Abstract

High-speed scanning in optical coherence tomography (OCT) often comes with either compromises in image quality, the requirement for post-processing of the acquired images, or both. We report on distortion-free OCT volumetric imaging with a dual-axis micro-electro-mechanical system (MEMS)-based handheld imaging probe. In the context of an imaging probe with optics located between the 2D MEMS and the sample, we report in this paper on how pre-shaped open-loop input signals with tailored non-linear parts were implemented in a custom control board and, unlike the sinusoidal signals typically used for MEMS, achieved real-time distortion-free imaging without post-processing. The MEMS mirror was integrated into a compact, lightweight handheld probe. The MEMS scanner achieved a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Distortion-free imaging with no post-processing with a Gabor-domain optical coherence microscope (GD-OCM) with 2 μm axial and lateral resolutions over a field of view of 1 × 1 mm2 is demonstrated experimentally through volumetric images of a regular microscopic structure, an excised human cornea, and in vivo human skin.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of galvanometer scanning for optical coherence tomography

Virgil-Florin Duma, Patrice Tankam, Jinxin Huang, Jungeun Won, and Jannick P. Rolland
Appl. Opt. 54(17) 5495-5507 (2015)

Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror

Chen D. Lu, Martin F. Kraus, Benjamin Potsaid, Jonathan J. Liu, WooJhon Choi, Vijaysekhar Jayaraman, Alex E. Cable, Joachim Hornegger, Jay S. Duker, and James G. Fujimoto
Biomed. Opt. Express 5(1) 293-311 (2014)

In vivo 3D imaging of the human tympanic membrane using a wide-field diagonal-scanning optical coherence tomography probe

Kibeom Park, Nam Hyun Cho, Jeong Hun Jang, Sang Heun Lee, Pilun Kim, Mansik Jeon, Stephen A. Boppart, Jeehyun Kim, and Woonggyu Jung
Appl. Opt. 56(9) D115-D119 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
    [Crossref] [PubMed]
  2. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
    [Crossref] [PubMed]
  3. D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
    [Crossref] [PubMed]
  4. W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
    [Crossref] [PubMed]
  5. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
    [Crossref] [PubMed]
  6. V.-F. Duma, G. Dobre, D. Demian, R. Cernat, C. Sinescu, F. I. Topala, M. L. Negrutiu, Gh. Hutiu, A. Bradu, and A. G Podoleanu, “Handheld scanning probes for optical coherence tomography,” Rom. Rep. Phys. 67(4), 1346–1358 (2015).
  7. R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. G. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3(12), 3346–3356 (2012).
    [Crossref] [PubMed]
  8. M. Strathman, Y. Liu, E. G. Keeler, M. Song, U. Baran, J. Xi, M.-T. Sun, R. Wang, X. Li, and L. Y. Lin, “MEMS scanning micromirror for optical coherence tomography,” Biomed. Opt. Express 6(1), 211–224 (2015).
    [Crossref] [PubMed]
  9. D. Wang, P. Liang, S. Samuelson, H. Jia, J. Ma, and H. Xie, “Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors,” Biomed. Opt. Express 4(10), 2066–2077 (2013).
    [Crossref] [PubMed]
  10. Y. Li, “Beam deflection and scanning by two-mirror and two-axis systems of different architectures: a unified approach,” Appl. Opt. 47(32), 5976–5985 (2008).
    [Crossref] [PubMed]
  11. V.-F. Duma, P. Tankam, J. Huang, J. Won, and J. P. Rolland, “Optimization of galvanometer scanning for optical coherence tomography,” Appl. Opt. 54(17), 5495–5507 (2015).
    [Crossref] [PubMed]
  12. G. Sharafutdinova, J. Holdsworth, and D. van Helden, “Improved field scanner incorporating parabolic optics. Part 1: simulation,” Appl. Opt. 48(22), 4389–4396 (2009).
    [Crossref] [PubMed]
  13. D. Kessler, “Afocal beam relay,” United States patent US8531750 B2 (September 10, 2013).
  14. C. L. Arrasmith, D. L. Dickensheets, and A. Mahadevan-Jansen, “MEMS-based handheld confocal microscope for in-vivo skin imaging,” Opt. Express 18(4), 3805–3819 (2010).
    [Crossref] [PubMed]
  15. S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009).
    [Crossref] [PubMed]
  16. C. Canavesi, A. Cogliati, A. Hayes, A. P. Santhanam, P. Tankam, and J. P. Rolland, “Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology,” Proc. SPIE 9633, 96330O (2015).
    [Crossref]
  17. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K.-S. Lee, “Gabor-based fusion technique for Optical Coherence Microscopy,” Opt. Express 18(4), 3632–3642 (2010).
    [Crossref] [PubMed]
  18. K. S. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny-Turner spectrometer,” Opt. Express 18(22), 23378–23384 (2010).
    [Crossref] [PubMed]
  19. P. Tankam, A. P. Santhanam, K. S. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized Multi-Graphics Processing Unit Framework For High-Speed Gabor-Domain Optical Coherence Microscopy,” J. Biomed. Opt. 19(7), 071410 (2014).
    [Crossref] [PubMed]
  20. V.-F. Duma, “Optimal scanning function of a galvanometer scanner for an increased duty cycle,” Opt. Eng. 49(10), 103001 (2010).
    [Crossref]
  21. B. C. Kuo and F. Golnaraghi, Automatic Control Systems, 8th ed. (John Wiley, 2003).
  22. B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
    [Crossref]
  23. K. S. Lee, K. P. Thompson, P. Meemon, and J. P. Rolland, “Cellular resolution optical coherence microscopy with high acquisition speed for in-vivo human skin volumetric imaging,” Opt. Lett. 36(12), 2221–2223 (2011).
    [Crossref] [PubMed]
  24. P. Tankam, Z. He, Y.-J. Chu, J. Won, C. Canavesi, T. Lepine, H. B. Hindman, D. J. Topham, P. Gain, G. Thuret, and J. P. Rolland, “Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases,” Opt. Lett. 40(6), 1113–1116 (2015).
    [Crossref] [PubMed]
  25. P. Meemon, J. Yao, K.-S. Lee, K. P. Thompson, M. Ponting, E. Baer, and J. P. Rolland, “Optical Coherence Tomography Enabling Non Destructive Metrology of Layered Polymeric GRIN Material,” Sci. Rep. 3, 1709 (2013).
    [Crossref]
  26. P. Tankam, J. Won, C. Canavesi, I. Cox, and J. P. Rolland, “Optical assessment of soft contact lens edge-thickness,” Optometry Vis. Sci. 93(8) (2016, to be published).

