum. 22(2), 1–7 (2016).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Tsagkaris, K.

P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the Horizon: key challenges for the radio-access network,” IEEE Veh. Technol. Mag. 8(3), 47–53 (2013).
[Crossref]

Tu, J.

Wada, M.

Wada, N.

Wake, D.

Wang, R.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

Wei, H.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Wen, H.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, “A novel radio-over-fiber system with wavelength reuse for upstream data connection,” IEEE Photonics Technol. Lett. 19(6), 387–389 (2007).
[Crossref] [PubMed]

Wen, S.

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, “A novel radio-over-fiber system with wavelength reuse for upstream data connection,” IEEE Photonics Technol. Lett. 19(6), 387–389 (2007).
[Crossref] [PubMed]

White, I. H.

Wilkinson, T. D.

Wu, Q.

Xiao, X.

Xiong, C.

P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the Horizon: key challenges for the radio-access network,” IEEE Veh. Technol. Mag. 8(3), 47–53 (2013).
[Crossref]

Xu, J.

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

Xu, Y.

Xu, Z.

B. Li, L. Gan, S. Fu, Z. Xu, M. Tang, W. Tong, and P. Shum, “The role of effective area in the design of weakly coupled MCF: optimization guidance and OSNR improvement,” IEEE J. Sel. Top Quantum. 22(2), 1–7 (2016).
[Crossref]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

Yamamoto, F.

Yamamoto, T.

Yang, Q.

Yao, J.

P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the Horizon: key challenges for the radio-access network,” IEEE Veh. Technol. Mag. 8(3), 47–53 (2013).
[Crossref]

Yu, S.

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, and S. Yu, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
[Crossref] [PubMed]

Yu, X.

Zhang, F.

Zhang, J. C.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Zhang, L.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

Zhang, R.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

Zhang, X.

Zhao, J.

Zhao, Y.

Zhou, H.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

Zibar, D.

Eur. Trans. Telecommun. (1)

C. Lélé, J. P. Javaudin, R. Legouable, A. Skrzypczak, and P. Siohan, “Channel estimation methods for preamble‐based OFDM/OQAM modulations,” Eur. Trans. Telecommun. 19(7), 741–750 (2008).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

IEEE J. Sel. Top Quantum. (1)

B. Li, L. Gan, S. Fu, Z. Xu, M. Tang, W. Tong, and P. Shum, “The role of effective area in the design of weakly coupled MCF: optimization guidance and OSNR improvement,” IEEE J. Sel. Top Quantum. 22(2), 1–7 (2016).
[Crossref]

IEEE Photonics J. (4)

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

S. E. Alavi, I. S. Amiri, M. Khalily, N. Fisal, A. S. M. Supa’at, H. Ahmad, and S. M. Idrus, “W-Band OFDM for radio-over-fiber direct-detection link enabled by frequency nonupling optical up-conversion,” IEEE Photonics J. 6(6), 1–7 (2014).
[Crossref]

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

IEEE Photonics Technol. Lett. (1)

L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, “A novel radio-over-fiber system with wavelength reuse for upstream data connection,” IEEE Photonics Technol. Lett. 19(6), 387–389 (2007).
[Crossref] [PubMed]

IEEE T. Signal Process. (1)

P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filter bank theory,” IEEE T. Signal Process. 50(5), 1170–1183 (2002).

IEEE Veh. Technol. Mag. (1)

P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the Horizon: key challenges for the radio-access network,” IEEE Veh. Technol. Mag. 8(3), 47–53 (2013).
[Crossref]

J. Lightwave Technol. (6)

Opt. Express (7)

J. Zhao, “DFT-based offset-QAM OFDM for optical communications,” Opt. Express 22(1), 1114–1126 (2014).
[Crossref] [PubMed]

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
[Crossref] [PubMed]

J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014).
[Crossref] [PubMed]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

L. Deng, X. Pang, Y. Zhao, M. B. Othman, J. B. Jensen, D. Zibar, X. Yu, D. Liu, and I. T. Monroy, “2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON,” Opt. Express 20(4), 4369–4375 (2012).
[Crossref] [PubMed]

