Abstract

Real-time surface plasmon modulation was achieved by electrically varying the pitch of a nanoscale surface relief diffraction grating inscribed on an azobenzene thin film covered with a layer of silver. The azobenzene film was spin coated on an electrostrictive Lead Lanthanum Zirconate Titanate (PLZT) ceramic substrate and a combination of DC bias and AC electric fields were applied longitudinally on the PLZT ceramic causing a change in the grating’s pitch as well as the surface plasmon’s resonance wavelength. This method permits extremely accurate control of the surface plasmon wavelength for tunable optics applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon bandwidth increase using chirped-pitch linear diffraction gratings

Erin Bailey and Ribal Georges Sabat
Opt. Express 25(6) 6904-6913 (2017)

Designing surface plasmon resonance of subwavelength hole arrays by studying absorption

Lin Wu, Ping Bai, and Er Ping Li
J. Opt. Soc. Am. B 29(4) 521-528 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Wong, Y. Jeon, G. Barbastathis, and S. G. Kim, “Analog tunable gratings driven by thin-film piezoelectric microelectromechanical actuators,” Appl. Opt. 42(4), 621–626 (2003).
    [Crossref] [PubMed]
  2. C. W. Wong, Y. Jeon, G. Barbastathis, and S. Kim, “Analog piezoelectric-driven tunable gratings with nanometer resolution,” J. Microelectromech. Syst. 13(6), 998–1005 (2004).
    [Crossref]
  3. M. Aschwanden and A. Stemmer, “Polymeric, electrically tunable diffraction grating based on artificial muscles,” Opt. Lett. 31(17), 2610–2612 (2006).
    [Crossref] [PubMed]
  4. G. Ouyang, K. Wang, L. Henriksen, M. Akram, and X. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators A Phys. 158(2), 313–319 (2010).
    [Crossref]
  5. O. Solgaard, F. S. Sandejas, and D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett. 17(9), 688–690 (1992).
    [Crossref] [PubMed]
  6. M. C. Y. Huang, Y. Zhou, and C. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
    [Crossref]
  7. Y. Huang, Y. Zhou, and S. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
    [Crossref]
  8. A. Spisser, R. Ledantec, C. Seassal, J. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photonics Technol. Lett. 10(9), 1259–1261 (1998).
    [Crossref]
  9. L. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planar-photonic crystals: from superprism to supercollimator,” J. Lightwave Technol. 21(2), 561–566 (2003).
    [Crossref]
  10. E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
    [Crossref]
  11. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
    [Crossref]
  12. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
    [Crossref] [PubMed]
  13. J. Jefferies and R. G. Sabat, “Surface-relief diffraction gratings’ optimization for plasmonic enhancements in thin-film solar cells,” Prog. Photovolt. Res. Appl. 22(6), 648–655 (2014).
    [Crossref]
  14. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [Crossref] [PubMed]
  15. A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
    [Crossref] [PubMed]
  16. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
    [Crossref]
  17. H. P. Liang, L. J. Wan, C. L. Bai, and L. Jiang, “Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes,” J. Phys. Chem. B 109(16), 7795–7800 (2005).
    [Crossref] [PubMed]
  18. R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
    [Crossref]
  19. T. Hirakawa and P. V. Kamat, “Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters,” Langmuir 20(14), 5645–5647 (2004).
    [Crossref] [PubMed]
  20. A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21(4), 276–283 (2015).
    [Crossref]
  21. G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10(2), 1788–1794 (2016).
    [Crossref] [PubMed]
  22. R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
    [Crossref]
  23. P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
    [Crossref]
  24. R. G. Sabat, P. Rochon, and B. K. Mukherjee, “Quasistatic dielectric and strain characterization of transparent relaxor ferroelectric lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 104(5), 054115 (2008).
    [Crossref]
  25. Q. Wang Song, P. J. Talbot, and J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41(4), 717–727 (1994).
    [Crossref]
  26. T. Tatebayashi, T. Yamamoto, and H. Sato, “Electro-optic variable focal-length lens using PLZT ceramic,” Appl. Opt. 30(34), 5049–5055 (1991).
    [Crossref] [PubMed]
  27. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  28. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [Crossref]
  29. J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
    [Crossref]
  30. V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate,” Phys. Rev. B 60(9), 6420–6427 (1999).
    [Crossref]

2016 (1)

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10(2), 1788–1794 (2016).
[Crossref] [PubMed]

