Abstract

The leakage light of optical pulses due to finite extinction ratio (ER) of an electro-optic modulator (EOM) leads to Rayleigh backscattered noises over the entire fiber length, and limits spatial resolution and sensing range in phase-sensitive optical time-domain reflectometry (Φ-OTDR). Two configurations are proposed to improve the ER of optical pulses for better spatial resolution over long sensing length. With ER of 55 dB using a nonlinear optical loop mirror, we achieved 2 m spatial resolution over 8.4 km sensing length; while with ER of 60 dB obtained by two cascaded EOMs, we can achieve a 1 m spatial resolution over the same range. Experimental results and analysis show that leakage of the optical pulses acts as a noise floor, which limits the highest spatial resolution over the same sensing range.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-sensitive optical time-domain reflectometric system based on a single-source dual heterodyne detection scheme

Miao Yu, Minhan Liu, Tianying Chang, Jinpeng Lang, Jiandong Chen, and Hong-Liang Cui
Appl. Opt. 56(14) 4058-4064 (2017)

Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system

Juan C. Juarez and Henry F. Taylor
Opt. Lett. 30(24) 3284-3286 (2005)

Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines

Fei Peng, Han Wu, Xin-Hong Jia, Yun-Jiang Rao, Zi-Nan Wang, and Zheng-Pu Peng
Opt. Express 22(11) 13804-13810 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” United States patent 5,194,847 (1993).
  2. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
    [Crossref]
  3. J. C. Juarez and H. F. Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Appl. Opt. 46(11), 1968–1971 (2007).
    [Crossref] [PubMed]
  4. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).
  5. T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21(3), 2953–2963 (2013).
    [Crossref] [PubMed]
  6. Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
    [Crossref]
  7. T. Zhu, X. Xiao, Q. He, and D. Diao, “Enhancement of SNR and spatial resolution of φ-OTDR system by using two-dimensional edge detection method,” J. Lightwave Technol. 31(17), 2851–2856 (2013).
    [Crossref]
  8. F. Peng, H. Wu, X. H. Jia, Y. J. Rao, Z. N. Wang, and Z. P. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Opt. Express 22(11), 13804–13810 (2014).
    [Crossref] [PubMed]
  9. Z. Qin, L. Chen, and X. Bao, “Continuous wavelet transform for non-stationary vibration detection with phase-OTDR,” Opt. Express 20(18), 20459–20465 (2012).
    [Crossref] [PubMed]
  10. A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
    [Crossref]
  11. X. Hui, S. Zheng, J. Zhou, C. Xu, H. Chi, X. Jin, and X. Zhang, “Electro-optic modulator feedback control in phase-sensitive optical time-domain reflectometer distributed sensor,” Appl. Opt. 52(35), 8581–8585 (2013).
    [Crossref] [PubMed]
  12. S. Afshar, G. A. Ferrier, X. Bao, and L. Chen, “Effect of the finite extinction ratio of an electro-optic modulator on the performance of distributed probe-pump Brillouin sensor systems,” Opt. Lett. 28(16), 1418–1420 (2003).
    [Crossref] [PubMed]
  13. Y. Lu, Y. Yao, X. Zhao, F. Wang, and X. Zhang, “Influence of non-perfect extinction ratio of electro-optic modulator on signal-to-noise ratio of BOTDR,” Opt. Commun. 297, 48–54 (2013).
    [Crossref]
  14. X. Wu, Z. Ying, Y. Zhang, and X. Zhang, “Performance improvement for long-range BOTDR sensing system based on high extinction ratio modulator,” Electron. Lett. 50(14), 1014–1016 (2014).
    [Crossref]
  15. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13(1), 56–58 (1988).
    [Crossref] [PubMed]
  16. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15(13), 752–754 (1990).
    [Crossref] [PubMed]
  17. B. E. Olsson and P. A. Andrekson, “Extinction ratio improvement using the nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 7(1), 120–122 (1995).
    [Crossref]

2014 (2)

