Abstract

The performance of a Talbot-Lau interferometer depends to a great extent on its visibility. This means, to obtain high quality phase-contrast and dark-field images a high visibility is mandatory. Several parameters influence the visibility of such a system, like for example the x-ray spectrum, the inter-grating distances or the parameters of the three gratings. In this multidimensional space, wave field simulations help to find the optimal combination of the grating specifications to construct a setup with a high visibility while retaining a fixed angular sensitivity. In this work we specifically analyzed the influence of the G1 grating duty cycle in simulations and experiments. We show that there is a lot of room for improvement by varying the duty cycle of the phase-shifting grating G1. As a result, by employing a third-integer duty cycle we can increase the visibility to up to 53 % in a laboratory setup with a polychromatic spectrum. The achieved visibility is more than two times higher compared to the result with a standard-type setup. This visibility gain allows a dose reduction by a factor of 5 preserving the same image quality.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Choosing sensitivity to reduce X-ray dose in medical phase contrast imaging

Oliver Preusche
Opt. Express 26(8) 10339-10357 (2018)

Non-binary phase gratings for x-ray imaging with a compact Talbot interferometer

Andre Yaroshenko, Martin Bech, Guillaume Potdevin, Andreas Malecki, Thomas Biernath, Johannes Wolf, Arne Tapfer, Markus Schüttler, Jan Meiser, Danays Kunka, Maximilian Amberger, Juergen Mohr, and Franz Pfeiffer
Opt. Express 22(1) 547-556 (2014)

Low-dose, phase-contrast mammography with high signal-to-noise ratio

Lukas B. Gromann, Dirk Bequé, Kai Scherer, Konstantin Willer, Lorenz Birnbacher, Marian Willner, Julia Herzen, Susanne Grandl, Karin Hellerhoff, Jonathan I. Sperl, Franz Pfeiffer, and Cristina Cozzini
Biomed. Opt. Express 7(2) 381-391 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58, 1–36 (2012).
    [PubMed]
  2. A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007).
    [Crossref]
  3. A. Momose, “Phase-sensitive imaging and phase tomography using X-ray interferometers,” Opt. Express 11(19), 2303–2314 (2003).
    [Crossref] [PubMed]
  4. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
    [Crossref] [PubMed]
  5. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
    [Crossref]
  6. T. Koehler, H. Daerr, G. Martens, N. Kuhn, S. Loescher, U. Stevendaal, and E. Roessl, “Slit-scanning differential x-ray phase-contrast mammography: Proof-of-concept experimental studies,” Med. Phys. 42(4), 1959 (2015).
    [Crossref] [PubMed]
  7. T. Donath, F. Pfeiffer, O. Bunk, C. Grünzweig, E. Hempel, S. Popescu, P. Vock, and C. David, “Toward clinical x-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen,” Invest. Rad. 45 (7), 445–452 (2010).
  8. M. Stampanoni, Z. Wang, T. Thring, C. David, E. Roessl, M. Trippel, R. Kubik-Huch, G. Singer, M. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Rad. 46(12), 801–806 (2011).
    [Crossref]
  9. T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
    [Crossref] [PubMed]
  10. M. Bech, A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyndonckx, A. Sasov, and F. Pfeiffer, “In-vivo dark-field and phase-contrast x-ray imaging,” Nat. Sci. Rep. 3, 3209 (2013).
  11. K. Li, Y. Ge, J. Garrett, N. Bevins, J. Zambelli, and G.-H. Chen, “Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies,” Med. Phys. 41, 011903 (2014).
    [Crossref] [PubMed]
  12. V. Revol, C. Kottler, R. Kaufmann, A. Neels, and A. Dommann, “Orientation-selective X-ray dark field imaging of ordered systems,” J. Appl. Phys. 112, 114903 (2012).
    [Crossref]
  13. F. Bayer, S. Zabler, C. Brendel, G. Pelzer, J. Rieger, A. Ritter, T. Weber, T. Michel, and G. Anton, “Projection angle dependence in grating-based X-ray dark-field imaging of ordered structures,” Opt. Express 21(17), 19922–19933 (2013).
    [Crossref] [PubMed]
  14. A. Malecki, E. Eggl, F. Schaff, G. Potdevin, T. Baum, E. Garcia, J. Bauer, and F. Pfeiffer, “Correlation of x-ray dark-field radiography to mechanical sample properties,” Microsc. Microanal. 20(5), 1528–1533 (2014).
    [Crossref] [PubMed]
  15. F. Yang, F. Prade, M. Griffa, I. Jerjen, C. Di Bella, J. Herzen, A. Sarapata, F. Pfeiffer, and P. Lura, “Dark-field X-ray imaging of unsaturated water transport in porous materials,” Appl. Phys. Lett. 105, 154105 (2014).
    [Crossref]
  16. C. Hannesschläger, V. Revol, B. Plank, D. Salaberger, and J. Kastner, “Fibre structure characterisation of injection moulded short fibre-reinforced polymers by X-ray scatter dark field tomography,” Case Studies Nondestructive Testing Eval. 3, 34–41 (2015).
    [Crossref]
  17. V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81, 073709 (2010).
    [Crossref] [PubMed]
  18. T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys. 38, 4133–4140 (2011).
    [Crossref] [PubMed]
  19. T. Weber, F. Bayer, W. Haas, G. Pelzer, J. Rieger, A. Ritter, L. Wucherer, J. Durst, T. Michel, and G. Anton, “Energy-dependent visibility measurements, their simulation and optimisation of an X-ray Talbot-Lau Interferometer,” JINST 7, P02003 (2012).
    [Crossref]
  20. A. Hipp, M. Willner, J. Herzen, S. Auweter, M. Chabior, J. Meiser, K. Achterhold, J. Mohr, and F. Pfeiffer, “Energy-resolved visibility analysis of grating interferometers operated at polychromatic X-ray sources,” Opt. Express 22(25), 30394–30409 (2014).
    [Crossref]
  21. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mat. 7, 134–137 (2008).
    [Crossref]
  22. T. Suleski, “Generation of Lohmann images from binary-phase Talbot array illuminators,” Appl. Opt. 36(20), 4686–4691 (1997).
    [Crossref] [PubMed]
  23. A. Ritter, P. Bartl, F. Bayer, K. Godel, W. Haas, T. Michel, G. Pelzer, J. Rieger, T. Weber, A. Zang, and G. Anton, “Simulation framework for coherent and incoherent X-ray imaging and its application in Talbot-Lau dark-field imaging,” Opt. Express 22(19), 23276–23289 (2014).
    [Crossref] [PubMed]
  24. K. Morgan, K. Siu, and D. Paganin, “The projection approximation and edge contrast for x-ray propagationbased phase contrast imaging of a cylindrical edge,” Opt. Express 18(10), 9865–9878 (2010).
    [Crossref] [PubMed]
  25. Siemens.com, “Simulation of X-ray Spectra,” (Siemens.com, 2016), www.siemens.com/x-ray-spectra
  26. J. Kenntner, V. Altapova, T. Grund, F. Pantenburg, J. Meiser, T. Baumbach, and J. Mohr, “Fabrication and characterization of analyzer gratings with high aspect ratios for phase contrast imaging using a Talbot interferometer,” AIP Conf. Proc. 1437, 89 (2012).
    [Crossref]
  27. F. Koch, F. Marschall, J. Meiser, O. Márkus, A. Faisal, T. Schröter, P. Meyer, D. Kunka, A. Last, and J. Mohr, “Increasing the aperture of x-ray mosaic lenses by freeze drying,” J. Micromech. Microeng. 25(7), 075015 (2015).
    [Crossref]
  28. P. Meyer and F. Pantenburg, “A Monte Carlo study of the primary absorbed energy redistribution in X-ray lithography,” Microsystem Technologies 20(10), 1881–1889 (2013).
    [Crossref]

