Abstract

We report an electrically pumped 1550 nm MEMS tunable VCSEL with a continuous tuning of 101 nm at 22 °C. The top MEMS-DBR with built-in stress gradient within the dielectric layers is deposited in a low-temperature PECVD chamber on an InP-based half-VCSEL, structured by surface-micromachining and electrothermally actuated for continuous wavelength tuning. With 2.6 mA threshold current, the laser shows maximum CW output power of 3.2 mW at 1560 nm. The MEMS-VCSEL operates in single-mode with SMSR > 39 dB across the entire tuning range. At 36 °C, the tuning range reaches up to 107 nm. The divergence angle of the MEMS-VCSEL is approximately 5.6° for all tuning wavelengths. The intrinsic linewidth of an unpackaged device is 21 MHz. Quasi-error-free operation at 12.5 Gbps using a directly modulated MEMS-VCSEL is reported for a record 60 nm tuning, showing the potential of the so-called colorless source in WDM applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature characteristics of surface micromachined MEMS-VCSEL with large tuning range

C. Gierl, T. Gründl, S. Paul, K. Zogal, M. T. Haidar, P. Meissner, M.-C. Amann, and F. Küppers
Opt. Express 22(11) 13063-13072 (2014)

Comprehensive model of 1550 nm MEMS-tunable high-contrast-grating VCSELs

Pengfei Qiao, Guan-Lin Su, Yi Rao, Ming C. Wu, Connie J. Chang-Hasnain, and Shun Lien Chuang
Opt. Express 22(7) 8541-8555 (2014)

Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meißner, and M.-C. Amann
Opt. Express 19(18) 17336-17343 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. Debernardi, B. Koegel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirriors: comparison of experiments and modeling,” IEEE J. Sel. Top. Quantum Electron. 44(4), 391–399 (2008).
    [Crossref]
  2. C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
    [Crossref]
  3. B. Koegel, H. Halbritter, S. Jatta, M. Maute, G. Boehm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMSVCSEL,” IEEE Sens. J. 7(11), 1483–1489 (2007).
    [Crossref]
  4. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
    [Crossref]
  5. D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, J. G. Fujimoto, and V. Jayaraman, “Wideband electrically pumped 1050-nm MEMS-tunable VCSEL for Ophthalmic Imaging,” J. Lightwave Technol. 33(16), 3461–3468 (2015).
    [Crossref] [PubMed]
  6. C. F. R. Mateus and C. L. Barbosa, “Harsh environment temperature and strain sensor using tunable VCSEL and multiple fiber Bragg gratings,” Proc. IEEE Microwave and Optoelectronics Conference (IMOC, 2007), pp. 496–498.
  7. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
    [Crossref] [PubMed]
  8. C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
    [Crossref] [PubMed]
  9. Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. C.-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Quantum Electron. 19(4), 1701311 (2013).
    [Crossref]
  10. T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15(3), 528–534 (2009).
    [Crossref]
  11. M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. C-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
    [Crossref]
  12. V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 ((2012).
    [Crossref]
  13. D. M. Kuchta, F. E. Doany, L. Schares, C. Neumeyr, A. Daly, B. Koegel, J. Rosskopf, and M. Ortsiefer, “Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link,” 41st European Conference on Optical Communication (ECOC 2015), Valencia, Spain, 27 Sept.–2 Oct. 2015.
  14. V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
    [Crossref]
  15. R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks,” Opt. Express 18(24), 24969–24974 (2010).
    [Crossref] [PubMed]
  16. W. Hofmann, E. Wong, G. Boehm, M. Ortsiefer, N.H. Zhu, and M.-C. Amann, “1.55m VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
    [Crossref]
  17. Z. Zhang, D. d. Felipe, W. Brinker, M. Kleinert, A. M.-Novo, M. Moehrle, C. Zawadzki, and N. Keil, “C/L-band colorless ONU based on polymer bidirectional optical subassembly,” J. Lightwave Technol. 33(6), 1230–1234 (2015).
    [Crossref]
  18. J.-i Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1290–1297 (2010).
    [Crossref]
  19. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
    [Crossref]
  20. W. Zhang, H. Wang, and K. Bergman, “Next-generation optically-interconnected high-performance data centers,” J. Lightwave Technol. 30(24), 3836–3844 (2012).
    [Crossref]
  21. S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Koegel, C. Neumeyr, M. Ortsiefer, and F. Kueppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21(6), 436–443 (2015).
    [Crossref]
  22. S. Paul, C. Gierl, T. Gruendl, K. Zogal, P. Meissner, M.-C. Amann, and F. Kueppers, “Far-field emission characteristics and linewidth Measurements of Surface Micro-machined MEMS Tunable VCSELs,” Proc. SPIE 8639, 86390H (2013).
    [Crossref]
  23. M. Mueller, W. Hofmann, T. Gruendl, M. Horn, P. Wolf, R. D. Nagel, E. Roenneberg, G. Boehm, D. Bimberg, and M.-C Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1165 (2011).
    [Crossref]
  24. P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable Microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10(12), 1679–1681 (1998).
    [Crossref]
  25. H. Halbritter, C. Sydlo, B. Koegel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(2), 367–373 (2007).
    [Crossref]
  26. Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D. D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 19(4), 1701311 (2013).
    [Crossref]
  27. Y. C. Chung and Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting lasers with External Optical Feedback,” IEEE Photon. Technol. Lett. 3(7), 597–599 (1991).
    [Crossref]
  28. A. R. Chraplyvy, D. Marcuse, and R. W. Tkach, “Effect of rayleigh backscattering from optical fibers on DFB laser wavelength,” J. Lightwave Technol. 4(5), 555–559 (1986).
    [Crossref]
  29. Y. Huang, S. Arai, and K. Komori, “Theoretical linewidth enhancement factor alpha of Ga/sub 1xx/In/sub x/As/GaInAsP/InP strained-quantum-well structures,” IEEE Photon. Technol. Lett. 5(2), 142–145 (1993).
    [Crossref]
  30. M. Chen, Z. Meng, J. Wang, and W. Chen, “Ultra-narrow linewidth measurement based on Voigt profile fitting,” Opt. Express 23(5), 6803–6808 (2015).
    [Crossref] [PubMed]

