Abstract

Upon 976 nm diode laser excitation, the temperature dependence of the red upconversion emission of Er3+ in CaWO4:Yb3+/Er3+ phosphor was studied from 298 to 478 K. The spectrum was verified to consist of two Stark components originating from two Stark sublevels of 4F9/2 excited state to 4I15/2 ground state of Er3+. The valley-to-peak intensity ratio (VPR) of this double-peak spectrum was found to increase linearly with the rise of temperature. The maximum relative sensitivity of this VPR method was obtained to be about 0.20% K−1 at 298 K. Moreover, a study on the power dependence was also performed, suggesting that VPR method is immune to the pump power and is thus suitable for monitoring the temperature.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Excellent optical thermometry based on upconversion emission in SrMoO4:Er3+ phosphor

Zhen Huang, Zhongquan Nie, Mubiao Xie, Yuxiao Wang, and Dongyu Li
Opt. Mater. Express 7(7) 2404-2410 (2017)

Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+: BaGd2(MoO4)4 phosphors

Ruoshan Lei, Degang Deng, Xin Liu, Feifei Huang, Huanping Wang, Shilong Zhao, and Shiqing Xu
Opt. Mater. Express 8(10) 3023-3035 (2018)

Optical thermometry based on upconversion luminescence of Yb3+-Er3+ and Yb3+-Ho3+ doped Y6WO12 phosphors

Songsong An, Jia Zhang, and Lei Zhao
Appl. Opt. 58(27) 7451-7457 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71(8), 2959–2978 (2000).
    [Crossref]
  2. J. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today 2(1), 48–51 (2007).
    [Crossref]
  3. X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
    [Crossref] [PubMed]
  4. M. K. Mahata, K. Kumar, and V. K. Rai, “Er3+–Yb3+ doped vanadate nanocrystals: a highly sensitive thermographic phosphor and its optical nanoheater behavior,” Sens. Actuat. B 209, 775–780 (2015).
    [Crossref]
  5. B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
    [Crossref] [PubMed]
  6. L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
    [Crossref] [PubMed]
  7. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
    [Crossref] [PubMed]
  8. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [Crossref]
  9. K. Zheng, W. Song, G. He, Z. Yuan, and W. Qin, “Five-photon UV upconversion emissions of Er³⁺ for temperature sensing,” Opt. Express 23(6), 7653–7658 (2015).
    [Crossref] [PubMed]
  10. W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuat. B 173, 250–253 (2012).
    [Crossref]
  11. F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
    [Crossref] [PubMed]
  12. Y. Zhou, F. Qin, Y. Zheng, Z. Zhang, and W. Cao, “Fluorescence intensity ratio method for temperature sensing,” Opt. Lett. 40(19), 4544–4547 (2015).
    [Crossref] [PubMed]
  13. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
    [Crossref]
  14. Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
    [Crossref] [PubMed]
  15. X. Tian, X. Wei, Y. Chen, C. Duan, and M. Yin, “Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd³⁺,” Opt. Express 22(24), 30333–30345 (2014).
    [Crossref] [PubMed]

2015 (4)

M. K. Mahata, K. Kumar, and V. K. Rai, “Er3+–Yb3+ doped vanadate nanocrystals: a highly sensitive thermographic phosphor and its optical nanoheater behavior,” Sens. Actuat. B 209, 775–780 (2015).
[Crossref]

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

K. Zheng, W. Song, G. He, Z. Yuan, and W. Qin, “Five-photon UV upconversion emissions of Er³⁺ for temperature sensing,” Opt. Express 23(6), 7653–7658 (2015).
[Crossref] [PubMed]

Y. Zhou, F. Qin, Y. Zheng, Z. Zhang, and W. Cao, “Fluorescence intensity ratio method for temperature sensing,” Opt. Lett. 40(19), 4544–4547 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

2012 (3)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuat. B 173, 250–253 (2012).
[Crossref]

2011 (1)

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

2010 (1)

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

2007 (1)

J. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today 2(1), 48–51 (2007).
[Crossref]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

2000 (2)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71(8), 2959–2978 (2000).
[Crossref]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Cao, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Cao, W.

Cao, W. W.

W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuat. B 173, 250–253 (2012).
[Crossref]

Capobianco, J. A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Chen, B.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Chen, Y.

Childs, P. R. N.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71(8), 2959–2978 (2000).
[Crossref]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Cui, Y.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Dong, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Duan, C.

Feng, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Fischer, L. H.

