Abstract

We present the generation of forward stimulated Brillouin scattering (FSBS) in hybrid phononic-photonic waveguides. To confine the optical and acoustic waves simultaneously, a hybrid waveguide is designed by embedding the silicon line defect in the silicon nitride phononic crystal slab. By taking into account three kinds hybrid waveguide, the appropriate structural parameters are obtained to enhance the acousto-optic interaction. We fabricate the honeycomb hybrid waveguide with a CMOS compatible technology. The forward Brillouin frequency shift is measured up to 2.425 GHz and the acoustic Q-factor of the corresponding acoustic mode is 1100. The influences of pump power, acoustic loss, nonlinear optical loss and lattice constant on the acousto-optic interaction in FSBS are analyzed and discussed. The proposed approach has important potential applications in on-chip all-optical signal processing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide

Guodong Chen, Ruiwen Zhang, Junqiang Sun, Heng Xie, Ya Gao, Danqi Feng, and Huang Xiong
Opt. Express 22(26) 32060-32070 (2014)

Design of a hybrid on-chip waveguide with giant backward stimulated Brillouin scattering

Lang Zhou, Yuangang Lu, Yangyang Fu, Haixia Ma, and Chaoling Du
Opt. Express 27(18) 24953-24971 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear optics (Academic Press, 2003).
  2. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
    [Crossref] [PubMed]
  3. V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71(4), 045107 (2005).
    [Crossref]
  4. M. Kang, A. Nazarkin, A. Brenn, and P. S. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
    [Crossref]
  5. P. Dainese, P. S. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
    [Crossref] [PubMed]
  6. J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonic crystal fibers,” Opt. Lett. 32(1), 17–19 (2007).
    [Crossref] [PubMed]
  7. B. Stiller, M. Delqué, J.-C. Beugnot, M. W. Lee, G. Mélin, H. Maillotte, V. Laude, and T. Sylvestre, “Frequency-selective excitation of guided acoustic modes in a photonic crystal fiber,” Opt. Express 19(8), 7689–7694 (2011).
    [Crossref] [PubMed]
  8. G. S. Wiederhecker, A. Brenn, H. L. Fragnito, and P. S. J. Russell, “Coherent Control of Ultrahigh-Frequency Acoustic Resonances in Photonic Crystal Fibers,” Phys. Rev. Lett. 100(20), 203903 (2008).
    [Crossref] [PubMed]
  9. M. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5(9), 549–553 (2011).
    [Crossref]
  10. S. Sadat-Saleh, S. Benchabane, F. I. Baida, M.-P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
    [Crossref]
  11. M. Maldovan and E. Thomas, “Simultaneous complete elastic and electromagnetic band gaps in periodic structures,” Appl. Phys. B 83(4), 595–600 (2006).
    [Crossref]
  12. A. H. Safavi-Naeini and O. Painter, “Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab,” Opt. Express 18(14), 14926–14943 (2010).
    [Crossref] [PubMed]
  13. J. M. Escalante, A. Martínez, and V. Laude, “Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs,” J. Appl. Phys. 115(6), 064302 (2014).
    [Crossref]
  14. T.-R. Lin, C.-H. Lin, and J.-C. Hsu, “Enhanced acousto-optic interaction in two-dimensional phoxonic crystals with a line defect,” J. Appl. Phys. 113(5), 053508 (2013).
    [Crossref]
  15. G. Chen, R. Zhang, J. Sun, H. Xie, Y. Gao, D. Feng, and H. Xiong, “Mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide,” Opt. Express 22(26), 32060–32070 (2014).
    [Crossref] [PubMed]
  16. H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
    [Crossref] [PubMed]
  17. P. T. Rakich, P. Davids, and Z. Wang, “Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces,” Opt. Express 18(14), 14439–14453 (2010).
    [Crossref] [PubMed]
  18. P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2(1), 011008 (2012).
    [Crossref]
  19. W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljačić, and Z. Wang, “Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain,” Opt. Express 21(25), 31402–31419 (2013).
    [Crossref] [PubMed]
  20. I. Aryanfar, C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Mode conversion using stimulated Brillouin scattering in nanophotonic silicon waveguides,” Opt. Express 22(23), 29270–29282 (2014).
    [Crossref] [PubMed]
  21. R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
    [Crossref]
  22. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
    [Crossref] [PubMed]
  23. C. Wolff, P. Gutsche, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Impact of nonlinear loss on stimulated Brillouin scattering,” J. Opt. Soc. Am. B 32(9), 1968–1978 (2015).
    [Crossref]
  24. P. Kharel, R. Behunin, W. Renninger, and P. Rakich, “Noise and dynamics in forward Brillouin interactions,” arXiv preprint arXiv: 1512.07606 (2015).
  25. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [Crossref] [PubMed]
  26. C. Wolff, P. Gutsche, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Power limits and a figure of merit for stimulated Brillouin scattering in the presence of third and fifth order loss,” Opt. Express 23(20), 26628–26638 (2015).
    [Crossref] [PubMed]
  27. V. Laude, J.-C. Beugnot, S. Benchabane, Y. Pennec, B. Djafari-Rouhani, N. Papanikolaou, J. M. Escalante, and A. Martinez, “Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs,” Opt. Express 19(10), 9690–9698 (2011).
    [Crossref] [PubMed]
  28. S. Gevorgian, A. K. Tagantsev, and A. K. Vorobiev, Tuneable Film Bulk Acoustic Wave Resonators (Springer, 2013).