2015 (4)

2013 (3)

S. Paul, C. Gierl, T. Gruendl, K. Zogal, P. Meissner, M.-C. Amann, and F. Kueppers, “Far-field emission characteristics and linewidth Measurements of Surface Micro-machined MEMS Tunable VCSELs,” Proc. SPIE 8639, 86390H (2013).
[Crossref]

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D. D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. C.-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

2012 (4)

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 ((2012).
[Crossref]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
[Crossref]

W. Zhang, H. Wang, and K. Bergman, “Next-generation optically-interconnected high-performance data centers,” J. Lightwave Technol. 30(24), 3836–3844 (2012).
[Crossref]

2011 (3)

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

M. Mueller, W. Hofmann, T. Gruendl, M. Horn, P. Wolf, R. D. Nagel, E. Roenneberg, G. Boehm, D. Bimberg, and M.-C Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1165 (2011).
[Crossref]

2010 (2)

2009 (2)

N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
[Crossref] [PubMed]

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15(3), 528–534 (2009).
[Crossref]

2008 (2)

P. Debernardi, B. Koegel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirriors: comparison of experiments and modeling,” IEEE J. Sel. Top. Quantum Electron. 44(4), 391–399 (2008).
[Crossref]

W. Hofmann, E. Wong, G. Boehm, M. Ortsiefer, N.H. Zhu, and M.-C. Amann, “1.55m VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

2007 (3)

B. Koegel, H. Halbritter, S. Jatta, M. Maute, G. Boehm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMSVCSEL,” IEEE Sens. J. 7(11), 1483–1489 (2007).
[Crossref]

M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. C-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
[Crossref]

H. Halbritter, C. Sydlo, B. Koegel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(2), 367–373 (2007).
[Crossref]

1998 (1)

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable Microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10(12), 1679–1681 (1998).
[Crossref]

1993 (2)

Y. Huang, S. Arai, and K. Komori, “Theoretical linewidth enhancement factor alpha of Ga/sub 1xx/In/sub x/As/GaInAsP/InP strained-quantum-well structures,” IEEE Photon. Technol. Lett. 5(2), 142–145 (1993).
[Crossref]

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

1991 (1)

Y. C. Chung and Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting lasers with External Optical Feedback,” IEEE Photon. Technol. Lett. 3(7), 597–599 (1991).
[Crossref]

1986 (1)

A. R. Chraplyvy, D. Marcuse, and R. W. Tkach, “Effect of rayleigh backscattering from optical fibers on DFB laser wavelength,” J. Lightwave Technol. 4(5), 555–559 (1986).
[Crossref]

Amann, M.-C

M. Mueller, W. Hofmann, T. Gruendl, M. Horn, P. Wolf, R. D. Nagel, E. Roenneberg, G. Boehm, D. Bimberg, and M.-C Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1165 (2011).
[Crossref]

Amann, M.-C.