F. Peng, H. Wu, X. H. Jia, Y. J. Rao, Z. N. Wang, and Z. P. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Opt. Express 22(11), 13804–13810 (2014).
[Crossref] [PubMed]

X. Wu, Z. Ying, Y. Zhang, and X. Zhang, “Performance improvement for long-range BOTDR sensing system based on high extinction ratio modulator,” Electron. Lett. 50(14), 1014–1016 (2014).
[Crossref]

2013 (5)

2012 (2)

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

Z. Qin, L. Chen, and X. Bao, “Continuous wavelet transform for non-stationary vibration detection with phase-OTDR,” Opt. Express 20(18), 20459–20465 (2012).
[Crossref] [PubMed]

2010 (1)

2007 (1)

2005 (1)

2003 (1)

1995 (1)

B. E. Olsson and P. A. Andrekson, “Extinction ratio improvement using the nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 7(1), 120–122 (1995).
[Crossref]

1990 (1)

1988 (1)

Afshar, S.

Andrekson, P. A.

B. E. Olsson and P. A. Andrekson, “Extinction ratio improvement using the nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 7(1), 120–122 (1995).
[Crossref]

Bao, X.

Belal, M.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Chen, L.

Chi, H.

Choi, K. N.

Diao, D.

Doran, N. J.

Fermann, M. E.

Ferrier, G. A.

Haberl, F.

He, Q.

Hochreiter, H.

Hofer, M.

Hui, X.

Jia, X. H.

Jin, X.

Juarez, J. C.

Lu, Y.

Y. Lu, Y. Yao, X. Zhao, F. Wang, and X. Zhang, “Influence of non-perfect extinction ratio of electro-optic modulator on signal-to-noise ratio of BOTDR,” Opt. Commun. 297, 48–54 (2013).
[Crossref]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

Maier, E. W.

Masoudi, A.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Newson, T. P.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Olsson, B. E.

B. E. Olsson and P. A. Andrekson, “Extinction ratio improvement using the nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 7(1), 120–122 (1995).
[Crossref]

Peng, F.

Peng, Z. P.

Qin, Z.

Z. Qin, L. Chen, and X. Bao, “Continuous wavelet transform for non-stationary vibration detection with phase-OTDR,” Opt. Express 20(18), 20459–20465 (2012).
[Crossref] [PubMed]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

Rao, Y. J.

Taylor, H. F.

Wang, F.

Y. Lu, Y. Yao, X. Zhao, F. Wang, and X. Zhang, “Influence of non-perfect extinction ratio of electro-optic modulator on signal-to-noise ratio of BOTDR,” Opt. Commun. 297, 48–54 (2013).
[Crossref]

Wang, Z. N.

Wood, D.

Wu, H.

Wu, X.

X. Wu, Z. Ying, Y. Zhang, and X. Zhang, “Performance improvement for long-range BOTDR sensing system based on high extinction ratio modulator,” Electron. Lett. 50(14), 1014–1016 (2014).
[Crossref]

Xiao, X.

Xu, C.

Yao, Y.

Y. Lu, Y. Yao, X. Zhao, F. Wang, and X. Zhang, “Influence of non-perfect extinction ratio of electro-optic modulator on signal-to-noise ratio of BOTDR,” Opt. Commun. 297, 48–54 (2013).
[Crossref]

Ying, Z.

X. Wu, Z. Ying, Y. Zhang, and X. Zhang, “Performance improvement for long-range BOTDR sensing system based on high extinction ratio modulator,” Electron. Lett. 50(14), 1014–1016 (2014).
[Crossref]

Zhang, X.

X. Wu, Z. Ying, Y. Zhang, and X. Zhang, “Performance improvement for long-range BOTDR sensing system based on high extinction ratio modulator,” Electron. Lett. 50(14), 1014–1016 (2014).
[Crossref]

Y. Lu, Y. Yao, X. Zhao, F. Wang, and X. Zhang, “Influence of non-perfect extinction ratio of electro-optic modulator on signal-to-noise ratio of BOTDR,” Opt. Commun. 297, 48–54 (2013).
[Crossref]

X. Hui, S. Zheng, J. Zhou, C. Xu, H. Chi, X. Jin, and X. Zhang, “Electro-optic modulator feedback control in phase-sensitive optical time-domain reflectometer distributed sensor,” Appl. Opt. 52(35), 8581–8585 (2013).
[Crossref] [PubMed]

Zhang, Y.

