Abstract

We report on detailed investigations of ytterbium (Yb) and aluminum (Al) doped silica fiber and preform samples co-doped with cerium (Ce). The prevention of pump-induced photodarkening (PD) by temporary oxidation of Ce3+ to Ce4+ (or rather Ce3++) was proved by observed modifications in the ultraviolet (UV) spectra of transient absorption during near-infrared (NIR) pumping of thin preform slices. Only a small part of available Ce3+ ions (< 4%) was found to be involved in this process despite Yb inversions of up to 0.28. The modifications in the UV absorption spectra disappeared completely when the pump power was switched-off. From these observations we conclude that the recombination to Ce3+ takes place very fast thereby enabling these ions to capture liberated holes h+ perpetually during further pumping. We found a concentration ratio of Ce/Yb ≈0.5 to be sufficient to reduce PD loss to 10% in comparison to Ce-free fibers. Thus, the thermal load caused by absorption of PD color centers at pump (and laser) wavelength is expected to be also reduced. Unfortunately, new heat sources arise with the presence of Ce which cannot be explained by the absorption of Ce ions at the pump wavelength but must be attributed to the interaction with excited Yb ions. Fiber temperature increase of more than 200 K was observed if both, Yb2O3 and Ce2O3 concentration exceed 0.4 mol%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photodarkening kinetics as a function of Yb concentration and the role of Al codoping

Sylvia Jetschke, Sonja Unger, Martin Leich, and Johannes Kirchhof
Appl. Opt. 51(32) 7758-7764 (2012)

