Abstract

The Greenwood frequency (GF) is influential in performance improvement for the coherent free space optical communications (CFSOC) system with a closed-loop adaptive optics (AO) unit. We analyze the impact of tilt and high-order aberrations on the mixing efficiency (ME) and bit-error-rate (BER) under different GF. The root-mean-square value (RMS) of the ME related to the RMS of the tilt aberrations, and the GF is derived to estimate the volatility of the ME. Furthermore, a numerical simulation is applied to verify the theoretical analysis, and an experimental correction system is designed with a double-stage fast-steering-mirror and a 97-element continuous surface deformable mirror. The conclusions of this paper provide a reference for designing the AO system for the CFSOC system.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance analysis of a coherent free space optical communication system based on experiment

Jingtai Cao, Xiaohui Zhao, Wei Liu, and Haijun Gu
Opt. Express 25(13) 15299-15312 (2017)

Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle

Mo Chen, Chao Liu, Daoman Rui, and Hao Xian
Opt. Express 26(4) 4230-4242 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. García-Zambrana, R. Boluda-Ruiz, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Transmit alternate laser selection with time diversity for FSO communications,” Opt. Express 22(20), 23861–23874 (2014).
    [Crossref] [PubMed]
  2. J. Zhang, S. Ding, H. Zhai, and A. Dang, “Theoretical and experimental studies of polarization fluctuations over atmospheric turbulent channels for wireless optical communication systems,” Opt. Express 22(26), 32482–32488 (2014).
    [Crossref] [PubMed]
  3. X. Ma, J. Sun, Y. Zhi, Y. Zhou, W. Lu, P. Hou, Q. Xu, and L. Liu, “Performance analysis of pupil-matching optical differential receivers in space-to-ground laser communication,” Appl. Opt. 53(14), 3010–3018 (2014).
    [Crossref] [PubMed]
  4. J. Perez, S. Zvanovec, Z. Ghassemlooy, and W. O. Popoola, “Experimental characterization and mitigation of turbulence induced signal fades within an ad hoc FSO network,” Opt. Express 22(3), 3208–3218 (2014).
    [Crossref] [PubMed]
  5. K. Yao, J. Wang, X. Liu, H. Li, M. Wang, B. Cui, and S. Yu, “Pyramid wavefront sensor using a sequential operation method,” Appl. Opt. 54(13), 3894–3901 (2015).
    [Crossref]
  6. Y. Rahmat-Samii and A. C. Densmore, “Technology Trends and Challenges of Antennas for Satellite Communication Systems,” IEEE Trans. Antenn. Propag. 03, 1–14 (2014).
  7. W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wave-front sensor,” Opt. Laser Technol. 60, 116–123 (2014).
    [Crossref]
  8. W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212–220 (2013).
    [Crossref]
  9. W. Liu, W. Shi, J. Cao, Y. Lv, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
    [Crossref]
  10. A. Belmonte, A. Rodríguez, F. Dios, and A. Comeón, “Phase compensation considerations on coherent, free-space laser communications system,” Proc. SPIE 6736, 67361A (2007).
    [Crossref]
  11. A. Belmonte, “Influence of atmospheric phase compensation on optical heterodyne power measurements,” Opt. Express 16(9), 6756–6767 (2008).
    [Crossref] [PubMed]
  12. M. Li and M. Cvijetic, “Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction,” Appl. Opt. 54(6), 1453–1462 (2015).
    [Crossref] [PubMed]
  13. J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 359, 254–260 (2016).
    [Crossref]
  14. L. Zuo, Y. Ren, A. Dang, and G. Hong, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Global Telecommunications Conference (IEEE, 2010), pp. 1–5.
    [Crossref]
  15. L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 28, 41491–41495 (2011).
  16. H. Jian, D. Ke, L. Chao, Z. Peng, J. Dagang, and Y. Zhoushi, “Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication,” Opt. Express 22(13), 16000–16007 (2014).
    [Crossref] [PubMed]
  17. C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
    [Crossref] [PubMed]
  18. C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
    [Crossref]
  19. J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
    [Crossref]
  20. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29(10), 1174–1180 (1990).
    [Crossref]
  21. R. Changhui, J. Wenhan, L. Ning, T. Guomao, S. Feng, Z. Xuejun, and T. Huimin, “Temporal Correction Effectiveness of Adaptive Optical System for Light Wave Atmospheric Propagation,” Acta Opt. Sin. 21, 933–938 (2001).