2015 (3)

T. Koehler, H. Daerr, G. Martens, N. Kuhn, S. Loescher, U. Stevendaal, and E. Roessl, “Slit-scanning differential x-ray phase-contrast mammography: Proof-of-concept experimental studies,” Med. Phys. 42(4), 1959 (2015).
[Crossref] [PubMed]

C. Hannesschläger, V. Revol, B. Plank, D. Salaberger, and J. Kastner, “Fibre structure characterisation of injection moulded short fibre-reinforced polymers by X-ray scatter dark field tomography,” Case Studies Nondestructive Testing Eval. 3, 34–41 (2015).
[Crossref]

F. Koch, F. Marschall, J. Meiser, O. Márkus, A. Faisal, T. Schröter, P. Meyer, D. Kunka, A. Last, and J. Mohr, “Increasing the aperture of x-ray mosaic lenses by freeze drying,” J. Micromech. Microeng. 25(7), 075015 (2015).
[Crossref]

2014 (5)

A. Ritter, P. Bartl, F. Bayer, K. Godel, W. Haas, T. Michel, G. Pelzer, J. Rieger, T. Weber, A. Zang, and G. Anton, “Simulation framework for coherent and incoherent X-ray imaging and its application in Talbot-Lau dark-field imaging,” Opt. Express 22(19), 23276–23289 (2014).
[Crossref] [PubMed]

A. Hipp, M. Willner, J. Herzen, S. Auweter, M. Chabior, J. Meiser, K. Achterhold, J. Mohr, and F. Pfeiffer, “Energy-resolved visibility analysis of grating interferometers operated at polychromatic X-ray sources,” Opt. Express 22(25), 30394–30409 (2014).
[Crossref]

A. Malecki, E. Eggl, F. Schaff, G. Potdevin, T. Baum, E. Garcia, J. Bauer, and F. Pfeiffer, “Correlation of x-ray dark-field radiography to mechanical sample properties,” Microsc. Microanal. 20(5), 1528–1533 (2014).
[Crossref] [PubMed]

F. Yang, F. Prade, M. Griffa, I. Jerjen, C. Di Bella, J. Herzen, A. Sarapata, F. Pfeiffer, and P. Lura, “Dark-field X-ray imaging of unsaturated water transport in porous materials,” Appl. Phys. Lett. 105, 154105 (2014).
[Crossref]

K. Li, Y. Ge, J. Garrett, N. Bevins, J. Zambelli, and G.-H. Chen, “Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies,” Med. Phys. 41, 011903 (2014).
[Crossref] [PubMed]

2013 (4)

F. Bayer, S. Zabler, C. Brendel, G. Pelzer, J. Rieger, A. Ritter, T. Weber, T. Michel, and G. Anton, “Projection angle dependence in grating-based X-ray dark-field imaging of ordered structures,” Opt. Express 21(17), 19922–19933 (2013).
[Crossref] [PubMed]

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

M. Bech, A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyndonckx, A. Sasov, and F. Pfeiffer, “In-vivo dark-field and phase-contrast x-ray imaging,” Nat. Sci. Rep. 3, 3209 (2013).

P. Meyer and F. Pantenburg, “A Monte Carlo study of the primary absorbed energy redistribution in X-ray lithography,” Microsystem Technologies 20(10), 1881–1889 (2013).
[Crossref]

2012 (4)

T. Weber, F. Bayer, W. Haas, G. Pelzer, J. Rieger, A. Ritter, L. Wucherer, J. Durst, T. Michel, and G. Anton, “Energy-dependent visibility measurements, their simulation and optimisation of an X-ray Talbot-Lau Interferometer,” JINST 7, P02003 (2012).
[Crossref]

J. Kenntner, V. Altapova, T. Grund, F. Pantenburg, J. Meiser, T. Baumbach, and J. Mohr, “Fabrication and characterization of analyzer gratings with high aspect ratios for phase contrast imaging using a Talbot interferometer,” AIP Conf. Proc. 1437, 89 (2012).
[Crossref]

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58, 1–36 (2012).
[PubMed]

V. Revol, C. Kottler, R. Kaufmann, A. Neels, and A. Dommann, “Orientation-selective X-ray dark field imaging of ordered systems,” J. Appl. Phys. 112, 114903 (2012).
[Crossref]

2011 (2)

M. Stampanoni, Z. Wang, T. Thring, C. David, E. Roessl, M. Trippel, R. Kubik-Huch, G. Singer, M. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Rad. 46(12), 801–806 (2011).
[Crossref]

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys. 38, 4133–4140 (2011).
[Crossref] [PubMed]

2010 (3)

K. Morgan, K. Siu, and D. Paganin, “The projection approximation and edge contrast for x-ray propagationbased phase contrast imaging of a cylindrical edge,” Opt. Express 18(10), 9865–9878 (2010).
[Crossref] [PubMed]

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81, 073709 (2010).
[Crossref] [PubMed]

T. Donath, F. Pfeiffer, O. Bunk, C. Grünzweig, E. Hempel, S. Popescu, P. Vock, and C. David, “Toward clinical x-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen,” Invest. Rad. 45 (7), 445–452 (2010).

2008 (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mat. 7, 134–137 (2008).
[Crossref]

2007 (1)

A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007).
[Crossref]

2006 (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

2005 (1)

2003 (1)

1997 (1)

Achterhold, K.

Altapova, V.

J. Kenntner, V. Altapova, T. Grund, F. Pantenburg, J. Meiser, T. Baumbach, and J. Mohr, “Fabrication and characterization of analyzer gratings with high aspect ratios for phase contrast imaging using a Talbot interferometer,” AIP Conf. Proc. 1437, 89 (2012).
[Crossref]

Anton, G.

A. Ritter, P. Bartl, F. Bayer, K. Godel, W. Haas, T. Michel, G. Pelzer, J. Rieger, T. Weber, A. Zang, and G. Anton, “Simulation framework for coherent and incoherent X-ray imaging and its application in Talbot-Lau dark-field imaging,” Opt. Express 22(19), 23276–23289 (2014).
[Crossref] [PubMed]

F. Bayer, S. Zabler, C. Brendel, G. Pelzer, J. Rieger, A. Ritter, T. Weber, T. Michel, and G. Anton, “Projection angle dependence in grating-based X-ray dark-field imaging of ordered structures,” Opt. Express 21(17), 19922–19933 (2013).
[Crossref] [PubMed]

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

T. Weber, F. Bayer, W. Haas, G. Pelzer, J. Rieger, A. Ritter, L. Wucherer, J. Durst, T. Michel, and G. Anton, “Energy-dependent visibility measurements, their simulation and optimisation of an X-ray Talbot-Lau Interferometer,” JINST 7, P02003 (2012).
[Crossref]

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys. 38, 4133–4140 (2011).
[Crossref] [PubMed]

Auweter, S.