2015 (4)

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref] [PubMed]

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

C. Wolff, P. Gutsche, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Impact of nonlinear loss on stimulated Brillouin scattering,” J. Opt. Soc. Am. B 32(9), 1968–1978 (2015).
[Crossref]

C. Wolff, P. Gutsche, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Power limits and a figure of merit for stimulated Brillouin scattering in the presence of third and fifth order loss,” Opt. Express 23(20), 26628–26638 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (3)

T.-R. Lin, C.-H. Lin, and J.-C. Hsu, “Enhanced acousto-optic interaction in two-dimensional phoxonic crystals with a line defect,” J. Appl. Phys. 113(5), 053508 (2013).
[Crossref]

W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljačić, and Z. Wang, “Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain,” Opt. Express 21(25), 31402–31419 (2013).
[Crossref] [PubMed]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

2012 (1)

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2(1), 011008 (2012).
[Crossref]

2011 (3)

2010 (2)

2009 (2)

S. Sadat-Saleh, S. Benchabane, F. I. Baida, M.-P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
[Crossref]

M. Kang, A. Nazarkin, A. Brenn, and P. S. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[Crossref]

2008 (1)

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, and P. S. J. Russell, “Coherent Control of Ultrahigh-Frequency Acoustic Resonances in Photonic Crystal Fibers,” Phys. Rev. Lett. 100(20), 203903 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

2005 (1)

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71(4), 045107 (2005).
[Crossref]

1985 (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
[Crossref] [PubMed]

Agrawal, G. P.

Aryanfar, I.

Baets, R.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

Baida, F. I.

S. Sadat-Saleh, S. Benchabane, F. I. Baida, M.-P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
[Crossref]

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
[Crossref] [PubMed]

Benchabane, S.

V. Laude, J.-C. Beugnot, S. Benchabane, Y. Pennec, B. Djafari-Rouhani, N. Papanikolaou, J. M. Escalante, and A. Martinez, “Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs,” Opt. Express 19(10), 9690–9698 (2011).
[Crossref] [PubMed]

S. Sadat-Saleh, S. Benchabane, F. I. Baida, M.-P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
[Crossref]

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71(4), 045107 (2005).
[Crossref]

Bernal, M.-P.

S. Sadat-Saleh, S. Benchabane, F. I. Baida, M.-P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
[Crossref]

Beugnot, J.-C.

Brenn, A.

M. Kang, A. Nazarkin, A. Brenn, and P. S. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[Crossref]

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, and P. S. J. Russell, “Coherent Control of Ultrahigh-Frequency Acoustic Resonances in Photonic Crystal Fibers,” Phys. Rev. Lett. 100(20), 203903 (2008).
[Crossref] [PubMed]

Butsch, A.

M. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5(9), 549–553 (2011).
[Crossref]

Camacho, R.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2(1), 011008 (2012).
[Crossref]

Chen, G.

Cox, J. A.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref] [PubMed]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

Dainese, P.

Davids, P.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2(1), 011008 (2012).
[Crossref]

P. T. Rakich, P. Davids, and Z. Wang, “Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces,” Opt. Express 18(14), 14439–14453 (2010).
[Crossref] [PubMed]

Delqué, M.

Djafari-Rouhani, B.

Dong, H.

