Abstract

We fabricate a liquid-core liquid-clad microcavity that is coupled to a standard tapered fiber, and then experimentally map the whispering-gallery modes of this droplet resonator. The shape of our resonator is similar to a thin prolate spheroid, which makes space for many high-order transverse modes, suggesting that some of them will share the same resonance frequency. Indeed, we experimentally observe that more than half of the droplet's modes have a sibling having the same frequency (to within linewidth) and therefore exhibiting a standing interference-pattern.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical phase matching of high-order azimuthal WGM in a water droplet resonator

Ye Yang, Yang Liu, Shuqian Sun, Wei Li, Ninghua Zhu, and Ming Li
Opt. Express 27(23) 33436-33444 (2019)

Photonic molecules formed by coupled hybrid resonators

Bo Peng, Şahin Kaya Özdemir, Jiangang Zhu, and Lan Yang
Opt. Lett. 37(16) 3435-3437 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
    [Crossref]
  2. V. Braginsky, M. Gorodetsky, and V. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
    [Crossref]
  3. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  4. Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22(6), 6881–6898 (2014).
    [Crossref] [PubMed]
  5. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
    [Crossref] [PubMed]
  6. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
    [Crossref] [PubMed]
  7. A. Ashkin and J. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
    [Crossref]
  8. J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10(1), 37–39 (1985).
    [Crossref] [PubMed]
  9. A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. B 29(12), 3240–3247 (2012).
    [Crossref]
  10. S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering‐Gallery‐Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
    [Crossref]
  11. S. Maayani, L. L. Martin, S. Kaminski, and T. Carmon, “Cavity Optocapillaries,” Optica 3(5), 552 (2016).
    [Crossref]
  12. S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
    [Crossref] [PubMed]
  13. R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3(2), 175–178 (2016).
    [Crossref]
  14. M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14(22), 10800–10810 (2006).
    [Crossref] [PubMed]
  15. Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications ((McGraw-Hill New York: 2010)).
  16. S. Kaminski, L. L. Martin, and T. Carmon, “Tweezers controlled resonator,” Opt. Express 23(22), 28914–28919 (2015).
    [Crossref] [PubMed]
  17. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
    [Crossref]
  18. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
    [Crossref] [PubMed]
  19. A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
    [Crossref] [PubMed]
  20. S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum. 81(10), 103110 (2010).
    [Crossref] [PubMed]
  21. L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
    [Crossref] [PubMed]
  22. S. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98(24), 243104 (2011).
    [Crossref]
  23. D. Keng, X. Tan, and S. Arnold, “Whispering gallery micro-global positioning system for nanoparticle sizing in real time,” Appl. Phys. Lett. 105(7), 071105 (2014).
    [Crossref]
  24. A. Savchenkov, A. Matsko, V. Ilchenko, D. Strekalov, and L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76(2), 023816 (2007).
    [Crossref]
  25. T. Carmon, H. G. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100(10), 103905 (2008).
    [Crossref] [PubMed]
  26. S. Maayani, L. L. Martin, S. Kaminski, and T. Carmon, “Cavity Optocapillaries,” arXiv preprint arXiv:1512.07741 (2015).
  27. S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon Laser,” arXiv preprint arXiv:1603.02218 (2016).
  28. L. Deych and V. Shuvayev, “Theory of nanoparticle-induced frequency shifts of whispering-gallery-mode resonances in spheroidal optical resonators,” Phys. Rev. A 92(1), 013842 (2015).
    [Crossref]
  29. L. Deych and J. Rubin, “Rayleigh scattering of whispering gallery modes of microspheres due to a single dipole scatterer,” Phys. Rev. A 80(6), 061805 (2009).
    [Crossref]
  30. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [Crossref]
  31. S. Ozdemir, L. He, J. Zhu, F. Monifi, W. Kim, O. Kenechukwu, H. Yilmaz, S. Huang, and L. Yang, “On-chip whispering-gallery-mode microlasers and their applications for nanoparticle sensing,” in SPIE OPTO, (International Society for Optics and Photonics, 2013), 86270N–86270N–86210.
  32. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997).
    [Crossref] [PubMed]
  33. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
    [Crossref] [PubMed]
  34. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
    [Crossref] [PubMed]
  35. T. Carmon, S. Y. Wang, E. P. Ostby, and K. J. Vahala, “Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span,” Opt. Express 15(12), 7677–7681 (2007).
    [Crossref] [PubMed]
  36. P.-G. De Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and wetting phenomena: drops, bubbles, pearls, waves (Springer Science & Business Media, 2004).
  37. B. Carroll, “The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems,” J. Colloid Interface Sci. 57(3), 488–495 (1976).
    [Crossref]
  38. M. Gorodetsky, “Optical microresonators with gigantic quality factor,” Moscow, Fizmatlit (2011).
  39. C. Lam, P. T. Leung, and K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9(9), 1585–1592 (1992).
    [Crossref]
  40. M. Oxborrow, “How to simulate the whispering-gallery modes of dielectric microresonators in FEMLAB/COMSOL,” in Lasers and Applications in Science and Engineering, (International Society for Optics and Photonics, 2007), 64520J–64520J–64512.