Bartl, P.

Bauer, J.

A. Malecki, E. Eggl, F. Schaff, G. Potdevin, T. Baum, E. Garcia, J. Bauer, and F. Pfeiffer, “Correlation of x-ray dark-field radiography to mechanical sample properties,” Microsc. Microanal. 20(5), 1528–1533 (2014).
[Crossref] [PubMed]

Baum, T.

A. Malecki, E. Eggl, F. Schaff, G. Potdevin, T. Baum, E. Garcia, J. Bauer, and F. Pfeiffer, “Correlation of x-ray dark-field radiography to mechanical sample properties,” Microsc. Microanal. 20(5), 1528–1533 (2014).
[Crossref] [PubMed]

Baumbach, T.

J. Kenntner, V. Altapova, T. Grund, F. Pantenburg, J. Meiser, T. Baumbach, and J. Mohr, “Fabrication and characterization of analyzer gratings with high aspect ratios for phase contrast imaging using a Talbot interferometer,” AIP Conf. Proc. 1437, 89 (2012).
[Crossref]

Bayer, F.

A. Ritter, P. Bartl, F. Bayer, K. Godel, W. Haas, T. Michel, G. Pelzer, J. Rieger, T. Weber, A. Zang, and G. Anton, “Simulation framework for coherent and incoherent X-ray imaging and its application in Talbot-Lau dark-field imaging,” Opt. Express 22(19), 23276–23289 (2014).
[Crossref] [PubMed]

F. Bayer, S. Zabler, C. Brendel, G. Pelzer, J. Rieger, A. Ritter, T. Weber, T. Michel, and G. Anton, “Projection angle dependence in grating-based X-ray dark-field imaging of ordered structures,” Opt. Express 21(17), 19922–19933 (2013).
[Crossref] [PubMed]

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

T. Weber, F. Bayer, W. Haas, G. Pelzer, J. Rieger, A. Ritter, L. Wucherer, J. Durst, T. Michel, and G. Anton, “Energy-dependent visibility measurements, their simulation and optimisation of an X-ray Talbot-Lau Interferometer,” JINST 7, P02003 (2012).
[Crossref]

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys. 38, 4133–4140 (2011).
[Crossref] [PubMed]

Bech, M.

M. Bech, A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyndonckx, A. Sasov, and F. Pfeiffer, “In-vivo dark-field and phase-contrast x-ray imaging,” Nat. Sci. Rep. 3, 3209 (2013).

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mat. 7, 134–137 (2008).
[Crossref]

Beckmann, M.

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

Bevins, N.

K. Li, Y. Ge, J. Garrett, N. Bevins, J. Zambelli, and G.-H. Chen, “Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies,” Med. Phys. 41, 011903 (2014).
[Crossref] [PubMed]

Bravin, A.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58, 1–36 (2012).
[PubMed]

Brendel, C.

Brönnimann, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mat. 7, 134–137 (2008).
[Crossref]

Bruyndonckx, P.

M. Bech, A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyndonckx, A. Sasov, and F. Pfeiffer, “In-vivo dark-field and phase-contrast x-ray imaging,” Nat. Sci. Rep. 3, 3209 (2013).

Bunk, O.

T. Donath, F. Pfeiffer, O. Bunk, C. Grünzweig, E. Hempel, S. Popescu, P. Vock, and C. David, “Toward clinical x-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen,” Invest. Rad. 45 (7), 445–452 (2010).

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mat. 7, 134–137 (2008).
[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Chabior, M.

Chen, G.-H.

K. Li, Y. Ge, J. Garrett, N. Bevins, J. Zambelli, and G.-H. Chen, “Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies,” Med. Phys. 41, 011903 (2014).
[Crossref] [PubMed]

Cloetens, P.

Coan, P.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58, 1–36 (2012).
[PubMed]

Daerr, H.

T. Koehler, H. Daerr, G. Martens, N. Kuhn, S. Loescher, U. Stevendaal, and E. Roessl, “Slit-scanning differential x-ray phase-contrast mammography: Proof-of-concept experimental studies,” Med. Phys. 42(4), 1959 (2015).
[Crossref] [PubMed]

David, C.

M. Stampanoni, Z. Wang, T. Thring, C. David, E. Roessl, M. Trippel, R. Kubik-Huch, G. Singer, M. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Rad. 46(12), 801–806 (2011).
[Crossref]

T. Donath, F. Pfeiffer, O. Bunk, C. Grünzweig, E. Hempel, S. Popescu, P. Vock, and C. David, “Toward clinical x-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen,” Invest. Rad. 45 (7), 445–452 (2010).

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mat. 7, 134–137 (2008).
[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
[Crossref] [PubMed]

Di Bella, C.

F. Yang, F. Prade, M. Griffa, I. Jerjen, C. Di Bella, J. Herzen, A. Sarapata, F. Pfeiffer, and P. Lura, “Dark-field X-ray imaging of unsaturated water transport in porous materials,” Appl. Phys. Lett. 105, 154105 (2014).
[Crossref]

Diaz, A.

Dommann, A.

V. Revol, C. Kottler, R. Kaufmann, A. Neels, and A. Dommann, “Orientation-selective X-ray dark field imaging of ordered systems,” J. Appl. Phys. 112, 114903 (2012).
[Crossref]

Donath, T.

T. Donath, F. Pfeiffer, O. Bunk, C. Grünzweig, E. Hempel, S. Popescu, P. Vock, and C. David, “Toward clinical x-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen,” Invest. Rad. 45 (7), 445–452 (2010).

Durst, J.

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

T. Weber, F. Bayer, W. Haas, G. Pelzer, J. Rieger, A. Ritter, L. Wucherer, J. Durst, T. Michel, and G. Anton, “Energy-dependent visibility measurements, their simulation and optimisation of an X-ray Talbot-Lau Interferometer,” JINST 7, P02003 (2012).
[Crossref]

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys. 38, 4133–4140 (2011).
[Crossref] [PubMed]

Eggl, E.

A. Malecki, E. Eggl, F. Schaff, G. Potdevin, T. Baum, E. Garcia, J. Bauer, and F. Pfeiffer, “Correlation of x-ray dark-field radiography to mechanical sample properties,” Microsc. Microanal. 20(5), 1528–1533 (2014).
[Crossref] [PubMed]

Eikenberry, E.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mat. 7, 134–137 (2008).
[Crossref]

Faisal, A.

F. Koch, F. Marschall, J. Meiser, O. Márkus, A. Faisal, T. Schröter, P. Meyer, D. Kunka, A. Last, and J. Mohr, “Increasing the aperture of x-ray mosaic lenses by freeze drying,” J. Micromech. Microeng. 25(7), 075015 (2015).
[Crossref]

Fasching, P.

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

Garcia, E.

A. Malecki, E. Eggl, F. Schaff, G. Potdevin, T. Baum, E. Garcia, J. Bauer, and F. Pfeiffer, “Correlation of x-ray dark-field radiography to mechanical sample properties,” Microsc. Microanal. 20(5), 1528–1533 (2014).
[Crossref] [PubMed]

Garrett, J.