M. B. Othman, L. Deng, X. Pang, J. Caminos, W. Kozuch, K. Prince, X. Yu, J. B. Jensen, and I. T. Monroy, “MIMO-OFDM WDM PON with DM-VCSEL for femtocells application,” Opt. Express 19(26), B537–B542 (2011).
[Crossref] [PubMed]

Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, and S. Yu, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
[Crossref] [PubMed]

Other (3)

A. Macho, M. Morant, and R. Llorente, “Experimental analysis of multicore crosstalk impact on MIMO LTE-a radio-over-fibre optical systems,” in Proceedings of IEEE International Conference on Communication Workshop (IEEE, 2015), pp. 329–333.
[Crossref]

C. Lélé, P. Siohan, and R. Legouable, “2 dB better than CP-OFDM with OFDM/OQAM for preamble-based channel estimation,” in Proceedings of IEEE International Conference on Communications (IEEE, 2008), pp. 1302–1306.
[Crossref]

J. Sakaguchi, W. Klaus, J. M. Delgado Mendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference, 2015 OSA Technical Digest Series (Optical Society of America, 2015), paper Th5C–2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Principle of DFT-based MIMO-OFDM/OQAM system.
Fig. 2
Fig. 2 Electrical spectra of (a) OFDM and (b) OFDM/OQAM signals.
Fig. 3
Fig. 3 Experimental setup for three groups of 2 × 2 MIMO-OFDM/OQAM signals over multi-core fiber system.
Fig. 4
Fig. 4 Measured BER performance versus optical received power for (a) OFDM/OQAM and OFDM and (b) three groups of 2 × 2 MIMO-OFDM/OQAM with 20km MCF and 0.4m wireless MIMO link (wi wl).
Fig. 5
Fig. 5 The experimental evaluation setup of multicore crosstalk impact on MIMO-OFDM/OQAM RoF system.
Fig. 6
Fig. 6 Experimental results of BER performance versus (a) inter-core crosstalk at received power of −7 dBm for MIMO and SISO configurations and (b) received optical power for MIMO and SISO configurations at different level of inter-core crosstalk.
Fig. 7
Fig. 7 Simulated results of BER performance versus (a) inter-core crosstalk at received optical power of −19 dBm for MIMO and SISO configurations and (b) received optical power for MIMO and SISO configurations at different level of inter-core crosstalk (XT).
Fig. 8
Fig. 8 Measured BER performance in the experiment versus received optical power for MIMO configuration with or without wireless link (wi wl and w/o wl) at inter-core crosstalk (XT) of −32.05 dB, −13.5 dB and −6.35 dB.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S( t )= m=0 M1 n=0 2N1 a m,n g( tn τ 0 ) e j2πm F 0 t e j π 2 (m+n2)
Y m,n = m=0 M1 n=0 2N1 y( t ) g * ( tn τ 0 ) e j2πm F 0 t e H m,n a m,n +j ( p,q ) Ω m,n 1,1 ,( p,q )( m,n ) H p,q a p,q G p,q m,n I m,n + ω m,n , H m,n ( a m,n +j I m,n )+ ω m,n
[ y 1 y 2 ]=[ H Fcore1 H Fcore2to1 H Fcore1to2 H Fcore2 ][ x 1 x 2 ]= H MCF [ x 1 x 2 ],
[ y 1 y 2 ]= H MCF H MIMO [ x 1 +j I 1 x 2 +j I 2 ]+[ w 1 w 2 ]=[ h 11 h 12 h 21 h 22 ][ x 1 +j I 1 x 2 +j I 2 ]+[ w 1 w 2 ],
[ y 11 y 12 y 21 y 22 ]=[ H 11 H 12 H 21 H 22 ][ p+j I p 11 p+j I p 12 p+j I p 21 p+j I p 22 ]+[ w 11 w 12 w 21 w 22 ],
[ H 11 H 12 H 21 H 22 ][ y 11 y 12 y 21 y 22 ] [ p+j I p 11 p+j I p 12 p+j I p 21 p+j I p 22 ] 1 .
[ r 1 r 2 ]={ [ H 11 H 12 H 21 H 22 ] 1 [ y 1 y 2 ] }.

Metrics