2015 (1)

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21(4), 276–283 (2015).
[Crossref]

2014 (2)

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

J. Jefferies and R. G. Sabat, “Surface-relief diffraction gratings’ optimization for plasmonic enhancements in thin-film solar cells,” Prog. Photovolt. Res. Appl. 22(6), 648–655 (2014).
[Crossref]

2012 (1)

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

2010 (1)

G. Ouyang, K. Wang, L. Henriksen, M. Akram, and X. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators A Phys. 158(2), 313–319 (2010).
[Crossref]

2008 (2)

M. C. Y. Huang, Y. Zhou, and C. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

R. G. Sabat, P. Rochon, and B. K. Mukherjee, “Quasistatic dielectric and strain characterization of transparent relaxor ferroelectric lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 104(5), 054115 (2008).
[Crossref]

2007 (1)

R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[Crossref]

2006 (2)

Y. Huang, Y. Zhou, and S. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[Crossref]

M. Aschwanden and A. Stemmer, “Polymeric, electrically tunable diffraction grating based on artificial muscles,” Opt. Lett. 31(17), 2610–2612 (2006).
[Crossref] [PubMed]

2005 (3)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref] [PubMed]

H. P. Liang, L. J. Wan, C. L. Bai, and L. Jiang, “Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes,” J. Phys. Chem. B 109(16), 7795–7800 (2005).
[Crossref] [PubMed]

2004 (2)

T. Hirakawa and P. V. Kamat, “Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters,” Langmuir 20(14), 5645–5647 (2004).
[Crossref] [PubMed]

C. W. Wong, Y. Jeon, G. Barbastathis, and S. Kim, “Analog piezoelectric-driven tunable gratings with nanometer resolution,” J. Microelectromech. Syst. 13(6), 998–1005 (2004).
[Crossref]

2003 (3)

2000 (1)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

1999 (1)

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate,” Phys. Rev. B 60(9), 6420–6427 (1999).
[Crossref]

1998 (2)

A. Spisser, R. Ledantec, C. Seassal, J. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photonics Technol. Lett. 10(9), 1259–1261 (1998).
[Crossref]

A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[Crossref] [PubMed]

1996 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

1995 (1)

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

1994 (1)

Q. Wang Song, P. J. Talbot, and J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41(4), 717–727 (1994).
[Crossref]

1992 (1)

1991 (1)

1968 (2)

E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Akram, M.

G. Ouyang, K. Wang, L. Henriksen, M. Akram, and X. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators A Phys. 158(2), 313–319 (2010).
[Crossref]

Alvarez-Puebla, R.

R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[Crossref]

Aschwanden, M.

Bai, C. L.

H. P. Liang, L. J. Wan, C. L. Bai, and L. Jiang, “Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes,” J. Phys. Chem. B 109(16), 7795–7800 (2005).
[Crossref] [PubMed]

Barbastathis, G.

C. W. Wong, Y. Jeon, G. Barbastathis, and S. Kim, “Analog piezoelectric-driven tunable gratings with nanometer resolution,” J. Microelectromech. Syst. 13(6), 998–1005 (2004).
[Crossref]

C. W. Wong, Y. Jeon, G. Barbastathis, and S. G. Kim, “Analog tunable gratings driven by thin-film piezoelectric microelectromechanical actuators,” Appl. Opt. 42(4), 621–626 (2003).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

Batalla, E.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Benyattou, T.

A. Spisser, R. Ledantec, C. Seassal, J. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photonics Technol. Lett. 10(9), 1259–1261 (1998).
[Crossref]

Blondeau, R.

A. Spisser, R. Ledantec, C. Seassal, J. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photonics Technol. Lett. 10(9), 1259–1261 (1998).
[Crossref]

Bloom, D. M.

Bobnar, V.

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate,” Phys. Rev. B 60(9), 6420–6427 (1999).
[Crossref]

Bravo-Vasquez, J.

R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[Crossref]

Chang-Hasnain, C.

M. C. Y. Huang, Y. Zhou, and C. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Chen, X.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10(2), 1788–1794 (2016).
[Crossref] [PubMed]

G. Ouyang, K. Wang, L. Henriksen, M. Akram, and X. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators A Phys. 158(2), 313–319 (2010).
[Crossref]

Chu, S.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10(2), 1788–1794 (2016).
[Crossref] [PubMed]

Cui, B.