Deactivation of Yb3+ ions due to photodarkening

S. Jetschke, A. Schwuchow, S. Unger, M. Leich, M. Jäger, and J. Kirchhof
Opt. Mater. Express 3(4) 452-458 (2013)

Evidence of Tm impact in low-photodarkening Yb-doped fibers

Sylvia Jetschke, Sonja Unger, Anka Schwuchow, Martin Leich, Julia Fiebrandt, Matthias Jäger, and Johannes Kirchhof
Opt. Express 21(6) 7590-7598 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. Dong, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, “Bragg gratings in Ce3+-doped fibers written by a single excimer pulse,” Opt. Lett. 18(11), 861–863 (1993).
    [Crossref] [PubMed]
  2. S. G. Demos, P. R. Ehrmann, S. R. Qiu, K. I. Schaffers, and T. I. Suratwala, “Dynamics of defects in Ce³⁺ doped silica affecting its performance as protective filter in ultraviolet high-power lasers,” Opt. Express 22(23), 28798–28809 (2014).
    [Crossref] [PubMed]
  3. J. S. Stroud, “Photoionization of Ce3+ in Glass,” J. Chem. Phys. 35(3), 844–851 (1961).
    [Crossref]
  4. Y. Sheng, L. Yang, H. Luan, Z. Liu, Y. Yu, J. Li, and N. Dai, “Improvement of radiation resistence by introducing CeO2 in Yb-doped silicate glasses,” J. Nucl. Mater. 427(1-3), 58–61 (2012).
    [Crossref]
  5. S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
    [Crossref] [PubMed]
  6. S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
    [Crossref] [PubMed]
  7. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett. 34(8), 1285–1287 (2009).
    [Crossref] [PubMed]
  8. P. Jelger, M. Engholm, L. Norin, and F. Laurell, “Degradation-resistant lasing at 980 nm in a Yb/Ce/Al-doped silica fiber,” J. Opt. Soc. Am. B 27(2), 338–342 (2010).
    [Crossref]
  9. G. Chen, Y. B. Wang, L. Xie, Y. B. Xing, H. Q. Li, Z. W. Jiang, J. G. Peng, N. L. Dai, and J. Y. Li, “Self-bleaching Phenomenon Observed in the Ce/Yb Co-doped Silica Fiber,” in Conference on Lasers and Electro-Optics (CLEO) 2013, OSA Technical Digest Series (Optical Society of America, 2013), paper CM41.5.
    [Crossref]
  10. N. Zhao, Y. Wang, J. Li, C. Liu, J. Peng, H. Li, N. Dai, L. Yang, and J. Li, “Investigation of cerium influence on photo-darkening and photo-bleaching in Yb-doped fibers,” Appl. Phys., A Mater. Sci. Process. 122(2), 75 (2016).
    [Crossref]
  11. K. Schuster, S. Grimm, A. Kalide, J. Dellith, M. Leich, A. Schwuchow, A. Langner, G. Schötz, and H. Bartelt, “Evolution of fluorine doping following the REPUSIL process for the adjustment of optical properties of silica materials,” Opt. Mater. Express 5(4), 887–897 (2015).
    [Crossref]
  12. J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and Technologies for Microstructured High Power Laser Fibers,” Proc. SPIE 5951, 595107 (2005).
    [Crossref]
  13. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
    [Crossref] [PubMed]
  14. K. E. Mattsson, “Photo darkening of rare earth doped silica,” Opt. Express 19(21), 19797–19812 (2011).
    [Crossref] [PubMed]
  15. T. Arai, K. Ichiia, S. Tanigawaa, and M. Fujimakia, “Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses,” Proc. SPIE 7914, 79140K (2011).
    [Crossref]
  16. T. Deschamps, H. Vezin, C. Gonnet, and N. Ollier, “Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber,” Opt. Express 21(7), 8382–8392 (2013).
    [Crossref] [PubMed]
  17. S. Unger, A. Schwuchow, S. Jetschke, S. Grimm, A. Scheffel, and J. Kirchhof, “Optical properties of cerium-codoped high-power laser fibers,” Proc. SPIE 8621, 862116 (2013).
    [Crossref]
  18. S. Unger, A. Schwuchow, J. Dellith, and J. Kirchhof, “Codoped materials for high power lasers: diffusion behaviour and optical properties,” Proc. SPIE 6469, 646913 (2007).
    [Crossref]
  19. M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
    [Crossref] [PubMed]
  20. J. J. Montiel I Ponsoda, M. J. Söderlund, J. P. Koplow, J. J. Koponen, and S. Honkanen, “Photodarkening-induced increase of fiber temperature,” Appl. Opt. 49(22), 4139–4143 (2010).
    [Crossref] [PubMed]
  21. C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
    [Crossref] [PubMed]
  22. M. Leich, J. Fiebrandt, A. Schwuchow, S. Jetschke, S. Unger, M. Jäger, M. Rothhardt, and H. Bartelt, “Length distributed measurement of temperature effects in Yb-doped fibers during pumping,” Opt. Eng. 53(6), 066101 (2014).
    [Crossref]
  23. S. Jetschke, A. Schwuchow, and S. Unger, “Transient absorption in Yb fibers opens a path to photodarkening,” Laser Phys. Lett. 11(8), 085101 (2014).
    [Crossref]
  24. S. Jetschke, U. Röpke, S. Unger, and J. Kirchhof, “Characterization of photodarkening processes in Yb doped fibers,” Proc. SPIE 7195, 71952B (2009).
    [Crossref]
  25. M. Leich, S. Jetschke, S. Unger, and J. Kirchhof, “Temperature influence on the photodarkening kinetics in Yb-doped silica fibers,” J. Opt. Soc. Am. B 28(1), 65–68 (2011).
    [Crossref]
  26. M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, and H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285(21-22), 4387–4390 (2012).
    [Crossref]
  27. www.rp-photonics.com .
  28. S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett. 34(1), 109–111 (2009).
    [Crossref] [PubMed]
  29. J. S. Stroud, “Color-centers in a cerium-containing silicate glass,” J. Chem. Phys. 37(2), 836–841 (1962).
    [Crossref]
  30. J. S. Stroud, “Color-center kinetics in cerium-containing glass,” J. Chem. Phys. 43(7), 2442–2450 (1965).
    [Crossref]
  31. J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
    [Crossref] [PubMed]
  32. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
    [Crossref] [PubMed]
  33. A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnow, I. A. Bufetov, and E. M. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers & Electro-Optics (IEEE, 2007), paper CJ3.
  34. H. Gebavi, S. Taccheo, L. Lablonde, B. Cadier, T. Robin, D. Méchin, and D. Tregoat, “Mitigation of photodarkening phenomenon in fiber lasers by 633 nm light exposure,” Opt. Lett. 38(2), 196–198 (2013).
    [Crossref] [PubMed]
  35. M.-L. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
    [Crossref]
  36. J. Lægsgaard, “Dissolution of rare-earth clusters in SiO2 by Al codoping: A microscopic model,” Phys. Rev. B 65(17), 174114 (2002).
    [Crossref]
  37. A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, “Clustering of rare earth in glasses, aluminum effect: experiments and modeling,” J. Non-Cryst. Solids 348, 44–50 (2004).
    [Crossref]
  38. F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1–2), 93–103 (2001).
    [Crossref]
  39. M. Chiesa, K. Mattsson, St. Taccheo, T. Robin, L. Lablonde, D. Mechin, and D. Milanese, “Defects induced in Yb3+/Ce3+ co-doped aluminosilicate fiber glass preforms under UV and γ-ray irradiation,” J. Non-Cryst. Solids 403, 97–101 (2014).
    [Crossref]
  40. M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008).
    [Crossref] [PubMed]
  41. Y.-S. Liu, T. C. Galvin, T. Hawkins, J. Ballato, L. Dong, P. R. Foy, P. D. Dragic, and J. G. Eden, “Linkage of oxygen deficiency defects and rare earth concentrations in silica glass optical fiber probed by ultraviolet absorption and laser excitation spectroscopy,” Opt. Express 20(13), 14494–14507 (2012).
    [Crossref] [PubMed]