2016 (3)

2015 (2)

S. Kaminski, L. L. Martin, and T. Carmon, “Tweezers controlled resonator,” Opt. Express 23(22), 28914–28919 (2015).
[Crossref] [PubMed]

L. Deych and V. Shuvayev, “Theory of nanoparticle-induced frequency shifts of whispering-gallery-mode resonances in spheroidal optical resonators,” Phys. Rev. A 92(1), 013842 (2015).
[Crossref]

2014 (3)

D. Keng, X. Tan, and S. Arnold, “Whispering gallery micro-global positioning system for nanoparticle sizing in real time,” Appl. Phys. Lett. 105(7), 071105 (2014).
[Crossref]

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering‐Gallery‐Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22(6), 6881–6898 (2014).
[Crossref] [PubMed]

2012 (1)

2011 (3)

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

S. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98(24), 243104 (2011).
[Crossref]

2010 (2)

S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum. 81(10), 103110 (2010).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

2009 (1)

L. Deych and J. Rubin, “Rayleigh scattering of whispering gallery modes of microspheres due to a single dipole scatterer,” Phys. Rev. A 80(6), 061805 (2009).
[Crossref]

2008 (2)

T. Carmon, H. G. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100(10), 103905 (2008).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

2007 (3)

A. Savchenkov, A. Matsko, V. Ilchenko, D. Strekalov, and L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76(2), 023816 (2007).
[Crossref]

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

T. Carmon, S. Y. Wang, E. P. Ostby, and K. J. Vahala, “Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span,” Opt. Express 15(12), 7677–7681 (2007).
[Crossref] [PubMed]

2006 (2)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14(22), 10800–10810 (2006).
[Crossref] [PubMed]

2003 (3)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

1997 (1)

1992 (1)

1989 (1)

V. Braginsky, M. Gorodetsky, and V. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[Crossref]

1985 (1)

1977 (1)

A. Ashkin and J. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

1976 (1)

B. Carroll, “The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems,” J. Colloid Interface Sci. 57(3), 488–495 (1976).
[Crossref]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Arnold, S.

D. Keng, X. Tan, and S. Arnold, “Whispering gallery micro-global positioning system for nanoparticle sizing in real time,” Appl. Phys. Lett. 105(7), 071105 (2014).
[Crossref]

S. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98(24), 243104 (2011).
[Crossref]

S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum. 81(10), 103110 (2010).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Ashkin, A.

A. Ashkin and J. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

Avino, S.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering‐Gallery‐Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Benson, O.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

Birks, T. A.

Braginsky, V.

V. Braginsky, M. Gorodetsky, and V. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[Crossref]

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Carmon, T.

Carroll, B.

B. Carroll, “The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems,” J. Colloid Interface Sci. 57(3), 488–495 (1976).
[Crossref]

Chang, R. K.

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Cheung, G.

Chormaic, S. N.

Dahan, R.

De Natale, P.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering‐Gallery‐Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Deych, L.

L. Deych and V. Shuvayev, “Theory of nanoparticle-induced frequency shifts of whispering-gallery-mode resonances in spheroidal optical resonators,” Phys. Rev. A 92(1), 013842 (2015).
[Crossref]

L. Deych and J. Rubin, “Rayleigh scattering of whispering gallery modes of microspheres due to a single dipole scatterer,” Phys. Rev. A 80(6), 061805 (2009).
[Crossref]

Dziedzic, J.

A. Ashkin and J. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

Flagan, R. C.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Gagliardi, G.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering‐Gallery‐Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Giorgini, A.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering‐Gallery‐Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Gorodetsky, M.

V. Braginsky, M. Gorodetsky, and V. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[Crossref]

Götzinger, S.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

He, L.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Holler, S.

S. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98(24), 243104 (2011).
[Crossref]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

Hossein-Zadeh, M.

Ilchenko, V.

