Abstract

So far, the optical pulses used in phase-sensitive OTDR (ΦOTDR) were typically engineered so as to have a constant phase along the pulse. In this work, it is demonstrated that by acting on the phase profile of the optical pulses, it is possible to introduce important conceptual and practical changes to the traditional ΦOTDR operation, thus opening a door for new possibilities which are yet to be explored. Using a ΦOTDR with linearly chirped pulses and direct detection, the distributed measurement of temperature/strain changes from trace to trace, with 1mK/4nε resolution, is theoreticaly and experimentaly demonstrated. The measurand resolution and sensitivity can be tuned by acting on the pulse chirp profile. The technique does not require a frequency sweep, thus greatly decreasing the measurement time and complexity of the system, while maintaining the potential for metric spatial resolutions over tens of kilometers as in conventional ΦOTDR. The technique allows for measurements at kHz rates, while maintaining reliability over several hours.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry

Xin Lu, Marcelo A. Soto, and Luc Thévenaz
Opt. Express 25(14) 16059-16071 (2017)

Real time dynamic strain monitoring of optical links using the backreflection of live PSK data

H. F. Martins, K. Shi, B. C. Thomsen, S. Martin-Lopez, M. Gonzalez-Herraez, and S. J. Savory
Opt. Express 24(19) 22303-22318 (2016)

Strain event detection using a double-pulse technique of a Brillouin scattering-based distributed optical fiber sensor

Seok-Beom Cho, Jung-Ju Lee, and Il-Bum Kwon
Opt. Express 12(18) 4339-4346 (2004)

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(12), 8601–8639 (2012).
    [Crossref] [PubMed]
  2. G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
    [Crossref]
  3. X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuno, P. Corredera, J. D. Ania-Castanon, L. Thevenaz, and M. Gonzalez-Herraez, “Raman-Assisted Brillouin Distributed Temperature Sensor Over 100 km Featuring 2 m Resolution and 1.2 °C Uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
    [Crossref]
  4. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
    [Crossref] [PubMed]
  5. Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
    [Crossref] [PubMed]
  6. Y. Peled, A. Motil, I. Kressel, and M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013).
    [Crossref] [PubMed]
  7. A. Masoudi, M. Belal, and T. P. Newson, “Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering,” Opt. Lett. 38(17), 3312–3315 (2013).
    [Crossref] [PubMed]
  8. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with rayleigh scatter,” Appl. Opt. 37(10), 1735–1740 (1998).
    [Crossref] [PubMed]
  9. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
    [Crossref] [PubMed]
  10. H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
    [Crossref]
  11. H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed Vibration Sensing Over 125 km With Enhanced SNR Using Phi-OTDR Over a URFL Cavity,” J. Lightwave Technol. 33(12), 2628–2632 (2015).
    [Crossref]
  12. Z. N. Wang, J. Li, M. Q. Fan, L. Zhang, F. Peng, H. Wu, J. J. Zeng, Y. Zhou, and Y. J. Rao, “Phase-sensitive optical time-domain reflectometry with Brillouin amplification,” Opt. Lett. 39(15), 4313–4316 (2014).
    [Crossref] [PubMed]
  13. Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39(20), 5866–5869 (2014).
    [Crossref] [PubMed]
  14. F. Peng, H. Wu, X. H. Jia, Y. J. Rao, Z. N. Wang, and Z. P. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Opt. Express 22(11), 13804–13810 (2014).
    [Crossref] [PubMed]
  15. A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
    [Crossref]
  16. Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Opt. Express 24(2), 853–858 (2016).
    [Crossref] [PubMed]
  17. G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
    [Crossref]
  18. H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Coherent Noise Reduction in High Visibility Phase-Sensitive Optical Time Domain Reflectometer for Distributed Sensing of Ultrasonic Waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
    [Crossref]
  19. Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
    [Crossref]
  20. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-Optic Distributed Strain and Temperature Sensing With Very High Measurand Resolution Over Long Range Using Coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
    [Crossref]
  21. L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed Strain and Vibration Sensing System Based on Phase-Sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
    [Crossref]
  22. M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express 23(19), 24923–24936 (2015).
    [Crossref] [PubMed]
  23. L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions,” J. Lightwave Technol. 33(17), 3660–3671 (2015).
    [Crossref]
  24. H. F. Martins, J. Pastor-Graells, L. R. Cortés, D. Piote, S. Martin-Lopez, J. Azaña, and M. Gonzalez-Herraez, “PROUD-based method for simple real-time in-line characterization of propagation-induced distortions in NRZ data signals,” Opt. Lett. 40(18), 4356–4359 (2015).
    [Crossref] [PubMed]
  25. F. Li, Y. Park, and J. Azaña, “Complete temporal pulse characterization based on phase reconstruction using optical ultrafast differentiation (PROUD),” Opt. Lett. 32(22), 3364–3366 (2007).
    [Crossref] [PubMed]
  26. J. Azaña, Y. Park, and F. Li, “Linear self-referenced complex-field characterization of fast optical signals using photonic differentiation,” Opt. Commun. 284(15), 3772–3784 (2011).
    [Crossref]
  27. H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett. 38(6), 872–874 (2013).
    [Crossref] [PubMed]