2016 (1)

N. Zhao, Y. Wang, J. Li, C. Liu, J. Peng, H. Li, N. Dai, L. Yang, and J. Li, “Investigation of cerium influence on photo-darkening and photo-bleaching in Yb-doped fibers,” Appl. Phys., A Mater. Sci. Process. 122(2), 75 (2016).
[Crossref]

2015 (2)

2014 (4)

M. Leich, J. Fiebrandt, A. Schwuchow, S. Jetschke, S. Unger, M. Jäger, M. Rothhardt, and H. Bartelt, “Length distributed measurement of temperature effects in Yb-doped fibers during pumping,” Opt. Eng. 53(6), 066101 (2014).
[Crossref]

S. Jetschke, A. Schwuchow, and S. Unger, “Transient absorption in Yb fibers opens a path to photodarkening,” Laser Phys. Lett. 11(8), 085101 (2014).
[Crossref]

M. Chiesa, K. Mattsson, St. Taccheo, T. Robin, L. Lablonde, D. Mechin, and D. Milanese, “Defects induced in Yb3+/Ce3+ co-doped aluminosilicate fiber glass preforms under UV and γ-ray irradiation,” J. Non-Cryst. Solids 403, 97–101 (2014).
[Crossref]

S. G. Demos, P. R. Ehrmann, S. R. Qiu, K. I. Schaffers, and T. I. Suratwala, “Dynamics of defects in Ce³⁺ doped silica affecting its performance as protective filter in ultraviolet high-power lasers,” Opt. Express 22(23), 28798–28809 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (4)

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, and H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285(21-22), 4387–4390 (2012).
[Crossref]

Y. Sheng, L. Yang, H. Luan, Z. Liu, Y. Yu, J. Li, and N. Dai, “Improvement of radiation resistence by introducing CeO2 in Yb-doped silicate glasses,” J. Nucl. Mater. 427(1-3), 58–61 (2012).
[Crossref]

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

Y.-S. Liu, T. C. Galvin, T. Hawkins, J. Ballato, L. Dong, P. R. Foy, P. D. Dragic, and J. G. Eden, “Linkage of oxygen deficiency defects and rare earth concentrations in silica glass optical fiber probed by ultraviolet absorption and laser excitation spectroscopy,” Opt. Express 20(13), 14494–14507 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (3)

2009 (3)

2008 (2)

2007 (2)

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
[Crossref] [PubMed]

S. Unger, A. Schwuchow, J. Dellith, and J. Kirchhof, “Codoped materials for high power lasers: diffusion behaviour and optical properties,” Proc. SPIE 6469, 646913 (2007).
[Crossref]

2006 (1)

2005 (1)

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and Technologies for Microstructured High Power Laser Fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

2004 (1)

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, “Clustering of rare earth in glasses, aluminum effect: experiments and modeling,” J. Non-Cryst. Solids 348, 44–50 (2004).
[Crossref]

2003 (1)

2002 (1)

J. Lægsgaard, “Dissolution of rare-earth clusters in SiO2 by Al codoping: A microscopic model,” Phys. Rev. B 65(17), 174114 (2002).
[Crossref]

2001 (1)

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1–2), 93–103 (2001).
[Crossref]

1993 (1)

1965 (1)

J. S. Stroud, “Color-center kinetics in cerium-containing glass,” J. Chem. Phys. 43(7), 2442–2450 (1965).
[Crossref]

1962 (1)

J. S. Stroud, “Color-centers in a cerium-containing silicate glass,” J. Chem. Phys. 37(2), 836–841 (1962).
[Crossref]

1961 (1)

J. S. Stroud, “Photoionization of Ce3+ in Glass,” J. Chem. Phys. 35(3), 844–851 (1961).
[Crossref]

Alombert-Goget, G.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, “Clustering of rare earth in glasses, aluminum effect: experiments and modeling,” J. Non-Cryst. Solids 348, 44–50 (2004).
[Crossref]

Arai, T.