X. Wu, Z. Ying, Y. Zhang, and X. Zhang, “Performance improvement for long-range BOTDR sensing system based on high extinction ratio modulator,” Electron. Lett. 50(14), 1014–1016 (2014).
[Crossref]

Zhao, X.

Y. Lu, Y. Yao, X. Zhao, F. Wang, and X. Zhang, “Influence of non-perfect extinction ratio of electro-optic modulator on signal-to-noise ratio of BOTDR,” Opt. Commun. 297, 48–54 (2013).
[Crossref]

Zheng, S.

Zhou, J.

Zhu, T.

Appl. Opt. (2)

Electron. Lett. (1)

X. Wu, Z. Ying, Y. Zhang, and X. Zhang, “Performance improvement for long-range BOTDR sensing system based on high extinction ratio modulator,” Electron. Lett. 50(14), 1014–1016 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

B. E. Olsson and P. A. Andrekson, “Extinction ratio improvement using the nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 7(1), 120–122 (1995).
[Crossref]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

J. Lightwave Technol. (3)

Meas. Sci. Technol. (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Opt. Commun. (1)

Y. Lu, Y. Yao, X. Zhao, F. Wang, and X. Zhang, “Influence of non-perfect extinction ratio of electro-optic modulator on signal-to-noise ratio of BOTDR,” Opt. Commun. 297, 48–54 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Other (1)

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” United States patent 5,194,847 (1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Illustration of finite ER of optical pulse generated by EOM.
Fig. 2
Fig. 2 SNR as a function of fiber length z with different ER values under pulse width (a) 20 ns; (b) 10 ns.
Fig. 3
Fig. 3 The configuration of the proposed NOLM.
Fig. 4
Fig. 4 The experimental setup of Φ-OTDR based on (a) conventional configuration; (b) and (c) are the high ER configurations with NOLM and cascaded EOMs, respectively.
Fig. 5
Fig. 5 (a) The measured CW leakage power for conventional single EOM and NOLM configurations. (b) The corresponding amplitude spectra.
Fig. 6
Fig. 6 Φ-OTDR time domain traces obtained by: (a) conventional setup with 20 ns pulse width; (b) NOLM with 20 ns; (c) conventional setup with 10 ns pulse width; (d) NOLM with 10 ns pulse width.
Fig. 7
Fig. 7 Vibration measurement results obtained with NOLM: (a) The superposition of 500 consecutive traces after wavelet (the zoomed in vibration information is shown in inset); (b) the vibration location after traces subtraction; (c) the detail vibration profile; (d) the power spectrum of 1 kHz vibration.
Fig. 8
Fig. 8 Vibration measurement results obtained with cascaded two EOMs: (a) Vibration location information; (b) zoom in around vibration location; (c) power spectrum of 2 kHz vibration events.

Tables (1)

Tables Icon

Table 1 Mean power values and standard deviations of photodetector noise, CW leakage light using NOLM and Conventional EOM configurations.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P bp (z)= α R e 2αz c T p 2n c T p 2n P p e 2αz dz = P p α R sinh( c T p α 2n ) α e 2αz ,
P bcw = α R 0 L P cw e 2αz dz= P cw α R (1 e 2αL ) 2α ,
P int (z)=2 P bp (z) P bcw =2 P p α R sinh( c T p α 2n ) α e 2αz P cw α R (1 e 2αL ) 2α .
SNR(z)= P bp P int = P p α R c T p 2n e 2αz 2 P p α R sinh( c T p α 2n ) α e 2αz P cw α R (1 e 2αL ) 2α = ER sinh( c T p α 2n ) e 2αz 2(1 e 2αL ) ,
T= 1 2 g( 1cos[ 1 2 ϒ P 0 ( g1 )L ] ),

Metrics