K. Li, Y. Ge, J. Garrett, N. Bevins, J. Zambelli, and G.-H. Chen, “Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies,” Med. Phys. 41, 011903 (2014).
[Crossref] [PubMed]

Ge, Y.

K. Li, Y. Ge, J. Garrett, N. Bevins, J. Zambelli, and G.-H. Chen, “Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies,” Med. Phys. 41, 011903 (2014).
[Crossref] [PubMed]

Godel, K.

Griffa, M.

F. Yang, F. Prade, M. Griffa, I. Jerjen, C. Di Bella, J. Herzen, A. Sarapata, F. Pfeiffer, and P. Lura, “Dark-field X-ray imaging of unsaturated water transport in porous materials,” Appl. Phys. Lett. 105, 154105 (2014).
[Crossref]

Grund, T.

J. Kenntner, V. Altapova, T. Grund, F. Pantenburg, J. Meiser, T. Baumbach, and J. Mohr, “Fabrication and characterization of analyzer gratings with high aspect ratios for phase contrast imaging using a Talbot interferometer,” AIP Conf. Proc. 1437, 89 (2012).
[Crossref]

Grünzweig, C.

T. Donath, F. Pfeiffer, O. Bunk, C. Grünzweig, E. Hempel, S. Popescu, P. Vock, and C. David, “Toward clinical x-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen,” Invest. Rad. 45 (7), 445–452 (2010).

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mat. 7, 134–137 (2008).
[Crossref]

Haas, W.

A. Ritter, P. Bartl, F. Bayer, K. Godel, W. Haas, T. Michel, G. Pelzer, J. Rieger, T. Weber, A. Zang, and G. Anton, “Simulation framework for coherent and incoherent X-ray imaging and its application in Talbot-Lau dark-field imaging,” Opt. Express 22(19), 23276–23289 (2014).
[Crossref] [PubMed]

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

T. Weber, F. Bayer, W. Haas, G. Pelzer, J. Rieger, A. Ritter, L. Wucherer, J. Durst, T. Michel, and G. Anton, “Energy-dependent visibility measurements, their simulation and optimisation of an X-ray Talbot-Lau Interferometer,” JINST 7, P02003 (2012).
[Crossref]

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys. 38, 4133–4140 (2011).
[Crossref] [PubMed]

Hannesschläger, C.

C. Hannesschläger, V. Revol, B. Plank, D. Salaberger, and J. Kastner, “Fibre structure characterisation of injection moulded short fibre-reinforced polymers by X-ray scatter dark field tomography,” Case Studies Nondestructive Testing Eval. 3, 34–41 (2015).
[Crossref]

Hartmann, A.

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

Hauser, N.

M. Stampanoni, Z. Wang, T. Thring, C. David, E. Roessl, M. Trippel, R. Kubik-Huch, G. Singer, M. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Rad. 46(12), 801–806 (2011).
[Crossref]

Hempel, E.

T. Donath, F. Pfeiffer, O. Bunk, C. Grünzweig, E. Hempel, S. Popescu, P. Vock, and C. David, “Toward clinical x-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen,” Invest. Rad. 45 (7), 445–452 (2010).

Herzen, J.

F. Yang, F. Prade, M. Griffa, I. Jerjen, C. Di Bella, J. Herzen, A. Sarapata, F. Pfeiffer, and P. Lura, “Dark-field X-ray imaging of unsaturated water transport in porous materials,” Appl. Phys. Lett. 105, 154105 (2014).
[Crossref]

A. Hipp, M. Willner, J. Herzen, S. Auweter, M. Chabior, J. Meiser, K. Achterhold, J. Mohr, and F. Pfeiffer, “Energy-resolved visibility analysis of grating interferometers operated at polychromatic X-ray sources,” Opt. Express 22(25), 30394–30409 (2014).
[Crossref]

Hipp, A.

Hohl, M.

M. Stampanoni, Z. Wang, T. Thring, C. David, E. Roessl, M. Trippel, R. Kubik-Huch, G. Singer, M. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Rad. 46(12), 801–806 (2011).
[Crossref]

Hostens, J.

M. Bech, A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyndonckx, A. Sasov, and F. Pfeiffer, “In-vivo dark-field and phase-contrast x-ray imaging,” Nat. Sci. Rep. 3, 3209 (2013).

Jerjen, I.

F. Yang, F. Prade, M. Griffa, I. Jerjen, C. Di Bella, J. Herzen, A. Sarapata, F. Pfeiffer, and P. Lura, “Dark-field X-ray imaging of unsaturated water transport in porous materials,” Appl. Phys. Lett. 105, 154105 (2014).
[Crossref]

Kastner, J.

C. Hannesschläger, V. Revol, B. Plank, D. Salaberger, and J. Kastner, “Fibre structure characterisation of injection moulded short fibre-reinforced polymers by X-ray scatter dark field tomography,” Case Studies Nondestructive Testing Eval. 3, 34–41 (2015).
[Crossref]

Kaufmann, R.

V. Revol, C. Kottler, R. Kaufmann, A. Neels, and A. Dommann, “Orientation-selective X-ray dark field imaging of ordered systems,” J. Appl. Phys. 112, 114903 (2012).
[Crossref]

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81, 073709 (2010).
[Crossref] [PubMed]

Kenntner, J.

J. Kenntner, V. Altapova, T. Grund, F. Pantenburg, J. Meiser, T. Baumbach, and J. Mohr, “Fabrication and characterization of analyzer gratings with high aspect ratios for phase contrast imaging using a Talbot interferometer,” AIP Conf. Proc. 1437, 89 (2012).
[Crossref]

Koch, F.

F. Koch, F. Marschall, J. Meiser, O. Márkus, A. Faisal, T. Schröter, P. Meyer, D. Kunka, A. Last, and J. Mohr, “Increasing the aperture of x-ray mosaic lenses by freeze drying,” J. Micromech. Microeng. 25(7), 075015 (2015).
[Crossref]

Koehler, T.

T. Koehler, H. Daerr, G. Martens, N. Kuhn, S. Loescher, U. Stevendaal, and E. Roessl, “Slit-scanning differential x-ray phase-contrast mammography: Proof-of-concept experimental studies,” Med. Phys. 42(4), 1959 (2015).
[Crossref] [PubMed]

Kottler, C.

V. Revol, C. Kottler, R. Kaufmann, A. Neels, and A. Dommann, “Orientation-selective X-ray dark field imaging of ordered systems,” J. Appl. Phys. 112, 114903 (2012).
[Crossref]

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81, 073709 (2010).
[Crossref] [PubMed]

Kraft, P.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mat. 7, 134–137 (2008).
[Crossref]

Kubik-Huch, R.

M. Stampanoni, Z. Wang, T. Thring, C. David, E. Roessl, M. Trippel, R. Kubik-Huch, G. Singer, M. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Rad. 46(12), 801–806 (2011).
[Crossref]

Kuhn, N.

T. Koehler, H. Daerr, G. Martens, N. Kuhn, S. Loescher, U. Stevendaal, and E. Roessl, “Slit-scanning differential x-ray phase-contrast mammography: Proof-of-concept experimental studies,” Med. Phys. 42(4), 1959 (2015).
[Crossref] [PubMed]

Kunka, D.