2015 (6)

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

V.-F. Duma, G. Dobre, D. Demian, R. Cernat, C. Sinescu, F. I. Topala, M. L. Negrutiu, Gh. Hutiu, A. Bradu, and A. G Podoleanu, “Handheld scanning probes for optical coherence tomography,” Rom. Rep. Phys. 67(4), 1346–1358 (2015).

M. Strathman, Y. Liu, E. G. Keeler, M. Song, U. Baran, J. Xi, M.-T. Sun, R. Wang, X. Li, and L. Y. Lin, “MEMS scanning micromirror for optical coherence tomography,” Biomed. Opt. Express 6(1), 211–224 (2015).
[Crossref] [PubMed]

V.-F. Duma, P. Tankam, J. Huang, J. Won, and J. P. Rolland, “Optimization of galvanometer scanning for optical coherence tomography,” Appl. Opt. 54(17), 5495–5507 (2015).
[Crossref] [PubMed]

C. Canavesi, A. Cogliati, A. Hayes, A. P. Santhanam, P. Tankam, and J. P. Rolland, “Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology,” Proc. SPIE 9633, 96330O (2015).
[Crossref]

P. Tankam, Z. He, Y.-J. Chu, J. Won, C. Canavesi, T. Lepine, H. B. Hindman, D. J. Topham, P. Gain, G. Thuret, and J. P. Rolland, “Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases,” Opt. Lett. 40(6), 1113–1116 (2015).
[Crossref] [PubMed]

2014 (3)

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
[Crossref] [PubMed]

P. Tankam, A. P. Santhanam, K. S. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized Multi-Graphics Processing Unit Framework For High-Speed Gabor-Domain Optical Coherence Microscopy,” J. Biomed. Opt. 19(7), 071410 (2014).
[Crossref] [PubMed]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

2013 (2)

D. Wang, P. Liang, S. Samuelson, H. Jia, J. Ma, and H. Xie, “Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors,” Biomed. Opt. Express 4(10), 2066–2077 (2013).
[Crossref] [PubMed]