R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[Crossref]

Djurišic, A. B.

Elam, J. W.

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref] [PubMed]

Elazar, J. M.

Emboras, A.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21(4), 276–283 (2015).
[Crossref]

Fedoryshyn, Y.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21(4), 276–283 (2015).
[Crossref]

Fenniri, H.

R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[Crossref]

Ferreira, J.

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

Girotto, E. M.

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

Guillot, G.

A. Spisser, R. Ledantec, C. Seassal, J. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photonics Technol. Lett. 10(9), 1259–1261 (1998).
[Crossref]

Haffner, C.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21(4), 276–283 (2015).
[Crossref]

Hafner, C.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21(4), 276–283 (2015).
[Crossref]

Haynes, C. L.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

Heni, W.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21(4), 276–283 (2015).
[Crossref]

Henriksen, L.

G. Ouyang, K. Wang, L. Henriksen, M. Akram, and X. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators A Phys. 158(2), 313–319 (2010).
[Crossref]

Hirakawa, T.

T. Hirakawa and P. V. Kamat, “Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters,” Langmuir 20(14), 5645–5647 (2004).
[Crossref] [PubMed]

Hoessbacher, C.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21(4), 276–283 (2015).
[Crossref]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Huang, Y.

Y. Huang, Y. Zhou, and S. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[Crossref]

Jefferies, J.

J. Jefferies and R. G. Sabat, “Surface-relief diffraction gratings’ optimization for plasmonic enhancements in thin-film solar cells,” Prog. Photovolt. Res. Appl. 22(6), 648–655 (2014).
[Crossref]

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

Jeon, Y.

C. W. Wong, Y. Jeon, G. Barbastathis, and S. Kim, “Analog piezoelectric-driven tunable gratings with nanometer resolution,” J. Microelectromech. Syst. 13(6), 998–1005 (2004).
[Crossref]

C. W. Wong, Y. Jeon, G. Barbastathis, and S. G. Kim, “Analog tunable gratings driven by thin-film piezoelectric microelectromechanical actuators,” Appl. Opt. 42(4), 621–626 (2003).
[Crossref] [PubMed]

Jiang, L.

H. P. Liang, L. J. Wan, C. L. Bai, and L. Jiang, “Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes,” J. Phys. Chem. B 109(16), 7795–7800 (2005).
[Crossref] [PubMed]

Kamat, P. V.

T. Hirakawa and P. V. Kamat, “Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters,” Langmuir 20(14), 5645–5647 (2004).
[Crossref] [PubMed]

Kim, S.

C. W. Wong, Y. Jeon, G. Barbastathis, and S. Kim, “Analog piezoelectric-driven tunable gratings with nanometer resolution,” J. Microelectromech. Syst. 13(6), 998–1005 (2004).
[Crossref]

Kim, S. G.

Kirby, R.

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

Koch, U.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21(4), 276–283 (2015).
[Crossref]

Krauss, T. F.

Kretschmann, E.

E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Kutnjak, Z.

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate,” Phys. Rev. B 60(9), 6420–6427 (1999).
[Crossref]

Lebel, O.

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

Leclercq, J.

A. Spisser, R. Ledantec, C. Seassal, J. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photonics Technol. Lett. 10(9), 1259–1261 (1998).
[Crossref]

Ledantec, R.

A. Spisser, R. Ledantec, C. Seassal, J. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photonics Technol. Lett. 10(9), 1259–1261 (1998).
[Crossref]

Leuthold, J.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21(4), 276–283 (2015).
[Crossref]

Levstik, A.

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate,” Phys. Rev. B 60(9), 6420–6427 (1999).
[Crossref]

Liang, H. P.

H. P. Liang, L. J. Wan, C. L. Bai, and L. Jiang, “Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes,” J. Phys. Chem. B 109(16), 7795–7800 (2005).
[Crossref] [PubMed]

Liu, S.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10(2), 1788–1794 (2016).
[Crossref] [PubMed]

Ma, P.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21(4), 276–283 (2015).
[Crossref]

Majewski, M. L.

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Maurice, J. H.

Q. Wang Song, P. J. Talbot, and J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41(4), 717–727 (1994).
[Crossref]

Mazilu, M.

Monteiro, J. P.

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

Mukherjee, B. K.