2016 (1)

2015 (6)

H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed Vibration Sensing Over 125 km With Enhanced SNR Using Phi-OTDR Over a URFL Cavity,” J. Lightwave Technol. 33(12), 2628–2632 (2015).
[Crossref]

L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions,” J. Lightwave Technol. 33(17), 3660–3671 (2015).
[Crossref]

H. F. Martins, J. Pastor-Graells, L. R. Cortés, D. Piote, S. Martin-Lopez, J. Azaña, and M. Gonzalez-Herraez, “PROUD-based method for simple real-time in-line characterization of propagation-induced distortions in NRZ data signals,” Opt. Lett. 40(18), 4356–4359 (2015).
[Crossref] [PubMed]

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express 23(19), 24923–24936 (2015).
[Crossref] [PubMed]

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed Strain and Vibration Sensing System Based on Phase-Sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

2014 (4)

2013 (5)

2012 (4)

2011 (2)

J. Azaña, Y. Park, and F. Li, “Linear self-referenced complex-field characterization of fast optical signals using photonic differentiation,” Opt. Commun. 284(15), 3772–3784 (2011).
[Crossref]

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[Crossref] [PubMed]

2009 (1)

2007 (2)

F. Li, Y. Park, and J. Azaña, “Complete temporal pulse characterization based on phase reconstruction using optical ultrafast differentiation (PROUD),” Opt. Lett. 32(22), 3364–3366 (2007).
[Crossref] [PubMed]

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

2005 (1)

1998 (1)

Angulo-Vinuesa, X.

Ania-Castanon, J. D.

Azaña, J.

Bao, X.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(12), 8601–8639 (2012).
[Crossref] [PubMed]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

Belal, M.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

A. Masoudi, M. Belal, and T. P. Newson, “Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering,” Opt. Lett. 38(17), 3312–3315 (2013).
[Crossref] [PubMed]

Bisyarin, M. A.

Bolognini, G.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Chen, L.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(12), 8601–8639 (2012).
[Crossref] [PubMed]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

Corredera, P.

Cortés, L. R.

Di Pasquale, F.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Fan, M.

Fan, M. Q.

Filograno, M. L.

Frazao, O.

Frazão, O.

Froggatt, M.

Gifford, D.

Gonzalez-Herraez, M.