Dudley, J. M.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71(4), 045107 (2005).
[Crossref]

Eggleton, B. J.

Escalante, J. M.

Feng, D.

Fragnito, H. L.

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, and P. S. J. Russell, “Coherent Control of Ultrahigh-Frequency Acoustic Resonances in Photonic Crystal Fibers,” Phys. Rev. Lett. 100(20), 203903 (2008).
[Crossref] [PubMed]

P. Dainese, P. S. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[Crossref] [PubMed]

Gao, Y.

Gutsche, P.

Hsu, J.-C.

T.-R. Lin, C.-H. Lin, and J.-C. Hsu, “Enhanced acousto-optic interaction in two-dimensional phoxonic crystals with a line defect,” J. Appl. Phys. 113(5), 053508 (2013).
[Crossref]

Jarecki, R.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref] [PubMed]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

Joly, N.

Kang, M.

M. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5(9), 549–553 (2011).
[Crossref]

M. Kang, A. Nazarkin, A. Brenn, and P. S. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[Crossref]

Khelif, A.

P. Dainese, P. S. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[Crossref] [PubMed]

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71(4), 045107 (2005).
[Crossref]

Kibler, B.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71(4), 045107 (2005).
[Crossref]

Kuyken, B.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

Laude, V.

J. M. Escalante, A. Martínez, and V. Laude, “Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs,” J. Appl. Phys. 115(6), 064302 (2014).
[Crossref]

B. Stiller, M. Delqué, J.-C. Beugnot, M. W. Lee, G. Mélin, H. Maillotte, V. Laude, and T. Sylvestre, “Frequency-selective excitation of guided acoustic modes in a photonic crystal fiber,” Opt. Express 19(8), 7689–7694 (2011).
[Crossref] [PubMed]

V. Laude, J.-C. Beugnot, S. Benchabane, Y. Pennec, B. Djafari-Rouhani, N. Papanikolaou, J. M. Escalante, and A. Martinez, “Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs,” Opt. Express 19(10), 9690–9698 (2011).
[Crossref] [PubMed]

S. Sadat-Saleh, S. Benchabane, F. I. Baida, M.-P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
[Crossref]

J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonic crystal fibers,” Opt. Lett. 32(1), 17–19 (2007).
[Crossref] [PubMed]

P. Dainese, P. S. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[Crossref] [PubMed]

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71(4), 045107 (2005).
[Crossref]

Lee, M. W.

Levenson, M. D.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
[Crossref] [PubMed]

Lin, C.-H.

T.-R. Lin, C.-H. Lin, and J.-C. Hsu, “Enhanced acousto-optic interaction in two-dimensional phoxonic crystals with a line defect,” J. Appl. Phys. 113(5), 053508 (2013).
[Crossref]

Lin, Q.

Lin, T.-R.

T.-R. Lin, C.-H. Lin, and J.-C. Hsu, “Enhanced acousto-optic interaction in two-dimensional phoxonic crystals with a line defect,” J. Appl. Phys. 113(5), 053508 (2013).
[Crossref]

Maillotte, H.

Maldovan, M.

M. Maldovan and E. Thomas, “Simultaneous complete elastic and electromagnetic band gaps in periodic structures,” Appl. Phys. B 83(4), 595–600 (2006).
[Crossref]

Martinez, A.

Martínez, A.

J. M. Escalante, A. Martínez, and V. Laude, “Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs,” J. Appl. Phys. 115(6), 064302 (2014).
[Crossref]

Mélin, G.

Mussot, A.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71(4), 045107 (2005).
[Crossref]

Nazarkin, A.

M. Kang, A. Nazarkin, A. Brenn, and P. S. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[Crossref]

Olsson, R. H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

Painter, O.

Painter, O. J.

Papanikolaou, N.

Pennec, Y.

Poulton, C. G.

Qiu, W.

W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljačić, and Z. Wang, “Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain,” Opt. Express 21(25), 31402–31419 (2013).
[Crossref] [PubMed]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

Rakich, P. T.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref] [PubMed]

W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljačić, and Z. Wang, “Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain,” Opt. Express 21(25), 31402–31419 (2013).
[Crossref] [PubMed]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2(1), 011008 (2012).
[Crossref]

P. T. Rakich, P. Davids, and Z. Wang, “Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces,” Opt. Express 18(14), 14439–14453 (2010).
[Crossref] [PubMed]

Reinke, C.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2(1), 011008 (2012).
[Crossref]

Russell, P. S. J.

M. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5(9), 549–553 (2011).
[Crossref]

M. Kang, A. Nazarkin, A. Brenn, and P. S. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[Crossref]

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, and P. S. J. Russell, “Coherent Control of Ultrahigh-Frequency Acoustic Resonances in Photonic Crystal Fibers,” Phys. Rev. Lett. 100(20), 203903 (2008).
[Crossref] [PubMed]

P. Dainese, P. S. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[Crossref] [PubMed]

Sadat-Saleh, S.

S. Sadat-Saleh, S. Benchabane, F. I. Baida, M.-P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
[Crossref]

Safavi-Naeini, A. H.

Shelby, R. M.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
[Crossref] [PubMed]

Shin, H.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref] [PubMed]

W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljačić, and Z. Wang, “Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain,” Opt. Express 21(25), 31402–31419 (2013).
[Crossref] [PubMed]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

Soljacic, M.

Starbuck, A.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref] [PubMed]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

Steel, M. J.

Stiller, B.

Sun, J.

Sylvestre, T.

Thomas, E.

M. Maldovan and E. Thomas, “Simultaneous complete elastic and electromagnetic band gaps in periodic structures,” Appl. Phys. B 83(4), 595–600 (2006).
[Crossref]

Van Laer, R.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

Van Thourhout, D.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

Wang, Z.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref] [PubMed]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljačić, and Z. Wang, “Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain,” Opt. Express 21(25), 31402–31419 (2013).
[Crossref] [PubMed]

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2(1), 011008 (2012).
[Crossref]

P. T. Rakich, P. Davids, and Z. Wang, “Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces,” Opt. Express 18(14), 14439–14453 (2010).
[Crossref] [PubMed]

Wiederhecker, G. S.

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, and P. S. J. Russell, “Coherent Control of Ultrahigh-Frequency Acoustic Resonances in Photonic Crystal Fibers,” Phys. Rev. Lett. 100(20), 203903 (2008).
[Crossref] [PubMed]

P. Dainese, P. S. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[Crossref] [PubMed]

Wilm, M.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71(4), 045107 (2005).
[Crossref]

Wolff, C.

Xie, H.

Xiong, H.

Zhang, R.

Appl. Phys. B (1)

M. Maldovan and E. Thomas, “Simultaneous complete elastic and electromagnetic band gaps in periodic structures,” Appl. Phys. B 83(4), 595–600 (2006).
[Crossref]

J. Appl. Phys. (3)

J. M. Escalante, A. Martínez, and V. Laude, “Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs,” J. Appl. Phys. 115(6), 064302 (2014).
[Crossref]

T.-R. Lin, C.-H. Lin, and J.-C. Hsu, “Enhanced acousto-optic interaction in two-dimensional phoxonic crystals with a line defect,” J. Appl. Phys. 113(5), 053508 (2013).
[Crossref]

S. Sadat-Saleh, S. Benchabane, F. I. Baida, M.-P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (2)

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref] [PubMed]

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun. 6, 6427 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

M. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5(9), 549–553 (2011).
[Crossref]

Nat. Phys. (1)

M. Kang, A. Nazarkin, A. Brenn, and P. S. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5(4), 276–280 (2009).
[Crossref]

Opt. Express (10)

P. Dainese, P. S. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[Crossref] [PubMed]

C. Wolff, P. Gutsche, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Power limits and a figure of merit for stimulated Brillouin scattering in the presence of third and fifth order loss,” Opt. Express 23(20), 26628–26638 (2015).
[Crossref] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[Crossref] [PubMed]

P. T. Rakich, P. Davids, and Z. Wang, “Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces,” Opt. Express 18(14), 14439–14453 (2010).
[Crossref] [PubMed]

A. H. Safavi-Naeini and O. Painter, “Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab,” Opt. Express 18(14), 14926–14943 (2010).
[Crossref] [PubMed]

B. Stiller, M. Delqué, J.-C. Beugnot, M. W. Lee, G. Mélin, H. Maillotte, V. Laude, and T. Sylvestre, “Frequency-selective excitation of guided acoustic modes in a photonic crystal fiber,” Opt. Express 19(8), 7689–7694 (2011).
[Crossref] [PubMed]