2016 (2)

J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 359, 254–260 (2016).
[Crossref]

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

2015 (3)

2014 (9)

Y. Rahmat-Samii and A. C. Densmore, “Technology Trends and Challenges of Antennas for Satellite Communication Systems,” IEEE Trans. Antenn. Propag. 03, 1–14 (2014).

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wave-front sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

A. García-Zambrana, R. Boluda-Ruiz, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Transmit alternate laser selection with time diversity for FSO communications,” Opt. Express 22(20), 23861–23874 (2014).
[Crossref] [PubMed]

J. Zhang, S. Ding, H. Zhai, and A. Dang, “Theoretical and experimental studies of polarization fluctuations over atmospheric turbulent channels for wireless optical communication systems,” Opt. Express 22(26), 32482–32488 (2014).
[Crossref] [PubMed]

X. Ma, J. Sun, Y. Zhi, Y. Zhou, W. Lu, P. Hou, Q. Xu, and L. Liu, “Performance analysis of pupil-matching optical differential receivers in space-to-ground laser communication,” Appl. Opt. 53(14), 3010–3018 (2014).
[Crossref] [PubMed]

J. Perez, S. Zvanovec, Z. Ghassemlooy, and W. O. Popoola, “Experimental characterization and mitigation of turbulence induced signal fades within an ad hoc FSO network,” Opt. Express 22(3), 3208–3218 (2014).
[Crossref] [PubMed]

W. Liu, W. Shi, J. Cao, Y. Lv, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

H. Jian, D. Ke, L. Chao, Z. Peng, J. Dagang, and Y. Zhoushi, “Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication,” Opt. Express 22(13), 16000–16007 (2014).
[Crossref] [PubMed]

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
[Crossref] [PubMed]

2013 (1)

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212–220 (2013).
[Crossref]

2011 (1)

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 28, 41491–41495 (2011).

2008 (1)

2007 (1)

A. Belmonte, A. Rodríguez, F. Dios, and A. Comeón, “Phase compensation considerations on coherent, free-space laser communications system,” Proc. SPIE 6736, 67361A (2007).
[Crossref]

2001 (1)

R. Changhui, J. Wenhan, L. Ning, T. Guomao, S. Feng, Z. Xuejun, and T. Huimin, “Temporal Correction Effectiveness of Adaptive Optical System for Light Wave Atmospheric Propagation,” Acta Opt. Sin. 21, 933–938 (2001).

1990 (1)

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29(10), 1174–1180 (1990).
[Crossref]

Belmonte, A.

A. Belmonte, “Influence of atmospheric phase compensation on optical heterodyne power measurements,” Opt. Express 16(9), 6756–6767 (2008).
[Crossref] [PubMed]

A. Belmonte, A. Rodríguez, F. Dios, and A. Comeón, “Phase compensation considerations on coherent, free-space laser communications system,” Proc. SPIE 6736, 67361A (2007).
[Crossref]

Boluda-Ruiz, R.

Cao, J.

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wave-front sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

W. Liu, W. Shi, J. Cao, Y. Lv, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

Castillo-Vázquez, B.

Castillo-Vázquez, C.

Changhui, R.

R. Changhui, J. Wenhan, L. Ning, T. Guomao, S. Feng, Z. Xuejun, and T. Huimin, “Temporal Correction Effectiveness of Adaptive Optical System for Light Wave Atmospheric Propagation,” Acta Opt. Sin. 21, 933–938 (2001).

Chao, L.

Chen, M.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

Chen, S.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
[Crossref] [PubMed]

Chen, W.

J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 359, 254–260 (2016).
[Crossref]

Chi, X.

W. Liu, W. Shi, J. Cao, Y. Lv, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wave-front sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

Comeón, A.

A. Belmonte, A. Rodríguez, F. Dios, and A. Comeón, “Phase compensation considerations on coherent, free-space laser communications system,” Proc. SPIE 6736, 67361A (2007).
[Crossref]

Cui, B.

Cvijetic, M.

Dagang, J.

Dang, A.