F. Koch, F. Marschall, J. Meiser, O. Márkus, A. Faisal, T. Schröter, P. Meyer, D. Kunka, A. Last, and J. Mohr, “Increasing the aperture of x-ray mosaic lenses by freeze drying,” J. Micromech. Microeng. 25(7), 075015 (2015).
[Crossref]

Last, A.

F. Koch, F. Marschall, J. Meiser, O. Márkus, A. Faisal, T. Schröter, P. Meyer, D. Kunka, A. Last, and J. Mohr, “Increasing the aperture of x-ray mosaic lenses by freeze drying,” J. Micromech. Microeng. 25(7), 075015 (2015).
[Crossref]

Li, K.

K. Li, Y. Ge, J. Garrett, N. Bevins, J. Zambelli, and G.-H. Chen, “Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies,” Med. Phys. 41, 011903 (2014).
[Crossref] [PubMed]

Loescher, S.

T. Koehler, H. Daerr, G. Martens, N. Kuhn, S. Loescher, U. Stevendaal, and E. Roessl, “Slit-scanning differential x-ray phase-contrast mammography: Proof-of-concept experimental studies,” Med. Phys. 42(4), 1959 (2015).
[Crossref] [PubMed]

Lura, P.

F. Yang, F. Prade, M. Griffa, I. Jerjen, C. Di Bella, J. Herzen, A. Sarapata, F. Pfeiffer, and P. Lura, “Dark-field X-ray imaging of unsaturated water transport in porous materials,” Appl. Phys. Lett. 105, 154105 (2014).
[Crossref]

Malecki, A.

A. Malecki, E. Eggl, F. Schaff, G. Potdevin, T. Baum, E. Garcia, J. Bauer, and F. Pfeiffer, “Correlation of x-ray dark-field radiography to mechanical sample properties,” Microsc. Microanal. 20(5), 1528–1533 (2014).
[Crossref] [PubMed]

Márkus, O.

F. Koch, F. Marschall, J. Meiser, O. Márkus, A. Faisal, T. Schröter, P. Meyer, D. Kunka, A. Last, and J. Mohr, “Increasing the aperture of x-ray mosaic lenses by freeze drying,” J. Micromech. Microeng. 25(7), 075015 (2015).
[Crossref]

Marschall, F.

F. Koch, F. Marschall, J. Meiser, O. Márkus, A. Faisal, T. Schröter, P. Meyer, D. Kunka, A. Last, and J. Mohr, “Increasing the aperture of x-ray mosaic lenses by freeze drying,” J. Micromech. Microeng. 25(7), 075015 (2015).
[Crossref]

Martens, G.

T. Koehler, H. Daerr, G. Martens, N. Kuhn, S. Loescher, U. Stevendaal, and E. Roessl, “Slit-scanning differential x-ray phase-contrast mammography: Proof-of-concept experimental studies,” Med. Phys. 42(4), 1959 (2015).
[Crossref] [PubMed]

Meiser, J.

F. Koch, F. Marschall, J. Meiser, O. Márkus, A. Faisal, T. Schröter, P. Meyer, D. Kunka, A. Last, and J. Mohr, “Increasing the aperture of x-ray mosaic lenses by freeze drying,” J. Micromech. Microeng. 25(7), 075015 (2015).
[Crossref]

A. Hipp, M. Willner, J. Herzen, S. Auweter, M. Chabior, J. Meiser, K. Achterhold, J. Mohr, and F. Pfeiffer, “Energy-resolved visibility analysis of grating interferometers operated at polychromatic X-ray sources,” Opt. Express 22(25), 30394–30409 (2014).
[Crossref]

J. Kenntner, V. Altapova, T. Grund, F. Pantenburg, J. Meiser, T. Baumbach, and J. Mohr, “Fabrication and characterization of analyzer gratings with high aspect ratios for phase contrast imaging using a Talbot interferometer,” AIP Conf. Proc. 1437, 89 (2012).
[Crossref]

Meyer, P.

F. Koch, F. Marschall, J. Meiser, O. Márkus, A. Faisal, T. Schröter, P. Meyer, D. Kunka, A. Last, and J. Mohr, “Increasing the aperture of x-ray mosaic lenses by freeze drying,” J. Micromech. Microeng. 25(7), 075015 (2015).
[Crossref]

P. Meyer and F. Pantenburg, “A Monte Carlo study of the primary absorbed energy redistribution in X-ray lithography,” Microsystem Technologies 20(10), 1881–1889 (2013).
[Crossref]

Michel, T.

A. Ritter, P. Bartl, F. Bayer, K. Godel, W. Haas, T. Michel, G. Pelzer, J. Rieger, T. Weber, A. Zang, and G. Anton, “Simulation framework for coherent and incoherent X-ray imaging and its application in Talbot-Lau dark-field imaging,” Opt. Express 22(19), 23276–23289 (2014).
[Crossref] [PubMed]

F. Bayer, S. Zabler, C. Brendel, G. Pelzer, J. Rieger, A. Ritter, T. Weber, T. Michel, and G. Anton, “Projection angle dependence in grating-based X-ray dark-field imaging of ordered structures,” Opt. Express 21(17), 19922–19933 (2013).
[Crossref] [PubMed]

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

T. Weber, F. Bayer, W. Haas, G. Pelzer, J. Rieger, A. Ritter, L. Wucherer, J. Durst, T. Michel, and G. Anton, “Energy-dependent visibility measurements, their simulation and optimisation of an X-ray Talbot-Lau Interferometer,” JINST 7, P02003 (2012).
[Crossref]

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys. 38, 4133–4140 (2011).
[Crossref] [PubMed]

Mohr, J.

F. Koch, F. Marschall, J. Meiser, O. Márkus, A. Faisal, T. Schröter, P. Meyer, D. Kunka, A. Last, and J. Mohr, “Increasing the aperture of x-ray mosaic lenses by freeze drying,” J. Micromech. Microeng. 25(7), 075015 (2015).
[Crossref]

A. Hipp, M. Willner, J. Herzen, S. Auweter, M. Chabior, J. Meiser, K. Achterhold, J. Mohr, and F. Pfeiffer, “Energy-resolved visibility analysis of grating interferometers operated at polychromatic X-ray sources,” Opt. Express 22(25), 30394–30409 (2014).
[Crossref]

J. Kenntner, V. Altapova, T. Grund, F. Pantenburg, J. Meiser, T. Baumbach, and J. Mohr, “Fabrication and characterization of analyzer gratings with high aspect ratios for phase contrast imaging using a Talbot interferometer,” AIP Conf. Proc. 1437, 89 (2012).
[Crossref]

Momose, A.

Morgan, K.

Neels, A.

V. Revol, C. Kottler, R. Kaufmann, A. Neels, and A. Dommann, “Orientation-selective X-ray dark field imaging of ordered systems,” J. Appl. Phys. 112, 114903 (2012).
[Crossref]

Olivo, A.

A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007).
[Crossref]

Paganin, D.

Pantenburg, F.