S. Paul, C. Gierl, T. Gruendl, K. Zogal, P. Meissner, M.-C. Amann, and F. Kueppers, “Far-field emission characteristics and linewidth Measurements of Surface Micro-machined MEMS Tunable VCSELs,” Proc. SPIE 8639, 86390H (2013).
[Crossref]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

P. Debernardi, B. Koegel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirriors: comparison of experiments and modeling,” IEEE J. Sel. Top. Quantum Electron. 44(4), 391–399 (2008).
[Crossref]

W. Hofmann, E. Wong, G. Boehm, M. Ortsiefer, N.H. Zhu, and M.-C. Amann, “1.55m VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

B. Koegel, H. Halbritter, S. Jatta, M. Maute, G. Boehm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMSVCSEL,” IEEE Sens. J. 7(11), 1483–1489 (2007).
[Crossref]

Arai, S.

Y. Huang, S. Arai, and K. Komori, “Theoretical linewidth enhancement factor alpha of Ga/sub 1xx/In/sub x/As/GaInAsP/InP strained-quantum-well structures,” IEEE Photon. Technol. Lett. 5(2), 142–145 (1993).
[Crossref]

Azimi, M.

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable Microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10(12), 1679–1681 (1998).
[Crossref]

Barbosa, C. L.

C. F. R. Mateus and C. L. Barbosa, “Harsh environment temperature and strain sensor using tunable VCSEL and multiple fiber Bragg gratings,” Proc. IEEE Microwave and Optoelectronics Conference (IMOC, 2007), pp. 496–498.

Bergman, K.

Bimberg, D.

M. Mueller, W. Hofmann, T. Gruendl, M. Horn, P. Wolf, R. D. Nagel, E. Roenneberg, G. Boehm, D. Bimberg, and M.-C Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1165 (2011).
[Crossref]

Boehm, G.

M. Mueller, W. Hofmann, T. Gruendl, M. Horn, P. Wolf, R. D. Nagel, E. Roenneberg, G. Boehm, D. Bimberg, and M.-C Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1165 (2011).
[Crossref]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

P. Debernardi, B. Koegel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirriors: comparison of experiments and modeling,” IEEE J. Sel. Top. Quantum Electron. 44(4), 391–399 (2008).
[Crossref]

W. Hofmann, E. Wong, G. Boehm, M. Ortsiefer, N.H. Zhu, and M.-C. Amann, “1.55m VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

B. Koegel, H. Halbritter, S. Jatta, M. Maute, G. Boehm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMSVCSEL,” IEEE Sens. J. 7(11), 1483–1489 (2007).
[Crossref]

Brinker, W.

Burgner, C. B.

C.-Hasnain, C. J.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. C.-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Cable, A.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 ((2012).
[Crossref]

Cable, A. E.

D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, J. G. Fujimoto, and V. Jayaraman, “Wideband electrically pumped 1050-nm MEMS-tunable VCSEL for Ophthalmic Imaging,” J. Lightwave Technol. 33(16), 3461–3468 (2015).
[Crossref] [PubMed]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

Cesar, J.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Koegel, C. Neumeyr, M. Ortsiefer, and F. Kueppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21(6), 436–443 (2015).
[Crossref]

Chang-Hasnain, C. J.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D. D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Chase, C.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D. D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. C.-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

C-Hasnain, C. J.

M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. C-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
[Crossref]

Chen, M.

Chen, W.

Chitgarha, M. R.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D. D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. C.-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Choi, W. J.

Chraplyvy, A. R.

A. R. Chraplyvy, D. Marcuse, and R. W. Tkach, “Effect of rayleigh backscattering from optical fibers on DFB laser wavelength,” J. Lightwave Technol. 4(5), 555–559 (1986).
[Crossref]

Chuang, Z. M.

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Chung, Y. C.

Y. C. Chung and Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting lasers with External Optical Feedback,” IEEE Photon. Technol. Lett. 3(7), 597–599 (1991).
[Crossref]

Coldren, L. A.

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Cole, G. D.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 ((2012).
[Crossref]

Corbett, B.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

Daly, A.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

D. M. Kuchta, F. E. Doany, L. Schares, C. Neumeyr, A. Daly, B. Koegel, J. Rosskopf, and M. Ortsiefer, “Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link,” 41st European Conference on Optical Communication (ECOC 2015), Valencia, Spain, 27 Sept.–2 Oct. 2015.

Davani, H. A.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

Debernardi, P.

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

P. Debernardi, B. Koegel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirriors: comparison of experiments and modeling,” IEEE J. Sel. Top. Quantum Electron. 44(4), 391–399 (2008).
[Crossref]

Doany, F. E.

D. M. Kuchta, F. E. Doany, L. Schares, C. Neumeyr, A. Daly, B. Koegel, J. Rosskopf, and M. Ortsiefer, “Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link,” 41st European Conference on Optical Communication (ECOC 2015), Valencia, Spain, 27 Sept.–2 Oct. 2015.

Felipe, D. d.