T. Arai, K. Ichiia, S. Tanigawaa, and M. Fujimakia, “Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses,” Proc. SPIE 7914, 79140K (2011).
[Crossref]

Archambault, J. L.

Auzel, F.

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1–2), 93–103 (2001).
[Crossref]

Ballato, J.

Bartelt, H.

K. Schuster, S. Grimm, A. Kalide, J. Dellith, M. Leich, A. Schwuchow, A. Langner, G. Schötz, and H. Bartelt, “Evolution of fluorine doping following the REPUSIL process for the adjustment of optical properties of silica materials,” Opt. Mater. Express 5(4), 887–897 (2015).
[Crossref]

M. Leich, J. Fiebrandt, A. Schwuchow, S. Jetschke, S. Unger, M. Jäger, M. Rothhardt, and H. Bartelt, “Length distributed measurement of temperature effects in Yb-doped fibers during pumping,” Opt. Eng. 53(6), 066101 (2014).
[Crossref]

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, and H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285(21-22), 4387–4390 (2012).
[Crossref]

Brandily-Anne, M.-L.

M.-L. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

Bufetov, I. A.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnow, I. A. Bufetov, and E. M. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers & Electro-Optics (IEEE, 2007), paper CJ3.

Cadier, B.

Chaussedent, S.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, “Clustering of rare earth in glasses, aluminum effect: experiments and modeling,” J. Non-Cryst. Solids 348, 44–50 (2004).
[Crossref]

Chiasera, A.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, “Clustering of rare earth in glasses, aluminum effect: experiments and modeling,” J. Non-Cryst. Solids 348, 44–50 (2004).
[Crossref]

Chiesa, M.

M. Chiesa, K. Mattsson, St. Taccheo, T. Robin, L. Lablonde, D. Mechin, and D. Milanese, “Defects induced in Yb3+/Ce3+ co-doped aluminosilicate fiber glass preforms under UV and γ-ray irradiation,” J. Non-Cryst. Solids 403, 97–101 (2014).
[Crossref]

Dai, N.

N. Zhao, Y. Wang, J. Li, C. Liu, J. Peng, H. Li, N. Dai, L. Yang, and J. Li, “Investigation of cerium influence on photo-darkening and photo-bleaching in Yb-doped fibers,” Appl. Phys., A Mater. Sci. Process. 122(2), 75 (2016).
[Crossref]

Y. Sheng, L. Yang, H. Luan, Z. Liu, Y. Yu, J. Li, and N. Dai, “Improvement of radiation resistence by introducing CeO2 in Yb-doped silicate glasses,” J. Nucl. Mater. 427(1-3), 58–61 (2012).
[Crossref]

Dellith, J.

Demos, S. G.

Deschamps, T.

Dianov, E. M.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnow, I. A. Bufetov, and E. M. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers & Electro-Optics (IEEE, 2007), paper CJ3.

Dong, L.

Dragic, P. D.

Eden, J. G.

Ehrmann, P. R.

Engholm, M.

Eschrich, T.

Ferrari, M.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, “Clustering of rare earth in glasses, aluminum effect: experiments and modeling,” J. Non-Cryst. Solids 348, 44–50 (2004).
[Crossref]

Fiebrandt, J.

M. Leich, J. Fiebrandt, A. Schwuchow, S. Jetschke, S. Unger, M. Jäger, M. Rothhardt, and H. Bartelt, “Length distributed measurement of temperature effects in Yb-doped fibers during pumping,” Opt. Eng. 53(6), 066101 (2014).
[Crossref]

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, and H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285(21-22), 4387–4390 (2012).
[Crossref]

Foy, P. R.

Fujimakia, M.

T. Arai, K. Ichiia, S. Tanigawaa, and M. Fujimakia, “Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses,” Proc. SPIE 7914, 79140K (2011).
[Crossref]

Galvin, T. C.

Gaumer, N.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, “Clustering of rare earth in glasses, aluminum effect: experiments and modeling,” J. Non-Cryst. Solids 348, 44–50 (2004).
[Crossref]

Gebavi, H.