H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed Vibration Sensing Over 125 km With Enhanced SNR Using Phi-OTDR Over a URFL Cavity,” J. Lightwave Technol. 33(12), 2628–2632 (2015).
[Crossref]

H. F. Martins, J. Pastor-Graells, L. R. Cortés, D. Piote, S. Martin-Lopez, J. Azaña, and M. Gonzalez-Herraez, “PROUD-based method for simple real-time in-line characterization of propagation-induced distortions in NRZ data signals,” Opt. Lett. 40(18), 4356–4359 (2015).
[Crossref] [PubMed]

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express 23(19), 24923–24936 (2015).
[Crossref] [PubMed]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
[Crossref]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Coherent Noise Reduction in High Visibility Phase-Sensitive Optical Time Domain Reflectometer for Distributed Sensing of Ultrasonic Waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
[Crossref]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuno, P. Corredera, J. D. Ania-Castanon, L. Thevenaz, and M. Gonzalez-Herraez, “Raman-Assisted Brillouin Distributed Temperature Sensor Over 100 km Featuring 2 m Resolution and 1.2 °C Uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
[Crossref]

González-Herráez, M.

Hartog, A. H.

He, Z.

Hogari, K.

Hotate, K.

Hua, J.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed Strain and Vibration Sensing System Based on Phase-Sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Imahama, M.

Jia, X. H.

Kishi, M.

Kotov, O. I.

Koyamada, Y.

Kressel, I.

Kubota, K.

Li, F.

J. Azaña, Y. Park, and F. Li, “Linear self-referenced complex-field characterization of fast optical signals using photonic differentiation,” Opt. Commun. 284(15), 3772–3784 (2011).
[Crossref]

F. Li, Y. Park, and J. Azaña, “Complete temporal pulse characterization based on phase reconstruction using optical ultrafast differentiation (PROUD),” Opt. Lett. 32(22), 3364–3366 (2007).
[Crossref] [PubMed]

Li, J.

Liokumovich, L. B.

Lu, X.

Martin-Lopez, S.

H. F. Martins, J. Pastor-Graells, L. R. Cortés, D. Piote, S. Martin-Lopez, J. Azaña, and M. Gonzalez-Herraez, “PROUD-based method for simple real-time in-line characterization of propagation-induced distortions in NRZ data signals,” Opt. Lett. 40(18), 4356–4359 (2015).
[Crossref] [PubMed]

H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed Vibration Sensing Over 125 km With Enhanced SNR Using Phi-OTDR Over a URFL Cavity,” J. Lightwave Technol. 33(12), 2628–2632 (2015).
[Crossref]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
[Crossref]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Coherent Noise Reduction in High Visibility Phase-Sensitive Optical Time Domain Reflectometer for Distributed Sensing of Ultrasonic Waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
[Crossref]

H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett. 38(6), 872–874 (2013).
[Crossref] [PubMed]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuno, P. Corredera, J. D. Ania-Castanon, L. Thevenaz, and M. Gonzalez-Herraez, “Raman-Assisted Brillouin Distributed Temperature Sensor Over 100 km Featuring 2 m Resolution and 1.2 °C Uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
[Crossref]

Martins, H. F.

H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed Vibration Sensing Over 125 km With Enhanced SNR Using Phi-OTDR Over a URFL Cavity,” J. Lightwave Technol. 33(12), 2628–2632 (2015).
[Crossref]

H. F. Martins, J. Pastor-Graells, L. R. Cortés, D. Piote, S. Martin-Lopez, J. Azaña, and M. Gonzalez-Herraez, “PROUD-based method for simple real-time in-line characterization of propagation-induced distortions in NRZ data signals,” Opt. Lett. 40(18), 4356–4359 (2015).
[Crossref] [PubMed]

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express 23(19), 24923–24936 (2015).
[Crossref] [PubMed]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
[Crossref]

H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett. 38(6), 872–874 (2013).
[Crossref] [PubMed]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Coherent Noise Reduction in High Visibility Phase-Sensitive Optical Time Domain Reflectometer for Distributed Sensing of Ultrasonic Waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
[Crossref]

Masoudi, A.

A. Masoudi, M. Belal, and T. P. Newson, “Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering,” Opt. Lett. 38(17), 3312–3315 (2013).
[Crossref] [PubMed]

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Moore, J.

Motil, A.