A. Savchenkov, A. Matsko, V. Ilchenko, D. Strekalov, and L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76(2), 023816 (2007).
[Crossref]

V. Braginsky, M. Gorodetsky, and V. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[Crossref]

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

Jacques, F.

Jonáš, A.

Kaminski, S.

Karadag, Y.

Keng, D.

D. Keng, X. Tan, and S. Arnold, “Whispering gallery micro-global positioning system for nanoparticle sizing in real time,” Appl. Phys. Lett. 105(7), 071105 (2014).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Khoshsima, M.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Kim, J.-H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Kim, W.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Kiraz, A.

Knight, J. C.

Krause, A.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering‐Gallery‐Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Lam, C.

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Leung, P. T.

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Loock, H. P.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering‐Gallery‐Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Maayani, S.

S. Maayani, L. L. Martin, S. Kaminski, and T. Carmon, “Cavity Optocapillaries,” Optica 3(5), 552 (2016).
[Crossref]

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
[Crossref] [PubMed]

Malara, P.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering‐Gallery‐Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Maleki, L.

A. Savchenkov, A. Matsko, V. Ilchenko, D. Strekalov, and L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76(2), 023816 (2007).
[Crossref]

Martin, L. L.

Matsko, A.

A. Savchenkov, A. Matsko, V. Ilchenko, D. Strekalov, and L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76(2), 023816 (2007).
[Crossref]

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

Mazzei, A.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

Menezes, L. S.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

Mestre, M.

Nishida, Y.

S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum. 81(10), 103110 (2010).
[Crossref] [PubMed]

Ostby, E. P.

Oxborrow, M.

T. Carmon, H. G. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100(10), 103905 (2008).
[Crossref] [PubMed]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Özdemir, S. K.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Qian, S.-X.

Rajmangal, R.

S. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98(24), 243104 (2011).
[Crossref]

S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum. 81(10), 103110 (2010).
[Crossref] [PubMed]

Rubin, J.

L. Deych and J. Rubin, “Rayleigh scattering of whispering gallery modes of microspheres due to a single dipole scatterer,” Phys. Rev. A 80(6), 061805 (2009).
[Crossref]

Sandoghdar, V.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

Savchenkov, A.

A. Savchenkov, A. Matsko, V. Ilchenko, D. Strekalov, and L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76(2), 023816 (2007).
[Crossref]

Schwefel, H. G.

T. Carmon, H. G. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100(10), 103905 (2008).
[Crossref] [PubMed]

Shopova, S.

S. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98(24), 243104 (2011).
[Crossref]

Shopova, S. I.

S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum. 81(10), 103110 (2010).
[Crossref] [PubMed]

Shuvayev, V.

L. Deych and V. Shuvayev, “Theory of nanoparticle-induced frequency shifts of whispering-gallery-mode resonances in spheroidal optical resonators,” Phys. Rev. A 92(1), 013842 (2015).
[Crossref]

Snow, J. B.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Stone, A. D.

T. Carmon, H. G. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100(10), 103905 (2008).
[Crossref] [PubMed]

Strekalov, D.

A. Savchenkov, A. Matsko, V. Ilchenko, D. Strekalov, and L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76(2), 023816 (2007).
[Crossref]

Tan, X.

D. Keng, X. Tan, and S. Arnold, “Whispering gallery micro-global positioning system for nanoparticle sizing in real time,” Appl. Phys. Lett. 105(7), 071105 (2014).
[Crossref]

Teraoka, I.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Vahala, K. J.

T. Carmon, H. G. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100(10), 103905 (2008).
[Crossref] [PubMed]

T. Carmon, S. Y. Wang, E. P. Ostby, and K. J. Vahala, “Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span,” Opt. Express 15(12), 7677–7681 (2007).
[Crossref] [PubMed]

M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14(22), 10800–10810 (2006).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Vollmer, F.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Wang, S. Y.

Ward, J.

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Yang, L.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

T. Carmon, H. G. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100(10), 103905 (2008).
[Crossref] [PubMed]

Yang, Y.

Young, K.

Zhu, J.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Zullo, R.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering‐Gallery‐Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Zumofen, G.