Fujimoto, J. G.

D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, J. G. Fujimoto, and V. Jayaraman, “Wideband electrically pumped 1050-nm MEMS-tunable VCSEL for Ophthalmic Imaging,” J. Lightwave Technol. 33(16), 3461–3468 (2015).
[Crossref] [PubMed]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

Fujimura, N.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15(3), 528–534 (2009).
[Crossref]

Gierl, C.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Koegel, C. Neumeyr, M. Ortsiefer, and F. Kueppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21(6), 436–443 (2015).
[Crossref]

S. Paul, C. Gierl, T. Gruendl, K. Zogal, P. Meissner, M.-C. Amann, and F. Kueppers, “Far-field emission characteristics and linewidth Measurements of Surface Micro-machined MEMS Tunable VCSELs,” Proc. SPIE 8639, 86390H (2013).
[Crossref]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

Grasse, C.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

Gruendl, T.

S. Paul, C. Gierl, T. Gruendl, K. Zogal, P. Meissner, M.-C. Amann, and F. Kueppers, “Far-field emission characteristics and linewidth Measurements of Surface Micro-machined MEMS Tunable VCSELs,” Proc. SPIE 8639, 86390H (2013).
[Crossref]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

M. Mueller, W. Hofmann, T. Gruendl, M. Horn, P. Wolf, R. D. Nagel, E. Roenneberg, G. Boehm, D. Bimberg, and M.-C Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1165 (2011).
[Crossref]

Gustavsson, J.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

Haglund, A.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

Halbritter, H.

B. Koegel, H. Halbritter, S. Jatta, M. Maute, G. Boehm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMSVCSEL,” IEEE Sens. J. 7(11), 1483–1489 (2007).
[Crossref]

H. Halbritter, C. Sydlo, B. Koegel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(2), 367–373 (2007).
[Crossref]

Hartnagel, H. L.

H. Halbritter, C. Sydlo, B. Koegel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(2), 367–373 (2007).
[Crossref]

Heim, P. J. S.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

Hirata, T.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15(3), 528–534 (2009).
[Crossref]

Hofmann, W.

M. Mueller, W. Hofmann, T. Gruendl, M. Horn, P. Wolf, R. D. Nagel, E. Roenneberg, G. Boehm, D. Bimberg, and M.-C Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1165 (2011).
[Crossref]

W. Hofmann, E. Wong, G. Boehm, M. Ortsiefer, N.H. Zhu, and M.-C. Amann, “1.55m VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

Horn, M.

M. Mueller, W. Hofmann, T. Gruendl, M. Horn, P. Wolf, R. D. Nagel, E. Roenneberg, G. Boehm, D. Bimberg, and M.-C Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1165 (2011).
[Crossref]

Huang, M. C. Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. C.-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. C-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
[Crossref]

Huang, M.C.Y.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D. D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Huang, Y.

Y. Huang, S. Arai, and K. Komori, “Theoretical linewidth enhancement factor alpha of Ga/sub 1xx/In/sub x/As/GaInAsP/InP strained-quantum-well structures,” IEEE Photon. Technol. Lett. 5(2), 142–145 (1993).
[Crossref]

Jatta, S.

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

B. Koegel, H. Halbritter, S. Jatta, M. Maute, G. Boehm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMSVCSEL,” IEEE Sens. J. 7(11), 1483–1489 (2007).
[Crossref]

Jayaraman, V.

D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, J. G. Fujimoto, and V. Jayaraman, “Wideband electrically pumped 1050-nm MEMS-tunable VCSEL for Ophthalmic Imaging,” J. Lightwave Technol. 33(16), 3461–3468 (2015).
[Crossref] [PubMed]

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 ((2012).
[Crossref]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Jensen, J. B.

Jiang, J.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

John, D. D.

Kan, B. C.

M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. C-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
[Crossref]

Kanbara, N.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15(3), 528–534 (2009).
[Crossref]

Kani, J.-i

J.-i Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1290–1297 (2010).
[Crossref]

Keil, N.

Khaleghi, S.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D. D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. C.-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Kleinert, M.

Koegel, B.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Koegel, C. Neumeyr, M. Ortsiefer, and F. Kueppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21(6), 436–443 (2015).
[Crossref]

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

P. Debernardi, B. Koegel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirriors: comparison of experiments and modeling,” IEEE J. Sel. Top. Quantum Electron. 44(4), 391–399 (2008).
[Crossref]

B. Koegel, H. Halbritter, S. Jatta, M. Maute, G. Boehm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMSVCSEL,” IEEE Sens. J. 7(11), 1483–1489 (2007).
[Crossref]

H. Halbritter, C. Sydlo, B. Koegel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(2), 367–373 (2007).
[Crossref]

D. M. Kuchta, F. E. Doany, L. Schares, C. Neumeyr, A. Daly, B. Koegel, J. Rosskopf, and M. Ortsiefer, “Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link,” 41st European Conference on Optical Communication (ECOC 2015), Valencia, Spain, 27 Sept.–2 Oct. 2015.