R. G. Sabat, P. Rochon, and B. K. Mukherjee, “Quasistatic dielectric and strain characterization of transparent relaxor ferroelectric lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 104(5), 054115 (2008).
[Crossref]

Natansohn, A.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Niegemann, J.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21(4), 276–283 (2015).
[Crossref]

Nunzi, J.

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Ouyang, G.

G. Ouyang, K. Wang, L. Henriksen, M. Akram, and X. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators A Phys. 158(2), 313–319 (2010).
[Crossref]

Pirc, R.

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate,” Phys. Rev. B 60(9), 6420–6427 (1999).
[Crossref]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

Raether, H.

E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Rakic, A. D.

Rochon, P.

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

R. G. Sabat, P. Rochon, and B. K. Mukherjee, “Quasistatic dielectric and strain characterization of transparent relaxor ferroelectric lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 104(5), 054115 (2008).
[Crossref]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Rondi, D.

A. Spisser, R. Ledantec, C. Seassal, J. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photonics Technol. Lett. 10(9), 1259–1261 (1998).
[Crossref]

Sabat, R. G.

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

J. Jefferies and R. G. Sabat, “Surface-relief diffraction gratings’ optimization for plasmonic enhancements in thin-film solar cells,” Prog. Photovolt. Res. Appl. 22(6), 648–655 (2014).
[Crossref]

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

R. G. Sabat, P. Rochon, and B. K. Mukherjee, “Quasistatic dielectric and strain characterization of transparent relaxor ferroelectric lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 104(5), 054115 (2008).
[Crossref]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

Sandejas, F. S.

Santos, M. J. L.

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

Sato, H.

Schatz, G. C.

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref] [PubMed]

Seassal, C.

A. Spisser, R. Ledantec, C. Seassal, J. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photonics Technol. Lett. 10(9), 1259–1261 (1998).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Solgaard, O.

Spisser, A.

A. Spisser, R. Ledantec, C. Seassal, J. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photonics Technol. Lett. 10(9), 1259–1261 (1998).
[Crossref]

Stair, P. C.

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref] [PubMed]

Stemmer, A.

Talbot, P. J.

Q. Wang Song, P. J. Talbot, and J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41(4), 717–727 (1994).
[Crossref]

Tatebayashi, T.

Van Duyne, R. P.

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref] [PubMed]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

Veres, T.

R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[Crossref]

Viktorovitch, P.

A. Spisser, R. Ledantec, C. Seassal, J. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photonics Technol. Lett. 10(9), 1259–1261 (1998).
[Crossref]

Wan, L. J.

H. P. Liang, L. J. Wan, C. L. Bai, and L. Jiang, “Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes,” J. Phys. Chem. B 109(16), 7795–7800 (2005).
[Crossref] [PubMed]

Wang, G.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10(2), 1788–1794 (2016).
[Crossref] [PubMed]

Wang, K.

G. Ouyang, K. Wang, L. Henriksen, M. Akram, and X. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators A Phys. 158(2), 313–319 (2010).
[Crossref]

Wang Song, Q.

Q. Wang Song, P. J. Talbot, and J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41(4), 717–727 (1994).
[Crossref]

Whitney, A. V.

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref] [PubMed]

Wong, C.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10(2), 1788–1794 (2016).
[Crossref] [PubMed]

Wong, C. W.

C. W. Wong, Y. Jeon, G. Barbastathis, and S. Kim, “Analog piezoelectric-driven tunable gratings with nanometer resolution,” J. Microelectromech. Syst. 13(6), 998–1005 (2004).
[Crossref]

C. W. Wong, Y. Jeon, G. Barbastathis, and S. G. Kim, “Analog tunable gratings driven by thin-film piezoelectric microelectromechanical actuators,” Appl. Opt. 42(4), 621–626 (2003).
[Crossref] [PubMed]

Wu, L.

Wu, S.

Y. Huang, Y. Zhou, and S. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[Crossref]

Yamamoto, T.

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Y. Huang, Y. Zhou, and S. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[Crossref]

Zinovev, A. V.

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref] [PubMed]

Zou, S.