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct Sensing in Liquids Using Whispering‐Gallery‐Mode Droplet Resonators,” Adv. Opt. Mater. 2(12), 1155–1159 (2014).
[Crossref]

Appl. Phys. Lett. (3)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

S. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98(24), 243104 (2011).
[Crossref]

D. Keng, X. Tan, and S. Arnold, “Whispering gallery micro-global positioning system for nanoparticle sizing in real time,” Appl. Phys. Lett. 105(7), 071105 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

J. Colloid Interface Sci. (1)

B. Carroll, “The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems,” J. Colloid Interface Sci. 57(3), 488–495 (1976).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Optica (2)

Phys. Lett. A (1)

V. Braginsky, M. Gorodetsky, and V. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[Crossref]

Phys. Rev. A (3)

L. Deych and V. Shuvayev, “Theory of nanoparticle-induced frequency shifts of whispering-gallery-mode resonances in spheroidal optical resonators,” Phys. Rev. A 92(1), 013842 (2015).
[Crossref]

L. Deych and J. Rubin, “Rayleigh scattering of whispering gallery modes of microspheres due to a single dipole scatterer,” Phys. Rev. A 80(6), 061805 (2009).
[Crossref]

A. Savchenkov, A. Matsko, V. Ilchenko, D. Strekalov, and L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76(2), 023816 (2007).
[Crossref]

Phys. Rev. Lett. (5)

T. Carmon, H. G. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100(10), 103905 (2008).
[Crossref] [PubMed]

A. Ashkin and J. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

A. Mazzei, S. Götzinger, L. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007).
[Crossref] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

S. I. Shopova, R. Rajmangal, Y. Nishida, and S. Arnold, “Ultrasensitive nanoparticle detection using a portable whispering gallery mode biosensor driven by a periodically poled lithium-niobate frequency doubled distributed feedback laser,” Rev. Sci. Instrum. 81(10), 103110 (2010).
[Crossref] [PubMed]

Other (7)

Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications ((McGraw-Hill New York: 2010)).

S. Maayani, L. L. Martin, S. Kaminski, and T. Carmon, “Cavity Optocapillaries,” arXiv preprint arXiv:1512.07741 (2015).

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon Laser,” arXiv preprint arXiv:1603.02218 (2016).

M. Oxborrow, “How to simulate the whispering-gallery modes of dielectric microresonators in FEMLAB/COMSOL,” in Lasers and Applications in Science and Engineering, (International Society for Optics and Photonics, 2007), 64520J–64520J–64512.

S. Ozdemir, L. He, J. Zhu, F. Monifi, W. Kim, O. Kenechukwu, H. Yilmaz, S. Huang, and L. Yang, “On-chip whispering-gallery-mode microlasers and their applications for nanoparticle sensing,” in SPIE OPTO, (International Society for Optics and Photonics, 2013), 86270N–86270N–86210.

P.-G. De Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and wetting phenomena: drops, bubbles, pearls, waves (Springer Science & Business Media, 2004).

M. Gorodetsky, “Optical microresonators with gigantic quality factor,” Moscow, Fizmatlit (2011).

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (5371 KB)      Record of the droplet's optical modes.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup. The light is coupled from a tapered fiber to circumferentially circulate in a microdroplet resonator. The tapered fiber and the resonator are placed in a solution of fluorescent dye in water, which allows us to see the modes in the droplet using a near IR camera.
Fig. 2
Fig. 2 Experimental results. We show the mode intensity as measured from the fluorescent emission versus laser's wavelength. Modes B-E repeats themselves every free spectral range. (see Visualization 1 in supplemental material for the movie of the optical modes)
Fig. 3
Fig. 3 (a) Profile of the droplet with equatorial radius D on the fiber with radius d. (b) A level plot of Eq. (6) corresponding to different first radial order TE resonances with wavelengths expressed in nm. One can see that multiple resonances with different values of orbital and polar numbers can appear at the chosen frequency within some linewidth.
Fig. 4
Fig. 4 Experimental results and simulations for (a) a high-order mode, similar to the (n = 1, m = 588, l = 679) mode, and (b) a level-crossed pair, similar to the interference between (n = 2, m = 602, l = 653) and (n = 2, m = 610, l = 649) modes. Numerical results were outlined to show profile of the drop.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1 r 1 + 1 r 2 = Δp γ ,
z=±[ adF( φ,k )+DE( φ,k ) ].
a= Dcosθd Ddcosθ ,
x 2 = D 2 ( 1 k 2 sin 2 φ )
z=± ad+D D D 2 x 2 ,
n r k l,m,n R 1 =m α n ( m 2 ) 1/3 + (2l2m+1) R 1 2 R 2 P n r n r 2 n 0 2 + 3 α n 2 20 ( m 2 ) 1/3 α n 12 [ ( 2l2m+1 ) R 1 3 R 2 3 + 2 n r 3 P( 2 P 2 3 ) ( n r 2 n 0 2 ) 3/2 ] ( m 2 ) 2/3 ,

Metrics