Komori, K.

Y. Huang, S. Arai, and K. Komori, “Theoretical linewidth enhancement factor alpha of Ga/sub 1xx/In/sub x/As/GaInAsP/InP strained-quantum-well structures,” IEEE Photon. Technol. Lett. 5(2), 142–145 (1993).
[Crossref]

Kuchta, D. M.

D. M. Kuchta, F. E. Doany, L. Schares, C. Neumeyr, A. Daly, B. Koegel, J. Rosskopf, and M. Ortsiefer, “Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link,” 41st European Conference on Optical Communication (ECOC 2015), Valencia, Spain, 27 Sept.–2 Oct. 2015.

Kueppers, F.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Koegel, C. Neumeyr, M. Ortsiefer, and F. Kueppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21(6), 436–443 (2015).
[Crossref]

S. Paul, C. Gierl, T. Gruendl, K. Zogal, P. Meissner, M.-C. Amann, and F. Kueppers, “Far-field emission characteristics and linewidth Measurements of Surface Micro-machined MEMS Tunable VCSELs,” Proc. SPIE 8639, 86390H (2013).
[Crossref]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

Lackner, M.

B. Koegel, H. Halbritter, S. Jatta, M. Maute, G. Boehm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMSVCSEL,” IEEE Sens. J. 7(11), 1483–1489 (2007).
[Crossref]

Larsson, A.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

Le, Q. T.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Koegel, C. Neumeyr, M. Ortsiefer, and F. Kueppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21(6), 436–443 (2015).
[Crossref]

Lee, B. K.

Lee, Y. H.

Y. C. Chung and Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting lasers with External Optical Feedback,” IEEE Photon. Technol. Lett. 3(7), 597–599 (1991).
[Crossref]

Leyva, V.

Lu, C.-C.

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable Microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10(12), 1679–1681 (1998).
[Crossref]

M.-Novo, A.

Malekizandi, M.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Koegel, C. Neumeyr, M. Ortsiefer, and F. Kueppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21(6), 436–443 (2015).
[Crossref]

Marcuse, D.

A. R. Chraplyvy, D. Marcuse, and R. W. Tkach, “Effect of rayleigh backscattering from optical fibers on DFB laser wavelength,” J. Lightwave Technol. 4(5), 555–559 (1986).
[Crossref]

Mateus, C. F. R.

C. F. R. Mateus and C. L. Barbosa, “Harsh environment temperature and strain sensor using tunable VCSEL and multiple fiber Bragg gratings,” Proc. IEEE Microwave and Optoelectronics Conference (IMOC, 2007), pp. 496–498.

Maute, M.

P. Debernardi, B. Koegel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirriors: comparison of experiments and modeling,” IEEE J. Sel. Top. Quantum Electron. 44(4), 391–399 (2008).
[Crossref]

B. Koegel, H. Halbritter, S. Jatta, M. Maute, G. Boehm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMSVCSEL,” IEEE Sens. J. 7(11), 1483–1489 (2007).
[Crossref]

Meissner, P.

S. Paul, C. Gierl, T. Gruendl, K. Zogal, P. Meissner, M.-C. Amann, and F. Kueppers, “Far-field emission characteristics and linewidth Measurements of Surface Micro-machined MEMS Tunable VCSELs,” Proc. SPIE 8639, 86390H (2013).
[Crossref]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

P. Debernardi, B. Koegel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirriors: comparison of experiments and modeling,” IEEE J. Sel. Top. Quantum Electron. 44(4), 391–399 (2008).
[Crossref]

B. Koegel, H. Halbritter, S. Jatta, M. Maute, G. Boehm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMSVCSEL,” IEEE Sens. J. 7(11), 1483–1489 (2007).
[Crossref]

H. Halbritter, C. Sydlo, B. Koegel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(2), 367–373 (2007).
[Crossref]

Meng, Z.

Moehrle, M.

Monroy, I. T.

Mueller, M.

M. Mueller, W. Hofmann, T. Gruendl, M. Horn, P. Wolf, R. D. Nagel, E. Roenneberg, G. Boehm, D. Bimberg, and M.-C Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1165 (2011).
[Crossref]

Nagel, R. D.