P. Meyer and F. Pantenburg, “A Monte Carlo study of the primary absorbed energy redistribution in X-ray lithography,” Microsystem Technologies 20(10), 1881–1889 (2013).
[Crossref]

J. Kenntner, V. Altapova, T. Grund, F. Pantenburg, J. Meiser, T. Baumbach, and J. Mohr, “Fabrication and characterization of analyzer gratings with high aspect ratios for phase contrast imaging using a Talbot interferometer,” AIP Conf. Proc. 1437, 89 (2012).
[Crossref]

Pauwels, B.

M. Bech, A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyndonckx, A. Sasov, and F. Pfeiffer, “In-vivo dark-field and phase-contrast x-ray imaging,” Nat. Sci. Rep. 3, 3209 (2013).

Pelzer, G.

A. Ritter, P. Bartl, F. Bayer, K. Godel, W. Haas, T. Michel, G. Pelzer, J. Rieger, T. Weber, A. Zang, and G. Anton, “Simulation framework for coherent and incoherent X-ray imaging and its application in Talbot-Lau dark-field imaging,” Opt. Express 22(19), 23276–23289 (2014).
[Crossref] [PubMed]

F. Bayer, S. Zabler, C. Brendel, G. Pelzer, J. Rieger, A. Ritter, T. Weber, T. Michel, and G. Anton, “Projection angle dependence in grating-based X-ray dark-field imaging of ordered structures,” Opt. Express 21(17), 19922–19933 (2013).
[Crossref] [PubMed]

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

T. Weber, F. Bayer, W. Haas, G. Pelzer, J. Rieger, A. Ritter, L. Wucherer, J. Durst, T. Michel, and G. Anton, “Energy-dependent visibility measurements, their simulation and optimisation of an X-ray Talbot-Lau Interferometer,” JINST 7, P02003 (2012).
[Crossref]

Pfeiffer, F.

F. Yang, F. Prade, M. Griffa, I. Jerjen, C. Di Bella, J. Herzen, A. Sarapata, F. Pfeiffer, and P. Lura, “Dark-field X-ray imaging of unsaturated water transport in porous materials,” Appl. Phys. Lett. 105, 154105 (2014).
[Crossref]

A. Malecki, E. Eggl, F. Schaff, G. Potdevin, T. Baum, E. Garcia, J. Bauer, and F. Pfeiffer, “Correlation of x-ray dark-field radiography to mechanical sample properties,” Microsc. Microanal. 20(5), 1528–1533 (2014).
[Crossref] [PubMed]

A. Hipp, M. Willner, J. Herzen, S. Auweter, M. Chabior, J. Meiser, K. Achterhold, J. Mohr, and F. Pfeiffer, “Energy-resolved visibility analysis of grating interferometers operated at polychromatic X-ray sources,” Opt. Express 22(25), 30394–30409 (2014).
[Crossref]

M. Bech, A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyndonckx, A. Sasov, and F. Pfeiffer, “In-vivo dark-field and phase-contrast x-ray imaging,” Nat. Sci. Rep. 3, 3209 (2013).

T. Donath, F. Pfeiffer, O. Bunk, C. Grünzweig, E. Hempel, S. Popescu, P. Vock, and C. David, “Toward clinical x-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen,” Invest. Rad. 45 (7), 445–452 (2010).

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mat. 7, 134–137 (2008).
[Crossref]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
[Crossref] [PubMed]

Plank, B.

C. Hannesschläger, V. Revol, B. Plank, D. Salaberger, and J. Kastner, “Fibre structure characterisation of injection moulded short fibre-reinforced polymers by X-ray scatter dark field tomography,” Case Studies Nondestructive Testing Eval. 3, 34–41 (2015).
[Crossref]

Popescu, S.

T. Donath, F. Pfeiffer, O. Bunk, C. Grünzweig, E. Hempel, S. Popescu, P. Vock, and C. David, “Toward clinical x-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen,” Invest. Rad. 45 (7), 445–452 (2010).

Potdevin, G.

A. Malecki, E. Eggl, F. Schaff, G. Potdevin, T. Baum, E. Garcia, J. Bauer, and F. Pfeiffer, “Correlation of x-ray dark-field radiography to mechanical sample properties,” Microsc. Microanal. 20(5), 1528–1533 (2014).
[Crossref] [PubMed]

Prade, F.

F. Yang, F. Prade, M. Griffa, I. Jerjen, C. Di Bella, J. Herzen, A. Sarapata, F. Pfeiffer, and P. Lura, “Dark-field X-ray imaging of unsaturated water transport in porous materials,” Appl. Phys. Lett. 105, 154105 (2014).
[Crossref]

Radicke, M.

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

Rauh, C.

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

Revol, V.

C. Hannesschläger, V. Revol, B. Plank, D. Salaberger, and J. Kastner, “Fibre structure characterisation of injection moulded short fibre-reinforced polymers by X-ray scatter dark field tomography,” Case Studies Nondestructive Testing Eval. 3, 34–41 (2015).
[Crossref]

V. Revol, C. Kottler, R. Kaufmann, A. Neels, and A. Dommann, “Orientation-selective X-ray dark field imaging of ordered systems,” J. Appl. Phys. 112, 114903 (2012).
[Crossref]

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81, 073709 (2010).
[Crossref] [PubMed]

Rieger, J.

A. Ritter, P. Bartl, F. Bayer, K. Godel, W. Haas, T. Michel, G. Pelzer, J. Rieger, T. Weber, A. Zang, and G. Anton, “Simulation framework for coherent and incoherent X-ray imaging and its application in Talbot-Lau dark-field imaging,” Opt. Express 22(19), 23276–23289 (2014).
[Crossref] [PubMed]

F. Bayer, S. Zabler, C. Brendel, G. Pelzer, J. Rieger, A. Ritter, T. Weber, T. Michel, and G. Anton, “Projection angle dependence in grating-based X-ray dark-field imaging of ordered structures,” Opt. Express 21(17), 19922–19933 (2013).
[Crossref] [PubMed]

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

T. Weber, F. Bayer, W. Haas, G. Pelzer, J. Rieger, A. Ritter, L. Wucherer, J. Durst, T. Michel, and G. Anton, “Energy-dependent visibility measurements, their simulation and optimisation of an X-ray Talbot-Lau Interferometer,” JINST 7, P02003 (2012).
[Crossref]

Ritter, A.

A. Ritter, P. Bartl, F. Bayer, K. Godel, W. Haas, T. Michel, G. Pelzer, J. Rieger, T. Weber, A. Zang, and G. Anton, “Simulation framework for coherent and incoherent X-ray imaging and its application in Talbot-Lau dark-field imaging,” Opt. Express 22(19), 23276–23289 (2014).
[Crossref] [PubMed]

F. Bayer, S. Zabler, C. Brendel, G. Pelzer, J. Rieger, A. Ritter, T. Weber, T. Michel, and G. Anton, “Projection angle dependence in grating-based X-ray dark-field imaging of ordered structures,” Opt. Express 21(17), 19922–19933 (2013).
[Crossref] [PubMed]

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

T. Weber, F. Bayer, W. Haas, G. Pelzer, J. Rieger, A. Ritter, L. Wucherer, J. Durst, T. Michel, and G. Anton, “Energy-dependent visibility measurements, their simulation and optimisation of an X-ray Talbot-Lau Interferometer,” JINST 7, P02003 (2012).
[Crossref]

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys. 38, 4133–4140 (2011).
[Crossref] [PubMed]

Roessl, E.