P. Meemon, J. Yao, K.-S. Lee, K. P. Thompson, M. Ponting, E. Baer, and J. P. Rolland, “Optical Coherence Tomography Enabling Non Destructive Metrology of Layered Polymeric GRIN Material,” Sci. Rep. 3, 1709 (2013).
[Crossref]

2012 (1)

2011 (2)

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

K. S. Lee, K. P. Thompson, P. Meemon, and J. P. Rolland, “Cellular resolution optical coherence microscopy with high acquisition speed for in-vivo human skin volumetric imaging,” Opt. Lett. 36(12), 2221–2223 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (2)

2008 (1)

2007 (1)

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

2005 (1)

B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
[Crossref]

Arrasmith, C. L.

Baer, E.

P. Meemon, J. Yao, K.-S. Lee, K. P. Thompson, M. Ponting, E. Baer, and J. P. Rolland, “Optical Coherence Tomography Enabling Non Destructive Metrology of Layered Polymeric GRIN Material,” Sci. Rep. 3, 1709 (2013).
[Crossref]

Baran, U.

Boppart, S. A.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Borovic, B.

B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
[Crossref]

Bradu, A.

V.-F. Duma, G. Dobre, D. Demian, R. Cernat, C. Sinescu, F. I. Topala, M. L. Negrutiu, Gh. Hutiu, A. Bradu, and A. G Podoleanu, “Handheld scanning probes for optical coherence tomography,” Rom. Rep. Phys. 67(4), 1346–1358 (2015).

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. G. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3(12), 3346–3356 (2012).
[Crossref] [PubMed]

Cable, A. E.

Cai, H.

B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
[Crossref]

Canavesi, C.

C. Canavesi, A. Cogliati, A. Hayes, A. P. Santhanam, P. Tankam, and J. P. Rolland, “Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology,” Proc. SPIE 9633, 96330O (2015).
[Crossref]

P. Tankam, Z. He, Y.-J. Chu, J. Won, C. Canavesi, T. Lepine, H. B. Hindman, D. J. Topham, P. Gain, G. Thuret, and J. P. Rolland, “Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases,” Opt. Lett. 40(6), 1113–1116 (2015).
[Crossref] [PubMed]

P. Tankam, A. P. Santhanam, K. S. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized Multi-Graphics Processing Unit Framework For High-Speed Gabor-Domain Optical Coherence Microscopy,” J. Biomed. Opt. 19(7), 071410 (2014).
[Crossref] [PubMed]

Cernat, R.

V.-F. Duma, G. Dobre, D. Demian, R. Cernat, C. Sinescu, F. I. Topala, M. L. Negrutiu, Gh. Hutiu, A. Bradu, and A. G Podoleanu, “Handheld scanning probes for optical coherence tomography,” Rom. Rep. Phys. 67(4), 1346–1358 (2015).

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. G. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3(12), 3346–3356 (2012).
[Crossref] [PubMed]

Chaney, E. J.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

Choi, W.

Chu, Y.-J.

Cogliati, A.

C. Canavesi, A. Cogliati, A. Hayes, A. P. Santhanam, P. Tankam, and J. P. Rolland, “Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology,” Proc. SPIE 9633, 96330O (2015).
[Crossref]

Demian, D.

V.-F. Duma, G. Dobre, D. Demian, R. Cernat, C. Sinescu, F. I. Topala, M. L. Negrutiu, Gh. Hutiu, A. Bradu, and A. G Podoleanu, “Handheld scanning probes for optical coherence tomography,” Rom. Rep. Phys. 67(4), 1346–1358 (2015).

Dickensheets, D. L.

Dobre, G.

V.-F. Duma, G. Dobre, D. Demian, R. Cernat, C. Sinescu, F. I. Topala, M. L. Negrutiu, Gh. Hutiu, A. Bradu, and A. G Podoleanu, “Handheld scanning probes for optical coherence tomography,” Rom. Rep. Phys. 67(4), 1346–1358 (2015).

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. G. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3(12), 3346–3356 (2012).
[Crossref] [PubMed]

Drexler, W.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Duker, J. S.

Duma, V.-F.