Glebov, L. B.

M.-L. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

Glebova, L.

M.-L. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

Goldner, P.

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1–2), 93–103 (2001).
[Crossref]

Gonnet, C.

Grimm, S.

Guyenot, V.

Hawkins, T.

Hoffman, H. J.

Honkanen, S.

Ichiia, K.

T. Arai, K. Ichiia, S. Tanigawaa, and M. Fujimakia, “Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses,” Proc. SPIE 7914, 79140K (2011).
[Crossref]

Jäger, M.

M. Leich, J. Fiebrandt, A. Schwuchow, S. Jetschke, S. Unger, M. Jäger, M. Rothhardt, and H. Bartelt, “Length distributed measurement of temperature effects in Yb-doped fibers during pumping,” Opt. Eng. 53(6), 066101 (2014).
[Crossref]

Jauregui, C.

Jelger, P.

Jetschke, S.

S. Jetschke, A. Schwuchow, and S. Unger, “Transient absorption in Yb fibers opens a path to photodarkening,” Laser Phys. Lett. 11(8), 085101 (2014).
[Crossref]

M. Leich, J. Fiebrandt, A. Schwuchow, S. Jetschke, S. Unger, M. Jäger, M. Rothhardt, and H. Bartelt, “Length distributed measurement of temperature effects in Yb-doped fibers during pumping,” Opt. Eng. 53(6), 066101 (2014).
[Crossref]

S. Unger, A. Schwuchow, S. Jetschke, S. Grimm, A. Scheffel, and J. Kirchhof, “Optical properties of cerium-codoped high-power laser fibers,” Proc. SPIE 8621, 862116 (2013).
[Crossref]

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, and H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285(21-22), 4387–4390 (2012).
[Crossref]

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

M. Leich, S. Jetschke, S. Unger, and J. Kirchhof, “Temperature influence on the photodarkening kinetics in Yb-doped silica fibers,” J. Opt. Soc. Am. B 28(1), 65–68 (2011).
[Crossref]

S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett. 34(1), 109–111 (2009).
[Crossref] [PubMed]

S. Jetschke, U. Röpke, S. Unger, and J. Kirchhof, “Characterization of photodarkening processes in Yb doped fibers,” Proc. SPIE 7195, 71952B (2009).
[Crossref]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
[Crossref] [PubMed]

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and Technologies for Microstructured High Power Laser Fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

Just, F.

Kalide, A.

Kirchhof, J.

S. Unger, A. Schwuchow, S. Jetschke, S. Grimm, A. Scheffel, and J. Kirchhof, “Optical properties of cerium-codoped high-power laser fibers,” Proc. SPIE 8621, 862116 (2013).
[Crossref]

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

M. Leich, S. Jetschke, S. Unger, and J. Kirchhof, “Temperature influence on the photodarkening kinetics in Yb-doped silica fibers,” J. Opt. Soc. Am. B 28(1), 65–68 (2011).
[Crossref]

S. Jetschke, U. Röpke, S. Unger, and J. Kirchhof, “Characterization of photodarkening processes in Yb doped fibers,” Proc. SPIE 7195, 71952B (2009).
[Crossref]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
[Crossref] [PubMed]

S. Unger, A. Schwuchow, J. Dellith, and J. Kirchhof, “Codoped materials for high power lasers: diffusion behaviour and optical properties,” Proc. SPIE 6469, 646913 (2007).
[Crossref]

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and Technologies for Microstructured High Power Laser Fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

Kobelke, J.

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and Technologies for Microstructured High Power Laser Fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

Koplow, J. P.

Koponen, J. J.

Lablonde, L.

M. Chiesa, K. Mattsson, St. Taccheo, T. Robin, L. Lablonde, D. Mechin, and D. Milanese, “Defects induced in Yb3+/Ce3+ co-doped aluminosilicate fiber glass preforms under UV and γ-ray irradiation,” J. Non-Cryst. Solids 403, 97–101 (2014).
[Crossref]

H. Gebavi, S. Taccheo, L. Lablonde, B. Cadier, T. Robin, D. Méchin, and D. Tregoat, “Mitigation of photodarkening phenomenon in fiber lasers by 633 nm light exposure,” Opt. Lett. 38(2), 196–198 (2013).
[Crossref] [PubMed]

Lægsgaard, J.