T. Koehler, H. Daerr, G. Martens, N. Kuhn, S. Loescher, U. Stevendaal, and E. Roessl, “Slit-scanning differential x-ray phase-contrast mammography: Proof-of-concept experimental studies,” Med. Phys. 42(4), 1959 (2015).
[Crossref] [PubMed]

M. Stampanoni, Z. Wang, T. Thring, C. David, E. Roessl, M. Trippel, R. Kubik-Huch, G. Singer, M. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Rad. 46(12), 801–806 (2011).
[Crossref]

Salaberger, D.

C. Hannesschläger, V. Revol, B. Plank, D. Salaberger, and J. Kastner, “Fibre structure characterisation of injection moulded short fibre-reinforced polymers by X-ray scatter dark field tomography,” Case Studies Nondestructive Testing Eval. 3, 34–41 (2015).
[Crossref]

Sarapata, A.

F. Yang, F. Prade, M. Griffa, I. Jerjen, C. Di Bella, J. Herzen, A. Sarapata, F. Pfeiffer, and P. Lura, “Dark-field X-ray imaging of unsaturated water transport in porous materials,” Appl. Phys. Lett. 105, 154105 (2014).
[Crossref]

Sasov, A.

M. Bech, A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyndonckx, A. Sasov, and F. Pfeiffer, “In-vivo dark-field and phase-contrast x-ray imaging,” Nat. Sci. Rep. 3, 3209 (2013).

Schaff, F.

A. Malecki, E. Eggl, F. Schaff, G. Potdevin, T. Baum, E. Garcia, J. Bauer, and F. Pfeiffer, “Correlation of x-ray dark-field radiography to mechanical sample properties,” Microsc. Microanal. 20(5), 1528–1533 (2014).
[Crossref] [PubMed]

Schröter, T.

F. Koch, F. Marschall, J. Meiser, O. Márkus, A. Faisal, T. Schröter, P. Meyer, D. Kunka, A. Last, and J. Mohr, “Increasing the aperture of x-ray mosaic lenses by freeze drying,” J. Micromech. Microeng. 25(7), 075015 (2015).
[Crossref]

Schulz-Wendtland, R.

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

Sievers, P.

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

Singer, G.

M. Stampanoni, Z. Wang, T. Thring, C. David, E. Roessl, M. Trippel, R. Kubik-Huch, G. Singer, M. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Rad. 46(12), 801–806 (2011).
[Crossref]

Siu, K.

Speller, R.

A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007).
[Crossref]

Stampanoni, M.

M. Stampanoni, Z. Wang, T. Thring, C. David, E. Roessl, M. Trippel, R. Kubik-Huch, G. Singer, M. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Rad. 46(12), 801–806 (2011).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
[Crossref] [PubMed]

Stevendaal, U.

T. Koehler, H. Daerr, G. Martens, N. Kuhn, S. Loescher, U. Stevendaal, and E. Roessl, “Slit-scanning differential x-ray phase-contrast mammography: Proof-of-concept experimental studies,” Med. Phys. 42(4), 1959 (2015).
[Crossref] [PubMed]

Straumann, U.

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81, 073709 (2010).
[Crossref] [PubMed]

Suleski, T.

Suortti, P.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58, 1–36 (2012).
[PubMed]

Tapfer, A.

M. Bech, A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyndonckx, A. Sasov, and F. Pfeiffer, “In-vivo dark-field and phase-contrast x-ray imaging,” Nat. Sci. Rep. 3, 3209 (2013).

Thring, T.

M. Stampanoni, Z. Wang, T. Thring, C. David, E. Roessl, M. Trippel, R. Kubik-Huch, G. Singer, M. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Rad. 46(12), 801–806 (2011).
[Crossref]

Trippel, M.

M. Stampanoni, Z. Wang, T. Thring, C. David, E. Roessl, M. Trippel, R. Kubik-Huch, G. Singer, M. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Rad. 46(12), 801–806 (2011).
[Crossref]

Uder, M.

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

Urban, C.

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81, 073709 (2010).
[Crossref] [PubMed]

Velroyen, A.

M. Bech, A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyndonckx, A. Sasov, and F. Pfeiffer, “In-vivo dark-field and phase-contrast x-ray imaging,” Nat. Sci. Rep. 3, 3209 (2013).

Vock, P.

T. Donath, F. Pfeiffer, O. Bunk, C. Grünzweig, E. Hempel, S. Popescu, P. Vock, and C. David, “Toward clinical x-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen,” Invest. Rad. 45 (7), 445–452 (2010).

Wachter, D.

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

Wang, Z.

M. Stampanoni, Z. Wang, T. Thring, C. David, E. Roessl, M. Trippel, R. Kubik-Huch, G. Singer, M. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Rad. 46(12), 801–806 (2011).
[Crossref]

Weber, T.

A. Ritter, P. Bartl, F. Bayer, K. Godel, W. Haas, T. Michel, G. Pelzer, J. Rieger, T. Weber, A. Zang, and G. Anton, “Simulation framework for coherent and incoherent X-ray imaging and its application in Talbot-Lau dark-field imaging,” Opt. Express 22(19), 23276–23289 (2014).
[Crossref] [PubMed]

F. Bayer, S. Zabler, C. Brendel, G. Pelzer, J. Rieger, A. Ritter, T. Weber, T. Michel, and G. Anton, “Projection angle dependence in grating-based X-ray dark-field imaging of ordered structures,” Opt. Express 21(17), 19922–19933 (2013).
[Crossref] [PubMed]

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

T. Weber, F. Bayer, W. Haas, G. Pelzer, J. Rieger, A. Ritter, L. Wucherer, J. Durst, T. Michel, and G. Anton, “Energy-dependent visibility measurements, their simulation and optimisation of an X-ray Talbot-Lau Interferometer,” JINST 7, P02003 (2012).
[Crossref]

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys. 38, 4133–4140 (2011).
[Crossref] [PubMed]

Weitkamp, T.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005).
[Crossref] [PubMed]

Wenkel, E.

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

Willner, M.

Wucherer, L.

T. Weber, F. Bayer, W. Haas, G. Pelzer, J. Rieger, A. Ritter, L. Wucherer, J. Durst, T. Michel, and G. Anton, “Energy-dependent visibility measurements, their simulation and optimisation of an X-ray Talbot-Lau Interferometer,” JINST 7, P02003 (2012).
[Crossref]

Yang, F.

F. Yang, F. Prade, M. Griffa, I. Jerjen, C. Di Bella, J. Herzen, A. Sarapata, F. Pfeiffer, and P. Lura, “Dark-field X-ray imaging of unsaturated water transport in porous materials,” Appl. Phys. Lett. 105, 154105 (2014).
[Crossref]

Yaroshenko, A.

M. Bech, A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyndonckx, A. Sasov, and F. Pfeiffer, “In-vivo dark-field and phase-contrast x-ray imaging,” Nat. Sci. Rep. 3, 3209 (2013).

Zabler, S.

Zambelli, J.

K. Li, Y. Ge, J. Garrett, N. Bevins, J. Zambelli, and G.-H. Chen, “Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies,” Med. Phys. 41, 011903 (2014).
[Crossref] [PubMed]

Zang, A.