M. Mueller, W. Hofmann, T. Gruendl, M. Horn, P. Wolf, R. D. Nagel, E. Roenneberg, G. Boehm, D. Bimberg, and M.-C Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1165 (2011).
[Crossref]

Neumeyr, C.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Koegel, C. Neumeyr, M. Ortsiefer, and F. Kueppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21(6), 436–443 (2015).
[Crossref]

R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks,” Opt. Express 18(24), 24969–24974 (2010).
[Crossref] [PubMed]

D. M. Kuchta, F. E. Doany, L. Schares, C. Neumeyr, A. Daly, B. Koegel, J. Rosskopf, and M. Ortsiefer, “Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link,” 41st European Conference on Optical Communication (ECOC 2015), Valencia, Spain, 27 Sept.–2 Oct. 2015.

Nishiyama, N.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15(3), 528–534 (2009).
[Crossref]

Noda, R.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15(3), 528–534 (2009).
[Crossref]

Ooyama, M.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15(3), 528–534 (2009).
[Crossref]

Ortsiefer, M.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Koegel, C. Neumeyr, M. Ortsiefer, and F. Kueppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21(6), 436–443 (2015).
[Crossref]

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks,” Opt. Express 18(24), 24969–24974 (2010).
[Crossref] [PubMed]

P. Debernardi, B. Koegel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirriors: comparison of experiments and modeling,” IEEE J. Sel. Top. Quantum Electron. 44(4), 391–399 (2008).
[Crossref]

W. Hofmann, E. Wong, G. Boehm, M. Ortsiefer, N.H. Zhu, and M.-C. Amann, “1.55m VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

D. M. Kuchta, F. E. Doany, L. Schares, C. Neumeyr, A. Daly, B. Koegel, J. Rosskopf, and M. Ortsiefer, “Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link,” 41st European Conference on Optical Communication (ECOC 2015), Valencia, Spain, 27 Sept.–2 Oct. 2015.

Paul, S.

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Koegel, C. Neumeyr, M. Ortsiefer, and F. Kueppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21(6), 436–443 (2015).
[Crossref]

S. Paul, C. Gierl, T. Gruendl, K. Zogal, P. Meissner, M.-C. Amann, and F. Kueppers, “Far-field emission characteristics and linewidth Measurements of Surface Micro-machined MEMS Tunable VCSELs,” Proc. SPIE 8639, 86390H (2013).
[Crossref]

Pisano, A. P.

M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. C-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
[Crossref]

Potsaid, B.

D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, J. G. Fujimoto, and V. Jayaraman, “Wideband electrically pumped 1050-nm MEMS-tunable VCSEL for Ophthalmic Imaging,” J. Lightwave Technol. 33(16), 3461–3468 (2015).
[Crossref] [PubMed]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

Rakuljic, G.

Rao, Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. C.-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D. D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Riemenschneider, F.

H. Halbritter, C. Sydlo, B. Koegel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(2), 367–373 (2007).
[Crossref]

Robertson, M.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 ((2012).
[Crossref]

Robertson, M. E.

Rodes, R.

Roenneberg, E.

M. Mueller, W. Hofmann, T. Gruendl, M. Horn, P. Wolf, R. D. Nagel, E. Roenneberg, G. Boehm, D. Bimberg, and M.-C Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1165 (2011).
[Crossref]

R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks,” Opt. Express 18(24), 24969–24974 (2010).
[Crossref] [PubMed]

Rosskopf, J.

R. Rodes, J. B. Jensen, D. Zibar, C. Neumeyr, E. Roenneberg, J. Rosskopf, M. Ortsiefer, and I. T. Monroy, “VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks,” Opt. Express 18(24), 24969–24974 (2010).
[Crossref] [PubMed]

D. M. Kuchta, F. E. Doany, L. Schares, C. Neumeyr, A. Daly, B. Koegel, J. Rosskopf, and M. Ortsiefer, “Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link,” 41st European Conference on Optical Communication (ECOC 2015), Valencia, Spain, 27 Sept.–2 Oct. 2015.

Sacks, R. N.

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable Microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10(12), 1679–1681 (1998).
[Crossref]

Saitou, H.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15(3), 528–534 (2009).
[Crossref]

Satyan, N.

Schares, L.

D. M. Kuchta, F. E. Doany, L. Schares, C. Neumeyr, A. Daly, B. Koegel, J. Rosskopf, and M. Ortsiefer, “Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link,” 41st European Conference on Optical Communication (ECOC 2015), Valencia, Spain, 27 Sept.–2 Oct. 2015.

Schwarzott, M.

B. Koegel, H. Halbritter, S. Jatta, M. Maute, G. Boehm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMSVCSEL,” IEEE Sens. J. 7(11), 1483–1489 (2007).
[Crossref]

Sydlo, C.

H. Halbritter, C. Sydlo, B. Koegel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(2), 367–373 (2007).
[Crossref]

Taubenblatt, M. A.