J. Zhang, S. Ding, H. Zhai, and A. Dang, “Theoretical and experimental studies of polarization fluctuations over atmospheric turbulent channels for wireless optical communication systems,” Opt. Express 22(26), 32482–32488 (2014).
[Crossref] [PubMed]

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 28, 41491–41495 (2011).

L. Zuo, Y. Ren, A. Dang, and G. Hong, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Global Telecommunications Conference (IEEE, 2010), pp. 1–5.
[Crossref]

Deng, K.

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
[Crossref]

Densmore, A. C.

Y. Rahmat-Samii and A. C. Densmore, “Technology Trends and Challenges of Antennas for Satellite Communication Systems,” IEEE Trans. Antenn. Propag. 03, 1–14 (2014).

Ding, S.

Dios, F.

A. Belmonte, A. Rodríguez, F. Dios, and A. Comeón, “Phase compensation considerations on coherent, free-space laser communications system,” Proc. SPIE 6736, 67361A (2007).
[Crossref]

Feng, S.

R. Changhui, J. Wenhan, L. Ning, T. Guomao, S. Feng, Z. Xuejun, and T. Huimin, “Temporal Correction Effectiveness of Adaptive Optical System for Light Wave Atmospheric Propagation,” Acta Opt. Sin. 21, 933–938 (2001).

Gao, J.

J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 359, 254–260 (2016).
[Crossref]

García-Zambrana, A.

Ghassemlooy, Z.

Guo, H.

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 28, 41491–41495 (2011).

Guomao, T.

R. Changhui, J. Wenhan, L. Ning, T. Guomao, S. Feng, Z. Xuejun, and T. Huimin, “Temporal Correction Effectiveness of Adaptive Optical System for Light Wave Atmospheric Propagation,” Acta Opt. Sin. 21, 933–938 (2001).

Hong, G.

L. Zuo, Y. Ren, A. Dang, and G. Hong, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Global Telecommunications Conference (IEEE, 2010), pp. 1–5.
[Crossref]

Hou, P.

Huang, J.

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
[Crossref]

Huimin, T.

R. Changhui, J. Wenhan, L. Ning, T. Guomao, S. Feng, Z. Xuejun, and T. Huimin, “Temporal Correction Effectiveness of Adaptive Optical System for Light Wave Atmospheric Propagation,” Acta Opt. Sin. 21, 933–938 (2001).

Jian, H.

Kang, L.

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
[Crossref]

Ke, D.

Li, H.

Li, J.

J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 359, 254–260 (2016).
[Crossref]

Li, M.

Li, X.

Liu, C.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
[Crossref] [PubMed]

Liu, L.

Liu, W.

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wave-front sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

W. Liu, W. Shi, J. Cao, Y. Lv, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212–220 (2013).
[Crossref]

Liu, X.

Lu, W.

Lv, Y.

W. Liu, W. Shi, J. Cao, Y. Lv, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212–220 (2013).
[Crossref]

Ma, X.

Mei, H.

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
[Crossref]

Ning, L.

R. Changhui, J. Wenhan, L. Ning, T. Guomao, S. Feng, Z. Xuejun, and T. Huimin, “Temporal Correction Effectiveness of Adaptive Optical System for Light Wave Atmospheric Propagation,” Acta Opt. Sin. 21, 933–938 (2001).

Peng, Z.

Perez, J.

Popoola, W. O.

Rahmat-Samii, Y.

Y. Rahmat-Samii and A. C. Densmore, “Technology Trends and Challenges of Antennas for Satellite Communication Systems,” IEEE Trans. Antenn. Propag. 03, 1–14 (2014).

Ren, Y.

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 28, 41491–41495 (2011).

L. Zuo, Y. Ren, A. Dang, and G. Hong, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Global Telecommunications Conference (IEEE, 2010), pp. 1–5.
[Crossref]

Roddier, N.

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29(10), 1174–1180 (1990).
[Crossref]

Rodríguez, A.

A. Belmonte, A. Rodríguez, F. Dios, and A. Comeón, “Phase compensation considerations on coherent, free-space laser communications system,” Proc. SPIE 6736, 67361A (2007).
[Crossref]

Shi, W.

W. Liu, W. Shi, J. Cao, Y. Lv, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wave-front sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212–220 (2013).
[Crossref]

Sun, J.