Nakarmi, B.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Newson, T. P.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

A. Masoudi, M. Belal, and T. P. Newson, “Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering,” Opt. Lett. 38(17), 3312–3315 (2013).
[Crossref] [PubMed]

Nuno, J.

Pan, Y.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed Strain and Vibration Sensing System Based on Phase-Sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Park, J.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Park, N.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Park, Y.

J. Azaña, Y. Park, and F. Li, “Linear self-referenced complex-field characterization of fast optical signals using photonic differentiation,” Opt. Commun. 284(15), 3772–3784 (2011).
[Crossref]

F. Li, Y. Park, and J. Azaña, “Complete temporal pulse characterization based on phase reconstruction using optical ultrafast differentiation (PROUD),” Opt. Lett. 32(22), 3364–3366 (2007).
[Crossref] [PubMed]

Pastor-Graells, J.

Peled, Y.

Peng, F.

Peng, Z. P.

Piote, D.

Qian, X.

Qin, Z.

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

Rao, J.

Rao, Y.

Rao, Y. J.

Salgado, P.

Soller, B.

Song, K. Y.

Soto, M. A.

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express 23(19), 24923–24936 (2015).
[Crossref] [PubMed]

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Sun, W.

Sun, Z.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed Strain and Vibration Sensing System Based on Phase-Sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Thevenaz, L.

Thévenaz, L.

Tu, G.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Tur, M.

Ushakov, N. A.

Wang, F.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed Strain and Vibration Sensing System Based on Phase-Sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Wang, S.

Wang, X.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed Strain and Vibration Sensing System Based on Phase-Sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Wang, Z.

Wang, Z. N.

Wolfe, M.

Wu, H.

Xia, L.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Xue, N.

Zeng, J. J.

Zhang, L.

Zhang, X.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed Strain and Vibration Sensing System Based on Phase-Sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Zhang, Y.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Zhou, L.

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed Strain and Vibration Sensing System Based on Phase-Sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

Zhou, Y.

Zhu, F.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (3)

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The Development of an Phi-OTDR System for Quantitative Vibration Measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

L. Zhou, F. Wang, X. Wang, Y. Pan, Z. Sun, J. Hua, and X. Zhang, “Distributed Strain and Vibration Sensing System Based on Phase-Sensitive OTDR,” IEEE Photonics Technol. Lett. 27(17), 1884–1887 (2015).
[Crossref]

J. Lightwave Technol. (6)

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-Optic Distributed Strain and Temperature Sensing With Very High Measurand Resolution Over Long Range Using Coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
[Crossref]

L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions,” J. Lightwave Technol. 33(17), 3660–3671 (2015).
[Crossref]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Coherent Noise Reduction in High Visibility Phase-Sensitive Optical Time Domain Reflectometer for Distributed Sensing of Ultrasonic Waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
[Crossref]

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
[Crossref]

H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castanon, O. Frazao, and M. Gonzalez-Herraez, “Distributed Vibration Sensing Over 125 km With Enhanced SNR Using Phi-OTDR Over a URFL Cavity,” J. Lightwave Technol. 33(12), 2628–2632 (2015).
[Crossref]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuno, P. Corredera, J. D. Ania-Castanon, L. Thevenaz, and M. Gonzalez-Herraez, “Raman-Assisted Brillouin Distributed Temperature Sensor Over 100 km Featuring 2 m Resolution and 1.2 °C Uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
[Crossref]

Meas. Sci. Technol. (2)

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Opt. Commun. (1)

J. Azaña, Y. Park, and F. Li, “Linear self-referenced complex-field characterization of fast optical signals using photonic differentiation,” Opt. Commun. 284(15), 3772–3784 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (7)

A. Masoudi, M. Belal, and T. P. Newson, “Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering,” Opt. Lett. 38(17), 3312–3315 (2013).
[Crossref] [PubMed]

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[Crossref] [PubMed]