A. Ritter, P. Bartl, F. Bayer, K. Godel, W. Haas, T. Michel, G. Pelzer, J. Rieger, T. Weber, A. Zang, and G. Anton, “Simulation framework for coherent and incoherent X-ray imaging and its application in Talbot-Lau dark-field imaging,” Opt. Express 22(19), 23276–23289 (2014).
[Crossref] [PubMed]

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

Ziegler, E.

AIP Conf. Proc. (1)

J. Kenntner, V. Altapova, T. Grund, F. Pantenburg, J. Meiser, T. Baumbach, and J. Mohr, “Fabrication and characterization of analyzer gratings with high aspect ratios for phase contrast imaging using a Talbot interferometer,” AIP Conf. Proc. 1437, 89 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007).
[Crossref]

F. Yang, F. Prade, M. Griffa, I. Jerjen, C. Di Bella, J. Herzen, A. Sarapata, F. Pfeiffer, and P. Lura, “Dark-field X-ray imaging of unsaturated water transport in porous materials,” Appl. Phys. Lett. 105, 154105 (2014).
[Crossref]

Case Studies Nondestructive Testing Eval. (1)

C. Hannesschläger, V. Revol, B. Plank, D. Salaberger, and J. Kastner, “Fibre structure characterisation of injection moulded short fibre-reinforced polymers by X-ray scatter dark field tomography,” Case Studies Nondestructive Testing Eval. 3, 34–41 (2015).
[Crossref]

Invest. Rad. (2)

T. Donath, F. Pfeiffer, O. Bunk, C. Grünzweig, E. Hempel, S. Popescu, P. Vock, and C. David, “Toward clinical x-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen,” Invest. Rad. 45 (7), 445–452 (2010).

M. Stampanoni, Z. Wang, T. Thring, C. David, E. Roessl, M. Trippel, R. Kubik-Huch, G. Singer, M. Hohl, and N. Hauser, “The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography,” Invest. Rad. 46(12), 801–806 (2011).
[Crossref]

J. Appl. Phys. (1)

V. Revol, C. Kottler, R. Kaufmann, A. Neels, and A. Dommann, “Orientation-selective X-ray dark field imaging of ordered systems,” J. Appl. Phys. 112, 114903 (2012).
[Crossref]

J. Micromech. Microeng. (1)

F. Koch, F. Marschall, J. Meiser, O. Márkus, A. Faisal, T. Schröter, P. Meyer, D. Kunka, A. Last, and J. Mohr, “Increasing the aperture of x-ray mosaic lenses by freeze drying,” J. Micromech. Microeng. 25(7), 075015 (2015).
[Crossref]

JINST (1)

T. Weber, F. Bayer, W. Haas, G. Pelzer, J. Rieger, A. Ritter, L. Wucherer, J. Durst, T. Michel, and G. Anton, “Energy-dependent visibility measurements, their simulation and optimisation of an X-ray Talbot-Lau Interferometer,” JINST 7, P02003 (2012).
[Crossref]

Med. Phys. (3)

K. Li, Y. Ge, J. Garrett, N. Bevins, J. Zambelli, and G.-H. Chen, “Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies,” Med. Phys. 41, 011903 (2014).
[Crossref] [PubMed]

T. Koehler, H. Daerr, G. Martens, N. Kuhn, S. Loescher, U. Stevendaal, and E. Roessl, “Slit-scanning differential x-ray phase-contrast mammography: Proof-of-concept experimental studies,” Med. Phys. 42(4), 1959 (2015).
[Crossref] [PubMed]

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys. 38, 4133–4140 (2011).
[Crossref] [PubMed]

Microsc. Microanal. (1)

A. Malecki, E. Eggl, F. Schaff, G. Potdevin, T. Baum, E. Garcia, J. Bauer, and F. Pfeiffer, “Correlation of x-ray dark-field radiography to mechanical sample properties,” Microsc. Microanal. 20(5), 1528–1533 (2014).
[Crossref] [PubMed]

Microsystem Technologies (1)

P. Meyer and F. Pantenburg, “A Monte Carlo study of the primary absorbed energy redistribution in X-ray lithography,” Microsystem Technologies 20(10), 1881–1889 (2013).
[Crossref]

Nat. Mat. (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mat. 7, 134–137 (2008).
[Crossref]

Nat. Phys. (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
[Crossref]

Nat. Sci. Rep. (1)

M. Bech, A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyndonckx, A. Sasov, and F. Pfeiffer, “In-vivo dark-field and phase-contrast x-ray imaging,” Nat. Sci. Rep. 3, 3209 (2013).

Opt. Express (6)

Phys. Med. Biol. (2)

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58, 1–36 (2012).
[PubMed]

T. Michel, J. Rieger, G. Anton, F. Bayer, M. Beckmann, J. Durst, P. Fasching, W. Haas, A. Hartmann, G. Pelzer, M. Radicke, C. Rauh, A. Ritter, P. Sievers, R. Schulz-Wendtland, M. Uder, D. Wachter, T. Weber, E. Wenkel, and A. Zang, “On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography,” Phys. Med. Biol. 58(8), 2713 (2013).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum. 81, 073709 (2010).
[Crossref] [PubMed]

Other (1)

Siemens.com, “Simulation of X-ray Spectra,” (Siemens.com, 2016), www.siemens.com/x-ray-spectra

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Sketch of the Talbot-Lau interferometer: The phase grating G1 that produces Talbot self-images at certain distances behind the grating. These intensity patterns are scanned with the grating G2 due to the large pixel size of the used flat panel detector. To overcome the necessity of a small focal spot size, the source grating G0 is used in combination with a conventional medical x-ray tube exploiting the Lau-effect.
Fig. 2
Fig. 2 A photography of one of the used G1 gratings where the six different tiles of grating specifications are visible. From top to bottom, the duty cycle of the grating becomes higher and from left to right, the period changes from 4.37µm to 2.185µm. The correspoding SEM pictures for the two periods and 3 duty cycles presented on the left (4.37µm period; magnification 3000) and on the right (2.185µm period; magnification 4000). The top right field is not presented due to wavy lamellae.
Fig. 3
Fig. 3 Simulation results: color-coded visibility as a function of the G1 duty cycle and grating height and the two periods 4.37µm (top) and 2.185µm (bottom). The parameters of the measurements are marked with red circles.
Fig. 4
Fig. 4 Visibility measured in the second Talbot distance (0.084m) for a π/2-shifting grating with a 40kVp tungsten spectrum. The six tiles seen in the image represent the different G1 specifications seen in table 1. The top row has a duty cycle of 0.33, the middle row of 0.5 and the bottom row of 0.66. The left column has a period of 4.37µm and the right column of 2.185µm. The visibility is color-coded.

Tables (2)

Tables Icon

Table 1 Grating specifications of the two G1 gratings used in the experiment.

Tables Icon

Table 2 Measured visibilities for the grating parameters seen in Table 1 and a 40kVp tungsten spectrum.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d T = n p 1 2 4 η λ
d T = ( 2 m + 1 ) p 1 2 8 λ , m 0 .
I ( x ) = I 0 + A sin ( 2 π x p 2 + φ )
V = A I 0 .
σ 2 = 2 N V 2 .

Metrics