J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 359, 254–260 (2016).
[Crossref]

X. Ma, J. Sun, Y. Zhi, Y. Zhou, W. Lu, P. Hou, Q. Xu, and L. Liu, “Performance analysis of pupil-matching optical differential receivers in space-to-ground laser communication,” Appl. Opt. 53(14), 3010–3018 (2014).
[Crossref] [PubMed]

Wang, B.

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212–220 (2013).
[Crossref]

Wang, J.

K. Yao, J. Wang, X. Liu, H. Li, M. Wang, B. Cui, and S. Yu, “Pyramid wavefront sensor using a sequential operation method,” Appl. Opt. 54(13), 3894–3901 (2015).
[Crossref]

W. Liu, W. Shi, J. Cao, Y. Lv, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212–220 (2013).
[Crossref]

Wang, M.

Wang, S.

W. Liu, W. Shi, J. Cao, Y. Lv, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

Wenhan, J.

R. Changhui, J. Wenhan, L. Ning, T. Guomao, S. Feng, Z. Xuejun, and T. Huimin, “Temporal Correction Effectiveness of Adaptive Optical System for Light Wave Atmospheric Propagation,” Acta Opt. Sin. 21, 933–938 (2001).

Wu, P.

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wave-front sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

Xian, H.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
[Crossref] [PubMed]

Xu, Q.

Xuejun, Z.

R. Changhui, J. Wenhan, L. Ning, T. Guomao, S. Feng, Z. Xuejun, and T. Huimin, “Temporal Correction Effectiveness of Adaptive Optical System for Light Wave Atmospheric Propagation,” Acta Opt. Sin. 21, 933–938 (2001).

Yao, K.

K. Yao, J. Wang, X. Liu, H. Li, M. Wang, B. Cui, and S. Yu, “Pyramid wavefront sensor using a sequential operation method,” Appl. Opt. 54(13), 3894–3901 (2015).
[Crossref]

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wave-front sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212–220 (2013).
[Crossref]

Yao, Z.

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
[Crossref]

Yu, S.

Zhai, H.

Zhang, J.

Zhang, Z.

J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 359, 254–260 (2016).
[Crossref]

Zhi, Y.

Zhou, Y.

Zhoushi, Y.

Zhu, W.

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
[Crossref]

Zuo, L.

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 28, 41491–41495 (2011).

L. Zuo, Y. Ren, A. Dang, and G. Hong, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Global Telecommunications Conference (IEEE, 2010), pp. 1–5.
[Crossref]

Zvanovec, S.

Acta Opt. Sin. (1)

R. Changhui, J. Wenhan, L. Ning, T. Guomao, S. Feng, Z. Xuejun, and T. Huimin, “Temporal Correction Effectiveness of Adaptive Optical System for Light Wave Atmospheric Propagation,” Acta Opt. Sin. 21, 933–938 (2001).

Appl. Opt. (3)

IEEE Trans. Antenn. Propag. (1)

Y. Rahmat-Samii and A. C. Densmore, “Technology Trends and Challenges of Antennas for Satellite Communication Systems,” IEEE Trans. Antenn. Propag. 03, 1–14 (2014).

Opt. Commun. (5)

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212–220 (2013).
[Crossref]

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 28, 41491–41495 (2011).

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574–577 (2015).
[Crossref]

J. Li, Z. Zhang, J. Gao, J. Sun, and W. Chen, “Bandwidth of adaptive optics system in atmospheric coherent laser communication,” Opt. Commun. 359, 254–260 (2016).
[Crossref]

Opt. Eng. (1)

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29(10), 1174–1180 (1990).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wave-front sensor,” Opt. Laser Technol. 60, 116–123 (2014).
[Crossref]

Optik (Stuttg.) (1)

W. Liu, W. Shi, J. Cao, Y. Lv, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik (Stuttg.) 125(1), 324–328 (2014).
[Crossref]

Proc. SPIE (1)

A. Belmonte, A. Rodríguez, F. Dios, and A. Comeón, “Phase compensation considerations on coherent, free-space laser communications system,” Proc. SPIE 6736, 67361A (2007).
[Crossref]

Other (1)