V.-F. Duma, P. Tankam, J. Huang, J. Won, and J. P. Rolland, “Optimization of galvanometer scanning for optical coherence tomography,” Appl. Opt. 54(17), 5495–5507 (2015).
[Crossref] [PubMed]

V.-F. Duma, G. Dobre, D. Demian, R. Cernat, C. Sinescu, F. I. Topala, M. L. Negrutiu, Gh. Hutiu, A. Bradu, and A. G Podoleanu, “Handheld scanning probes for optical coherence tomography,” Rom. Rep. Phys. 67(4), 1346–1358 (2015).

V.-F. Duma, “Optimal scanning function of a galvanometer scanner for an increased duty cycle,” Opt. Eng. 49(10), 103001 (2010).
[Crossref]

Fujimoto, J. G.

Gain, P.

Gelikonov, G.

Gelikonov, V.

Hayes, A.

C. Canavesi, A. Cogliati, A. Hayes, A. P. Santhanam, P. Tankam, and J. P. Rolland, “Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology,” Proc. SPIE 9633, 96330O (2015).
[Crossref]

He, Z.

Hindman, H. B.

Holdsworth, J.

Hornegger, J.

Huang, J.

Hutiu, Gh.

V.-F. Duma, G. Dobre, D. Demian, R. Cernat, C. Sinescu, F. I. Topala, M. L. Negrutiu, Gh. Hutiu, A. Bradu, and A. G Podoleanu, “Handheld scanning probes for optical coherence tomography,” Rom. Rep. Phys. 67(4), 1346–1358 (2015).

Izatt, J. A.

Jayaraman, V.

Jeon, M.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

Jia, H.

Jung, W.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

Kamali, T.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Keeler, E. G.

Keller, B.

Kim, J.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

Kraus, M. F.

Kumar, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Kuo, A. N.

LaRocca, F.

Lee, K. S.

Lee, K.-S.

P. Meemon, J. Yao, K.-S. Lee, K. P. Thompson, M. Ponting, E. Baer, and J. P. Rolland, “Optical Coherence Tomography Enabling Non Destructive Metrology of Layered Polymeric GRIN Material,” Sci. Rep. 3, 1709 (2013).
[Crossref]

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K.-S. Lee, “Gabor-based fusion technique for Optical Coherence Microscopy,” Opt. Express 18(4), 3632–3642 (2010).
[Crossref] [PubMed]

Leitgeb, R. A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Lepine, T.

Lewis, F. L.

B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
[Crossref]

Li, X.

Li, Y.

Liang, P.

Lin, L. Y.

Liu, A. Q.

B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
[Crossref]

Liu, J. J.

Liu, M.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Liu, Y.

Lu, C. D.

Ma, J.

Mahadevan-Jansen, A.

Marks, D. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Meemon, P.

Murali, S.

Nankivil, D.

Negrutiu, M. L.

V.-F. Duma, G. Dobre, D. Demian, R. Cernat, C. Sinescu, F. I. Topala, M. L. Negrutiu, Gh. Hutiu, A. Bradu, and A. G Podoleanu, “Handheld scanning probes for optical coherence tomography,” Rom. Rep. Phys. 67(4), 1346–1358 (2015).

Nguyen, F. T.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Oldenburg, A. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Pang, J.

Podoleanu, A. G

V.-F. Duma, G. Dobre, D. Demian, R. Cernat, C. Sinescu, F. I. Topala, M. L. Negrutiu, Gh. Hutiu, A. Bradu, and A. G Podoleanu, “Handheld scanning probes for optical coherence tomography,” Rom. Rep. Phys. 67(4), 1346–1358 (2015).

Podoleanu, A. G.

Ponting, M.

P. Meemon, J. Yao, K.-S. Lee, K. P. Thompson, M. Ponting, E. Baer, and J. P. Rolland, “Optical Coherence Tomography Enabling Non Destructive Metrology of Layered Polymeric GRIN Material,” Sci. Rep. 3, 1709 (2013).
[Crossref]

Popa, D.

B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
[Crossref]

Potsaid, B.

Rolland, J. P.