V. Laude, J.-C. Beugnot, S. Benchabane, Y. Pennec, B. Djafari-Rouhani, N. Papanikolaou, J. M. Escalante, and A. Martinez, “Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs,” Opt. Express 19(10), 9690–9698 (2011).
[Crossref] [PubMed]

W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljačić, and Z. Wang, “Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain,” Opt. Express 21(25), 31402–31419 (2013).
[Crossref] [PubMed]

I. Aryanfar, C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Mode conversion using stimulated Brillouin scattering in nanophotonic silicon waveguides,” Opt. Express 22(23), 29270–29282 (2014).
[Crossref] [PubMed]

G. Chen, R. Zhang, J. Sun, H. Xie, Y. Gao, D. Feng, and H. Xiong, “Mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide,” Opt. Express 22(26), 32060–32070 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71(4), 045107 (2005).
[Crossref]

Phys. Rev. B Condens. Matter (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, and P. S. J. Russell, “Coherent Control of Ultrahigh-Frequency Acoustic Resonances in Photonic Crystal Fibers,” Phys. Rev. Lett. 100(20), 203903 (2008).
[Crossref] [PubMed]

Phys. Rev. X (1)

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2(1), 011008 (2012).
[Crossref]

Other (3)

R. W. Boyd, Nonlinear optics (Academic Press, 2003).

P. Kharel, R. Behunin, W. Renninger, and P. Rakich, “Noise and dynamics in forward Brillouin interactions,” arXiv preprint arXiv: 1512.07606 (2015).

S. Gevorgian, A. K. Tagantsev, and A. K. Vorobiev, Tuneable Film Bulk Acoustic Wave Resonators (Springer, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Proposed hybrid phononic-photonic waveguides with different phononic crystal structures. (a) The hexagonal structure. (b) The square structure. (c) The honeycomb structure.
Fig. 2
Fig. 2 (a) The E x field profile. (b) The x-component of electrostrictive force. (c) The x-component of radiation pressure. (d-f) Acoutic displacement fields (x-displacement) of (d) the hexagonal hybrid waveguide with r/a=0.25 ( Ω/2π=2.63GHz ), (e) the square hybrid waveguide with r/a=0.46 ( Ω/2π=2.43GHz ) and (f) the honeycomb hybrid waveguide with r/a=0.25 ( Ω/2π=2.38GHz ).
Fig. 3
Fig. 3 (a) Phononic dispersion relation of the honeycomb hybrid waveguide for the acoustic guided mode. (b-d) Displacement field of three eigenmodes with acoustic propagation constant q=1.0× 10 4 m−1, q=3.4× 10 5 m−1, q=1.0× 10 6 m−1. (e) 3D acoustic displacement field. (f) Acoustic elastic strain energy density.
Fig. 4
Fig. 4 (a) SEM image of the fabricated device. (b) Close-up SEM view of the hybrid phononic-photonic waveguide. (c) SEM image of the cross-section of waveguide (d) Experimental setup to measure FSBS in the hybrid phononic-photonic waveguide.
Fig. 5
Fig. 5 (a) Measured RF spectrum of MLM-EDFL before being injected into the hybrid waveguide. (b) Measured RF spectrum of MLM-EDFL after propagating through the hybrid waveguide without the pump. (c) Measured RF spectrum of the hybrid waveguide with the pump. (d) Zoomed-in RF spectrum at 2.42 GHz. The dot is the experimental value and the solid curve is the fitted.
Fig. 6
Fig. 6 (a-c) Normalized evolution of optical and acoustic powers in the honeycomb hybrid waveguide with (a) pump power 25 mW and acoustic loss 2.0×107 m−1, (b) pump power 250 mW and acoustic loss 2.0×107 m−1, (c) pump power 25 mW and acoustic loss 6000 m−1. (d) Effective length L as a function of the pump power for honeycomb hybrid waveguide under different acoustic losses.
Fig. 7
Fig. 7 The maximum acoustic powers which is normalized vary with (a) the optical powers and (b) the lattice constants.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

z A p +( α 0 +β A p 2 +γ A p 4 ) A p = i w p η * p p A s B(2β A s 2 +4γ A p 2 A s 2 +γ A s 4 ) A p
z A s +( α 0 +β A s 2 +γ A s 4 ) A s = i w s η p s A p B * (2β A p 2 +4γ A s 2 A p 2 +γ A p 4 ) A s
z B+αB= iΩη Φ a p p p s ( A s ) * A p

Metrics