L. Zuo, Y. Ren, A. Dang, and G. Hong, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Global Telecommunications Conference (IEEE, 2010), pp. 1–5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic diagram of the CFSOC system.
Fig. 2
Fig. 2 The relationship between arrival angle fluctuation and GF.
Fig. 3
Fig. 3 The relationship between the RMS of the ME and tilt aberrations.
Fig. 4
Fig. 4 The relationship between the CLCB and ME.
Fig. 5
Fig. 5 The relationship between the CLCB and BER.
Fig. 6
Fig. 6 The schematic diagram of experimental system.
Fig. 7
Fig. 7 The photo of experimental system.
Fig. 8
Fig. 8 The Results of the arrival angle when GF is 50 Hz, where (a) is without tilt correction (the variance is 2.988 × 10−14 rad2), (b) is with first-stage FSM correction (the variance is 2.190 × 10−15 rad2) and (c) is with double-stage FSM tilt correction (the variance is 2.363 × 10−16 rad2).

Tables (11)

Tables Icon

Table 1 Results of the ME and BER when the GF is 50 Hz.

Tables Icon

Table 2 The fluctuations of the ME when the GF is 50 Hz.

Tables Icon

Table 3 The results of arrival angle fluctuations.

Tables Icon

Table 4 The results of the ME under different GF.

Tables Icon

Table 5 The results of the BER under different GF and Np.

Tables Icon

Table 6 The results of the RMS of the ME.

Tables Icon

Table 7 The mean value and RMS of the ME without high-order aberrations correction.

Tables Icon

Table 8 The mean value and RMS of the BER without high-order aberrations correction.

Tables Icon

Table 9 The mean value and RMS of the ME after correction (CLCB is 100 Hz).

Tables Icon

Table 10 The mean value and RMS of the BER after correction (CLCB is 100 Hz).

Tables Icon

Table 11 The results of the ME and BER after correction (CLCB is 120 Hz).

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

E S = A S E i ( 2 π f S t + φ S )
E L O = A O E i ( 2 π f O t + φ O )
I = S ( E L O + E S ) ( E L O + E S ) * d s
I = S { A O 2 + A S 2 + 2 A O A S cos [ 2 π ( f S f O ) + Δ φ ] } d s
Δ φ = φ ( r ) + φ ( t )
η = [ S A S A O cos ( Δ φ ) d s ] 2 S A S 2 d s S A O 2 d s
σ β 2 = 2.91 D 1 / 3 0 L C n 2 ( z ) d z
f G = [ 0.10247 k 2 v 5 / 3 sec ζ ] 3 / 5
σ β 2 = 28.4 D 1 / 3 f G 5 / 3 k 2 v 5 / 3 sec ζ
Δ φ = φ t i l t = tan ( β ) r cos θ β r cos θ
η t = [ 1 S S cos ( Δ φ ) d s ] 2 = [ 1 S 0 R 0 2 π cos ( β r cos θ ) r d r d θ ] 2 = [ 2 π R 2 1 S J 1 ( k R β ) k R β ] 2 = [ 2 J 1 ( k R β ) k R β ] 2
σ t i l t = 1 S 0 R 0 2 π ( β r cos θ ) 2 r d r d θ = k R β 2
η t = [ 2 J 1 ( k R β ) k R β ] 2
σ η t = { d η d β } 2 σ β 2 = 2 J 2 ( k R β ) β 28.4 D 1 / 3 f G 5 / 3 k 2 v 5 / 3 sec ζ = 5.33 D 5 / 6 f G 5 / 6 J 2 ( 2 σ t i l t ) 2 σ t i l t v 5 / 6 sec 1 / 2 ζ
η c = [ 1 S S cos ( Δ φ ) d s ] 2
η c = { 1 S S [ 1 φ 2 ( r ) 2 ] d s } 2 = ( 1 σ φ 2 2 ) 2
σ φ = [ α F ( d r 0 ) 5 / 3 + κ ( f G f 3 d B ) 5 / 3 ] 1 / 2 ( r a d )
σ φ 0 = [ α F ( d r 0 ) 5 / 3 ] 1 / 2 ( r a d )
η c = ( 1 σ φ 2 2 ) 2 = { 1 [ α F ( d r 0 ) 5 / 3 + κ ( f G f 3 d B ) 5 / 3 ] / 2 } 2
B E R = 1 2 e r f c ( Q 2 )
P S = N P h ν B
S N R 0 = 2 δ P S h ν B = 2 δ N P
B E R = 1 2 e r f c ( 2 δ N P η )

Metrics