V.-F. Duma, P. Tankam, J. Huang, J. Won, and J. P. Rolland, “Optimization of galvanometer scanning for optical coherence tomography,” Appl. Opt. 54(17), 5495–5507 (2015).
[Crossref] [PubMed]

P. Tankam, Z. He, Y.-J. Chu, J. Won, C. Canavesi, T. Lepine, H. B. Hindman, D. J. Topham, P. Gain, G. Thuret, and J. P. Rolland, “Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases,” Opt. Lett. 40(6), 1113–1116 (2015).
[Crossref] [PubMed]

C. Canavesi, A. Cogliati, A. Hayes, A. P. Santhanam, P. Tankam, and J. P. Rolland, “Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology,” Proc. SPIE 9633, 96330O (2015).
[Crossref]

P. Tankam, A. P. Santhanam, K. S. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized Multi-Graphics Processing Unit Framework For High-Speed Gabor-Domain Optical Coherence Microscopy,” J. Biomed. Opt. 19(7), 071410 (2014).
[Crossref] [PubMed]

P. Meemon, J. Yao, K.-S. Lee, K. P. Thompson, M. Ponting, E. Baer, and J. P. Rolland, “Optical Coherence Tomography Enabling Non Destructive Metrology of Layered Polymeric GRIN Material,” Sci. Rep. 3, 1709 (2013).
[Crossref]

K. S. Lee, K. P. Thompson, P. Meemon, and J. P. Rolland, “Cellular resolution optical coherence microscopy with high acquisition speed for in-vivo human skin volumetric imaging,” Opt. Lett. 36(12), 2221–2223 (2011).
[Crossref] [PubMed]

K. S. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny-Turner spectrometer,” Opt. Express 18(22), 23378–23384 (2010).
[Crossref] [PubMed]

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K.-S. Lee, “Gabor-based fusion technique for Optical Coherence Microscopy,” Opt. Express 18(4), 3632–3642 (2010).
[Crossref] [PubMed]

S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009).
[Crossref] [PubMed]

Samuelson, S.

Santhanam, A. P.

C. Canavesi, A. Cogliati, A. Hayes, A. P. Santhanam, P. Tankam, and J. P. Rolland, “Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology,” Proc. SPIE 9633, 96330O (2015).
[Crossref]

P. Tankam, A. P. Santhanam, K. S. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized Multi-Graphics Processing Unit Framework For High-Speed Gabor-Domain Optical Coherence Microscopy,” J. Biomed. Opt. 19(7), 071410 (2014).
[Crossref] [PubMed]

Sharafutdinova, G.

Sinescu, C.

V.-F. Duma, G. Dobre, D. Demian, R. Cernat, C. Sinescu, F. I. Topala, M. L. Negrutiu, Gh. Hutiu, A. Bradu, and A. G Podoleanu, “Handheld scanning probes for optical coherence tomography,” Rom. Rep. Phys. 67(4), 1346–1358 (2015).

Song, M.

Stewart, C. N.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

Strathman, M.

Sun, M.-T.

Tadrous, P. J.

Tankam, P.

V.-F. Duma, P. Tankam, J. Huang, J. Won, and J. P. Rolland, “Optimization of galvanometer scanning for optical coherence tomography,” Appl. Opt. 54(17), 5495–5507 (2015).
[Crossref] [PubMed]

P. Tankam, Z. He, Y.-J. Chu, J. Won, C. Canavesi, T. Lepine, H. B. Hindman, D. J. Topham, P. Gain, G. Thuret, and J. P. Rolland, “Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases,” Opt. Lett. 40(6), 1113–1116 (2015).
[Crossref] [PubMed]

C. Canavesi, A. Cogliati, A. Hayes, A. P. Santhanam, P. Tankam, and J. P. Rolland, “Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology,” Proc. SPIE 9633, 96330O (2015).
[Crossref]

P. Tankam, A. P. Santhanam, K. S. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized Multi-Graphics Processing Unit Framework For High-Speed Gabor-Domain Optical Coherence Microscopy,” J. Biomed. Opt. 19(7), 071410 (2014).
[Crossref] [PubMed]

Tatla, T. S.

Thompson, K. P.

Thuret, G.

Topala, F. I.

V.-F. Duma, G. Dobre, D. Demian, R. Cernat, C. Sinescu, F. I. Topala, M. L. Negrutiu, Gh. Hutiu, A. Bradu, and A. G Podoleanu, “Handheld scanning probes for optical coherence tomography,” Rom. Rep. Phys. 67(4), 1346–1358 (2015).

Topham, D. J.

Unterhuber, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

van Helden, D.

Wang, D.

Wang, R.

Waterman, G.