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref] [PubMed]

ACS Nano (1)

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10(2), 1788–1794 (2016).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

Y. Huang, Y. Zhou, and S. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
[Crossref]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch, P. Ma, Y. Fedoryshyn, J. Niegemann, C. Hafner, and J. Leuthold, “Electrically controlled plasmonic switches and modulators,” IEEE J. Sel. Top. Quantum Electron. 21(4), 276–283 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Spisser, R. Ledantec, C. Seassal, J. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photonics Technol. Lett. 10(9), 1259–1261 (1998).
[Crossref]

J. Appl. Phys. (1)

R. G. Sabat, P. Rochon, and B. K. Mukherjee, “Quasistatic dielectric and strain characterization of transparent relaxor ferroelectric lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 104(5), 054115 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

R. Kirby, R. G. Sabat, J. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

J. Microelectromech. Syst. (1)

C. W. Wong, Y. Jeon, G. Barbastathis, and S. Kim, “Analog piezoelectric-driven tunable gratings with nanometer resolution,” J. Microelectromech. Syst. 13(6), 998–1005 (2004).
[Crossref]

J. Mod. Opt. (1)

Q. Wang Song, P. J. Talbot, and J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41(4), 717–727 (1994).
[Crossref]

J. Phys. Chem. B (3)

A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref] [PubMed]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000).
[Crossref]

H. P. Liang, L. J. Wan, C. L. Bai, and L. Jiang, “Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes,” J. Phys. Chem. B 109(16), 7795–7800 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[Crossref]

Langmuir (1)

T. Hirakawa and P. V. Kamat, “Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters,” Langmuir 20(14), 5645–5647 (2004).
[Crossref] [PubMed]

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, and C. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Opt. Lett. (2)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Phys. Rev. B (1)

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate,” Phys. Rev. B 60(9), 6420–6427 (1999).
[Crossref]

Phys. Rev. B Condens. Matter (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (1)

J. Jefferies and R. G. Sabat, “Surface-relief diffraction gratings’ optimization for plasmonic enhancements in thin-film solar cells,” Prog. Photovolt. Res. Appl. 22(6), 648–655 (2014).
[Crossref]

Sens. Actuators A Phys. (1)

G. Ouyang, K. Wang, L. Henriksen, M. Akram, and X. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators A Phys. 158(2), 313–319 (2010).
[Crossref]

Sens. Actuators B Chem. (1)

J. P. Monteiro, J. Ferreira, R. G. Sabat, P. Rochon, M. J. L. Santos, and E. M. Girotto, “SPR based biosensor using surface relief grating in transmission mode,” Sens. Actuators B Chem. 174, 270–273 (2012).
[Crossref]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Z. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) A 3-dimensional model showing the PLZT test sample with the electrical attachment points, the half-disc grating location and the top silver coating. (b) An Atomic Force Microscope image of the top layer of silver-coated grating.

Fig. 2
Fig. 2

Normalized reflected intensity as a function of wavelength for grating pitches of 615 nm and 635 nm.

Fig. 3
Fig. 3

Reflected modulation signals for TE and TM polarizations at the second harmonic for gratings with pitch (a) 615 nm and (b) 635 nm.

Fig. 4
Fig. 4

Absolute value of the theoretical first order smoothed derivative of the SP plots in Fig. 2 for gratings with pitch (a) 615 nm and (b) 635 nm.

Fig. 5
Fig. 5

Reflected modulation signal as a function of wavelength for various electric field amplitudes.

Fig. 6
Fig. 6

(a) The maximum reflected modulation signal at 316 Hz as a function of AC electric field peak-to-peak amplitude in addition to various DC bias fields, (b) the maximum reflected modulation signal at 316 Hz as a function of DC bias electric field in addition to various AC field and (c) the maximum reflected modulation signal at 158 Hz as a function of DC bias electric fields at a peak-to-peak AC field amplitude of 0.1 MV/m.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ SP = n d ( ε ˜ r,m ' n d 2 + ε ˜ r,m ' sin θ i )Λ,
λ SP 1.027Λ.
S 3 = ΔΛ Λ = γ 333 E 3 2 .
Δ λ SP 1.027Λ γ 333 E 3 2 .
S 3 [ ... ]+[ d 33 E 0 +3 ψ 3333 E DC 2 E 0 + 3 4 ψ 3333 E 0 3 + 2 γ 333 E DC E 0 +4 χ 33333 E DC 3 E 0 +3 χ 33333 E DC E 0 3 +... ]cos(ωt) +[ 3 2 ψ 3333 E DC E 0 2 + 1 2 γ 333 E 0 2 + 3 χ 33333 E DC 2 E 0 2 + 1 2 χ 33333 E 0 4 +... ]cos(2ωt)+[ ... ]cos(3ωt)+...

Metrics