Z. N. Wang, J. Li, M. Q. Fan, L. Zhang, F. Peng, H. Wu, J. J. Zeng, Y. Zhou, and Y. J. Rao, “Phase-sensitive optical time-domain reflectometry with Brillouin amplification,” Opt. Lett. 39(15), 4313–4316 (2014).
[Crossref] [PubMed]

Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39(20), 5866–5869 (2014).
[Crossref] [PubMed]

H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett. 38(6), 872–874 (2013).
[Crossref] [PubMed]

H. F. Martins, J. Pastor-Graells, L. R. Cortés, D. Piote, S. Martin-Lopez, J. Azaña, and M. Gonzalez-Herraez, “PROUD-based method for simple real-time in-line characterization of propagation-induced distortions in NRZ data signals,” Opt. Lett. 40(18), 4356–4359 (2015).
[Crossref] [PubMed]

F. Li, Y. Park, and J. Azaña, “Complete temporal pulse characterization based on phase reconstruction using optical ultrafast differentiation (PROUD),” Opt. Lett. 32(22), 3364–3366 (2007).
[Crossref] [PubMed]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(12), 8601–8639 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Reflection of the pulse P(t,z) as it propates along the fiber.
Fig. 2
Fig. 2 Experimental setup: acronyms are explained in the text.
Fig. 3
Fig. 3 Instantaneous frequency profile of the three different chirps induced in 100 ns optical pulses.
Fig. 4
Fig. 4 Longitudinal shift of the ΦOTDR trace when temperature changes are applied to the FUT. a) Non heated region; b) Heated region.
Fig. 5
Fig. 5 Longitudinal trace shifts correspondent to a linear temperature variation of 5 °C applied over 280 s for the three different pulse chirp slopes shown in Fig. 3 of meter 979.
Fig. 6
Fig. 6 Measured temperature variations when temperature is raised from 23 °C to 27.5 °C and back to 23 °C in 20 m of fiber around meter 979 of the FUT, over 270 minutes. (a) Temperature evolution of meter 979 along time (b) Temperature profile along 70 m of fiber at different times.
Fig. 7
Fig. 7 Measured strain variations when strain applied to the fiber is manually varied (using a linear translation stage) from 0 με to ± 300 με and back to 0 με, near the end of the FUT, over 160 seconds.
Fig. 8
Fig. 8 Measured dynamic strain variations when strain is applied by a PZT in 20 m of fiber around meter 979 of the FUT. a) Measured strain for a 1 Hz sinusoidal strain with 100 nε maximum amplitude. (b) Spectrogram (logarithmic scale - dB) for an applied strain of a frequency sweep between 450 Hz to 850 Hz with a period of 1 s (instantaneous frequency calculated using a moving window of 40ms width of the measured dynamic strain).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ n n = Δ υ υ 0
P ( t , z ) = E 0 r e c t [ ( t 0 z n ( z ) d z / c ) / τ p ] e i 2 π ( υ 0 + δ υ / 2 δ υ / τ p [ t 0 z n ( z ) d z / c ] ) ( t 0 z n ( z ) d z / c )
E ( t ) = z = t c / 2 n τ p c / 2 n t c / 2 n r ( z ) E 0 e i 2 π ( υ 0 + δ υ / 2 δ υ / τ p [ t 2 0 z n ( z ) d z / c ] ) ( t 2 0 z n ( z ) d z / c ) d z
ϕ i , j = 2 π 2 n ( z i z j ) c ( υ 0 + δ υ 2 δ υ τ p [ 2 t 2 n ( z i + z j ) c ] )
( Δ n n ) = ( 1 υ 0 ) ( δ υ τ p ) Δ t
( 1 υ 0 ) ( δ υ τ p ) Δ t = Δ υ υ 0 0.78 Δ ε
( 1 υ 0 ) ( δ υ τ p ) Δ t = Δ υ υ 0 ( 6.92 10 6 ) Δ T
Λ ( t ) = max ( c o r r e l a t i o n [ E 1 ( t τ c o r r , t + τ c o r r ) , E 2 ( t τ c o r r , t + τ c o r r ) ] )

Metrics