Won, J.

Xi, J.

Xie, H.

Yao, J.

P. Meemon, J. Yao, K.-S. Lee, K. P. Thompson, M. Ponting, E. Baer, and J. P. Rolland, “Optical Coherence Tomography Enabling Non Destructive Metrology of Layered Polymeric GRIN Material,” Sci. Rep. 3, 1709 (2013).
[Crossref]

Zysk, A. M.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (5)

IEEE Trans. Biomed. Eng. (1)

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

P. Tankam, A. P. Santhanam, K. S. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized Multi-Graphics Processing Unit Framework For High-Speed Gabor-Domain Optical Coherence Microscopy,” J. Biomed. Opt. 19(7), 071410 (2014).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
[Crossref]

Opt. Eng. (1)

V.-F. Duma, “Optimal scanning function of a galvanometer scanner for an increased duty cycle,” Opt. Eng. 49(10), 103001 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (1)

C. Canavesi, A. Cogliati, A. Hayes, A. P. Santhanam, P. Tankam, and J. P. Rolland, “Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology,” Proc. SPIE 9633, 96330O (2015).
[Crossref]

Rom. Rep. Phys. (1)

V.-F. Duma, G. Dobre, D. Demian, R. Cernat, C. Sinescu, F. I. Topala, M. L. Negrutiu, Gh. Hutiu, A. Bradu, and A. G Podoleanu, “Handheld scanning probes for optical coherence tomography,” Rom. Rep. Phys. 67(4), 1346–1358 (2015).

Sci. Rep. (1)

P. Meemon, J. Yao, K.-S. Lee, K. P. Thompson, M. Ponting, E. Baer, and J. P. Rolland, “Optical Coherence Tomography Enabling Non Destructive Metrology of Layered Polymeric GRIN Material,” Sci. Rep. 3, 1709 (2013).
[Crossref]

Other (3)

P. Tankam, J. Won, C. Canavesi, I. Cox, and J. P. Rolland, “Optical assessment of soft contact lens edge-thickness,” Optometry Vis. Sci. 93(8) (2016, to be published).

B. C. Kuo and F. Golnaraghi, Automatic Control Systems, 8th ed. (John Wiley, 2003).

D. Kessler, “Afocal beam relay,” United States patent US8531750 B2 (September 10, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

MEMS-based Gabor-Domain Optical Coherence Microscope (GD-OCM).

Fig. 2
Fig. 2

Handheld probe for GD-OCM with a 2D GS (a) and with a 2D MEMS scanner (b), the latter also rendered in (c).

Fig. 3
Fig. 3

Input (a) and output (b) scanning signals of the fast axis of the MEMS, with highlighted portion of (b) shown in (c): (1) purely triangular and (2) custom pre-shaped. Notations: T, scan time period, equal to 1/fs, where fs is the scan frequency of the MEMS scanner for (1); Tf, scan time period for (2); ta, active scan time (for which the scanning is performed with constant speed); Δt, duration of the stop-and-turn part of the input signal; θm, scan amplitude; ƞ = 2ta/T, ideal duty cycle of the scanning process.

Fig. 4
Fig. 4

GD-OCM images obtained with the MEMS-based handheld scanning probe of a 1 × 1 × 0.6 mm3 volume of a regular microscopic structure – en face view (a) and volumetric view (b). The images were obtained: (1) with a purely triangular and (2) with a pre-shaped input signal.

Fig. 5
Fig. 5

(a, c) 2D and (b, d) 3D views of a 1 × 1 × 0.6 mm3 image of human skin acquired with GD-OCM in less than 2 minutes. The plane of the en face view (c) is shown in red in the side view (a) and in the 3D image (b).

Fig. 6
Fig. 6

(a) Volumetric image acquired with GD-OCM of an excised human cornea. The 1 × 1 mm2 en face views in (b-d) correspond to increasing depths inside the tissue sample. In particular, the transition between the epithelium and the stroma in correspondence of Bowman’s layer is shown in (b). Stromal keratocytes in (c) and endothelial cells in (d) are readily visible.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ ¨ +2ξ ω 0 θ ˙ + ω 0 2 θ=T(t)J,
θ(t)=ptpτ[ 1 exp(ξ ω 0 t) 2 1 ξ 2 sin( 1 ξ 2 ω 0 t+ϕ) ]

Metrics