Tayebati, P.

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable Microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10(12), 1679–1681 (1998).
[Crossref]

Tezuka, S. I.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15(3), 528–534 (2009).
[Crossref]

Tkach, R. W.

A. R. Chraplyvy, D. Marcuse, and R. W. Tkach, “Effect of rayleigh backscattering from optical fibers on DFB laser wavelength,” J. Lightwave Technol. 4(5), 555–559 (1986).
[Crossref]

Uddin, A.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 ((2012).
[Crossref]

Vakhshoori, D.

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable Microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10(12), 1679–1681 (1998).
[Crossref]

Vasilyev, A.

Wang, H.

Wang, J.

Wang, P.

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable Microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10(12), 1679–1681 (1998).
[Crossref]

Watanabe, T.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15(3), 528–534 (2009).
[Crossref]

Westbergh, P.

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

Willner, A. E.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. C.-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D. D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Winter, F.

B. Koegel, H. Halbritter, S. Jatta, M. Maute, G. Boehm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMSVCSEL,” IEEE Sens. J. 7(11), 1483–1489 (2007).
[Crossref]

Wolf, P.

M. Mueller, W. Hofmann, T. Gruendl, M. Horn, P. Wolf, R. D. Nagel, E. Roenneberg, G. Boehm, D. Bimberg, and M.-C Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1165 (2011).
[Crossref]

Wong, E.

W. Hofmann, E. Wong, G. Boehm, M. Ortsiefer, N.H. Zhu, and M.-C. Amann, “1.55m VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

Worland, D. D. P.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D. D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Worland, D. P.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. C.-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Yang, W.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. C.-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D. D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Yano, T.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15(3), 528–534 (2009).
[Crossref]

Yariv, A.

Ye, Z.

M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. C-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
[Crossref]

Zawadzki, C.

Zhang, W.

Zhang, Z.

Zhu, N.H.

W. Hofmann, E. Wong, G. Boehm, M. Ortsiefer, N.H. Zhu, and M.-C. Amann, “1.55m VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

Zibar, D.

Ziyadi, M.

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D. D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. C.-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Zogal, K.

S. Paul, C. Gierl, T. Gruendl, K. Zogal, P. Meissner, M.-C. Amann, and F. Kueppers, “Far-field emission characteristics and linewidth Measurements of Surface Micro-machined MEMS Tunable VCSELs,” Proc. SPIE 8639, 86390H (2013).
[Crossref]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

P. Debernardi, B. Koegel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirriors: comparison of experiments and modeling,” IEEE J. Sel. Top. Quantum Electron. 44(4), 391–399 (2008).
[Crossref]

Electron. Lett. (1)

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 ((2012).
[Crossref]

IEEE J. Quantum Electron. (3)

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. C.-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15(3), 528–534 (2009).
[Crossref]

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (6)

S. Paul, C. Gierl, J. Cesar, Q. T. Le, M. Malekizandi, B. Koegel, C. Neumeyr, M. Ortsiefer, and F. Kueppers, “10-Gb/s direct modulation of widely tunable 1550-nm MEMS VCSEL,” IEEE J. Sel. Top. Quantum Electron. 21(6), 436–443 (2015).
[Crossref]

M. Mueller, W. Hofmann, T. Gruendl, M. Horn, P. Wolf, R. D. Nagel, E. Roenneberg, G. Boehm, D. Bimberg, and M.-C Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1165 (2011).
[Crossref]

H. Halbritter, C. Sydlo, B. Koegel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(2), 367–373 (2007).
[Crossref]

M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. C-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007).
[Crossref]

P. Debernardi, B. Koegel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirriors: comparison of experiments and modeling,” IEEE J. Sel. Top. Quantum Electron. 44(4), 391–399 (2008).
[Crossref]

J.-i Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1290–1297 (2010).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D. D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (4)

Y. C. Chung and Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting lasers with External Optical Feedback,” IEEE Photon. Technol. Lett. 3(7), 597–599 (1991).
[Crossref]

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable Microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10(12), 1679–1681 (1998).
[Crossref]

Y. Huang, S. Arai, and K. Komori, “Theoretical linewidth enhancement factor alpha of Ga/sub 1xx/In/sub x/As/GaInAsP/InP strained-quantum-well structures,” IEEE Photon. Technol. Lett. 5(2), 142–145 (1993).
[Crossref]

W. Hofmann, E. Wong, G. Boehm, M. Ortsiefer, N.H. Zhu, and M.-C. Amann, “1.55m VCSEL arrays for high-bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008).
[Crossref]

IEEE Sens. J. (1)