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Gao, X. Y.

W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuat. B 173, 250–253 (2012).
[Crossref]

García Solé, J.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Greenwood, J. R.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71(8), 2959–2978 (2000).
[Crossref]

Güdel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Harms, G. S.

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

He, G.

He, Y.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Jaque, D.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Kotov, N. A.

J. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today 2(1), 48–51 (2007).
[Crossref]

Kumar, K.

M. K. Mahata, K. Kumar, and V. K. Rai, “Er3+–Yb3+ doped vanadate nanocrystals: a highly sensitive thermographic phosphor and its optical nanoheater behavior,” Sens. Actuat. B 209, 775–780 (2015).
[Crossref]

Lee, J.

J. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today 2(1), 48–51 (2007).
[Crossref]

Li, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Liu, M.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Liu, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Long, C. A.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71(8), 2959–2978 (2000).
[Crossref]

Lüthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Mahata, M. K.

M. K. Mahata, K. Kumar, and V. K. Rai, “Er3+–Yb3+ doped vanadate nanocrystals: a highly sensitive thermographic phosphor and its optical nanoheater behavior,” Sens. Actuat. B 209, 775–780 (2015).
[Crossref]

Martín Rodriguez, E.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Martinez Maestro, L.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Meier, R. J.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Qian, G.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Qin, F.

Qin, W.

Rai, V. K.

M. K. Mahata, K. Kumar, and V. K. Rai, “Er3+–Yb3+ doped vanadate nanocrystals: a highly sensitive thermographic phosphor and its optical nanoheater behavior,” Sens. Actuat. B 209, 775–780 (2015).
[Crossref]

Sanz-Rodríguez, F.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Song, R.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Song, W.

Tian, X.

Vetrone, F.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Wang, X. D.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Wang, Z.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Wei, X.

Wolfbeis, O. S.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Wu, C.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Xu, W.

W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuat. B 173, 250–253 (2012).
[Crossref]

Yang, Y.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Yin, M.

Yu, J.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

Yuan, Z.

Zamarrón, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Zhang, Z.

Zhang, Z. G.

W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuat. B 173, 250–253 (2012).
[Crossref]

Zheng, K.

Zheng, L. J.

W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuat. B 173, 250–253 (2012).
[Crossref]

Zheng, Y.

Zhou, Y.

ACS Nano (1)

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Adv. Mater. (2)

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
[Crossref] [PubMed]

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

L. H. Fischer, G. S. Harms, and O. S. Wolfbeis, “Upconverting nanoparticles for nanoscale thermometry,” Angew. Chem. Int. Ed. Engl. 50(20), 4546–4551 (2011).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Nano Today (1)

J. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today 2(1), 48–51 (2007).
[Crossref]

Nanoscale (1)

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Rev. Sci. Instrum. (1)

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71(8), 2959–2978 (2000).
[Crossref]

Sens. Actuat. B (2)

M. K. Mahata, K. Kumar, and V. K. Rai, “Er3+–Yb3+ doped vanadate nanocrystals: a highly sensitive thermographic phosphor and its optical nanoheater behavior,” Sens. Actuat. B 209, 775–780 (2015).
[Crossref]

W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuat. B 173, 250–253 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Room-temperature UC spectrum of Er3+ in CaWO4:Yb3+/Er3+ phosphor in the range of 620 to 700 nm; the inset shows the log-log plots of two fluorescence peak intensities as a function of the pump power.
Fig. 2
Fig. 2 The energy levels diagram of Yb3+ and Er3+ in CaWO4:Yb3+/Er3+ phosphor and the corresponding UC processes.
Fig. 3
Fig. 3 Temperature-dependent red UC emission spectra of Er3+ in CaWO4:Yb3+/Er3+ phosphor. All spectra were normalized to the emission intensity of the right fluorescence peak.
Fig. 4
Fig. 4 (a) FIR and VPR of double-peak spectrum as a function of temperature in the range of 298 to 478 K; (b) the comparison of Sr between the FIR and VPR two methods.
Fig. 5
Fig. 5 The VPR of the double-peak spectrum as a function of the temperature in the range of 298 to 478 K. They were recorded in three different pump powers of 60, 90 and 120 mW, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F I R = N 2 N 1 = I 2 I 2 = g 2 σ 2 ω 2 g 1 σ 1 ω 1 exp( - Δ E k T ) = B exp ( - Δ E k T )
S r = d ( I 2 / I 1 ) d T 1 I 2 / I 1

Metrics