B. Koegel, H. Halbritter, S. Jatta, M. Maute, G. Boehm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMSVCSEL,” IEEE Sens. J. 7(11), 1483–1489 (2007).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (4)

Proc. SPIE (3)

S. Paul, C. Gierl, T. Gruendl, K. Zogal, P. Meissner, M.-C. Amann, and F. Kueppers, “Far-field emission characteristics and linewidth Measurements of Surface Micro-machined MEMS Tunable VCSELs,” Proc. SPIE 8639, 86390H (2013).
[Crossref]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz – 1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011).
[Crossref]

Other (2)

D. M. Kuchta, F. E. Doany, L. Schares, C. Neumeyr, A. Daly, B. Koegel, J. Rosskopf, and M. Ortsiefer, “Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link,” 41st European Conference on Optical Communication (ECOC 2015), Valencia, Spain, 27 Sept.–2 Oct. 2015.

C. F. R. Mateus and C. L. Barbosa, “Harsh environment temperature and strain sensor using tunable VCSEL and multiple fiber Bragg gratings,” Proc. IEEE Microwave and Optoelectronics Conference (IMOC, 2007), pp. 496–498.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Cross-section of a MEMS-VCSEL. The conventional top mirror is replaced by an electrothermally actuatable MEMS membrane. (b) Scanning electron microscope (SEM) image of a 2-D array of a fully fabricated wafer.
Fig. 2
Fig. 2 (a) VCSEL spectra at a fixed bias of 12 mA under continuous-wave (CW) operation for different MEMS heating currents. (b) Light–injection current–voltage (LIV) characteristics of a 14 μm BTJ-diameter MEMS-VCSEL at heat-sink temperature of 22 °C. (c) Fiber coupled optical power, threshold current and SMSR for different tuning wavelengths.
Fig. 3
Fig. 3 (a) An exemplary MEMS-VCSEL bonded on Silicon submount. (b) Tuning ranges for 56 MEMS-VCSELs from different positions of the same wafer. The devices are measured after gluing to a silicon submount.
Fig. 4
Fig. 4 Thermal characteristics of a 14 μm aperture device. (a) Wavelength-shift over temperature for Imems = 0 mA, (b) Maximum, minimum and center wavelength of the tuning range at different temperature. (c) Tuning range as a function device temperature.
Fig. 5
Fig. 5 (a) Three dimensional color gradient of the far-field at 1568 nm emission wavelength. (b) Relative optical intensity against divergence angle. (c) 1/e2 divergence angle for different tuning wavelengths.
Fig. 6
Fig. 6 (a) Normalized power density spectrum of the beat note of self-heterodyne linewidth measurement of an MEMS-VCSEL with a fiber delay length of 5 km. Bias is set at 26 mA for an emission wavelength of 1548 nm. The experimental data (black dots) are fitted with a Voigt profile (red curve). The linewidth is estimated as the FWHM of the Voigt profile over 2. The total linewidth of this VCSEL is extracted to be 42 MHz. (b) Power density spectra of the beat signals for different operating currents. (c) Linewidth over the inverse optical power. (d) Voigt-fitted linewidth for different tuning wavelengths.
Fig. 7
Fig. 7 Electrothermal frequency response of a MEMS-VCSEL.
Fig. 8
Fig. 8 Bit error rate performance as a function of received optical power for a NRZ direct modulation of a tunable MEMS-VCSEL. Quasi-error-free transmission at 12.5 Gbps is achieved for 60 nm continuous tuning range.

Tables (3)

Tables Icon

Table 1 MEMS-VCSEL geometry at 1568 nm emission.

Tables Icon

Table 2 Linewidth of a MEMS-VCSEL operating at 1548 nm, measured using direct Voigt fitting at 3-dB as well as reference points using separation method.

Tables Icon

Table 3 Device parameters derived from small-signal analysis.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E ( r , z ) = E 0 w 0 w ( z ) exp ( r 2 w ( z ) 2 )
w ( z ) = w 0 1 + ( z z 0 ) 2 ,
and R ( z ) = z 0 ( z z 0 + z 0 z ) = z ( 1 + ( z 0 z ) 2 )
w 0 = λ π L o ( RoC L o ) .
θ o = lim z w ( z ) z = w o z o = λ π w o .
Δ ν rms = 2 | Δ ν FSR | λ 0 k B T 0 k m 2 c 0 | Δ λ FSR | λ 0 3 k B T 0 k m
Δ ν ¯ = 2 2 | ln ( 0.5 ) | Δ ν rms 2 2.35 Δ ν rms .
Δ ν v = 1 2 ( 1.069 Δ ν L + 0.867 Δ ν L 2 + 4 Δ ν B 2 )
Δ λ ( f ) = Δ λ 0 1 + ( 2 π f τ ) 2

Metrics