J. Lægsgaard, “Dissolution of rare-earth clusters in SiO2 by Al codoping: A microscopic model,” Phys. Rev. B 65(17), 174114 (2002).
[Crossref]

Langner, A.

Laurell, F.

Leich, M.

K. Schuster, S. Grimm, A. Kalide, J. Dellith, M. Leich, A. Schwuchow, A. Langner, G. Schötz, and H. Bartelt, “Evolution of fluorine doping following the REPUSIL process for the adjustment of optical properties of silica materials,” Opt. Mater. Express 5(4), 887–897 (2015).
[Crossref]

M. Leich, J. Fiebrandt, A. Schwuchow, S. Jetschke, S. Unger, M. Jäger, M. Rothhardt, and H. Bartelt, “Length distributed measurement of temperature effects in Yb-doped fibers during pumping,” Opt. Eng. 53(6), 066101 (2014).
[Crossref]

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, and H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285(21-22), 4387–4390 (2012).
[Crossref]

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

M. Leich, S. Jetschke, S. Unger, and J. Kirchhof, “Temperature influence on the photodarkening kinetics in Yb-doped silica fibers,” J. Opt. Soc. Am. B 28(1), 65–68 (2011).
[Crossref]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

Li, H.

N. Zhao, Y. Wang, J. Li, C. Liu, J. Peng, H. Li, N. Dai, L. Yang, and J. Li, “Investigation of cerium influence on photo-darkening and photo-bleaching in Yb-doped fibers,” Appl. Phys., A Mater. Sci. Process. 122(2), 75 (2016).
[Crossref]

Li, J.

N. Zhao, Y. Wang, J. Li, C. Liu, J. Peng, H. Li, N. Dai, L. Yang, and J. Li, “Investigation of cerium influence on photo-darkening and photo-bleaching in Yb-doped fibers,” Appl. Phys., A Mater. Sci. Process. 122(2), 75 (2016).
[Crossref]

N. Zhao, Y. Wang, J. Li, C. Liu, J. Peng, H. Li, N. Dai, L. Yang, and J. Li, “Investigation of cerium influence on photo-darkening and photo-bleaching in Yb-doped fibers,” Appl. Phys., A Mater. Sci. Process. 122(2), 75 (2016).
[Crossref]

Y. Sheng, L. Yang, H. Luan, Z. Liu, Y. Yu, J. Li, and N. Dai, “Improvement of radiation resistence by introducing CeO2 in Yb-doped silicate glasses,” J. Nucl. Mater. 427(1-3), 58–61 (2012).
[Crossref]

Liem, A.

Limpert, J.

Liu, C.

N. Zhao, Y. Wang, J. Li, C. Liu, J. Peng, H. Li, N. Dai, L. Yang, and J. Li, “Investigation of cerium influence on photo-darkening and photo-bleaching in Yb-doped fibers,” Appl. Phys., A Mater. Sci. Process. 122(2), 75 (2016).
[Crossref]

Liu, Y.-S.

Liu, Z.

Y. Sheng, L. Yang, H. Luan, Z. Liu, Y. Yu, J. Li, and N. Dai, “Improvement of radiation resistence by introducing CeO2 in Yb-doped silicate glasses,” J. Nucl. Mater. 427(1-3), 58–61 (2012).
[Crossref]

Luan, H.

Y. Sheng, L. Yang, H. Luan, Z. Liu, Y. Yu, J. Li, and N. Dai, “Improvement of radiation resistence by introducing CeO2 in Yb-doped silicate glasses,” J. Nucl. Mater. 427(1-3), 58–61 (2012).
[Crossref]

Lumeau, J.

M.-L. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

Mattsson, K.

M. Chiesa, K. Mattsson, St. Taccheo, T. Robin, L. Lablonde, D. Mechin, and D. Milanese, “Defects induced in Yb3+/Ce3+ co-doped aluminosilicate fiber glass preforms under UV and γ-ray irradiation,” J. Non-Cryst. Solids 403, 97–101 (2014).
[Crossref]

Mattsson, K. E.

Mechin, D.

M. Chiesa, K. Mattsson, St. Taccheo, T. Robin, L. Lablonde, D. Mechin, and D. Milanese, “Defects induced in Yb3+/Ce3+ co-doped aluminosilicate fiber glass preforms under UV and γ-ray irradiation,” J. Non-Cryst. Solids 403, 97–101 (2014).
[Crossref]

Méchin, D.

Melkumov, M. A.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnow, I. A. Bufetov, and E. M. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers & Electro-Optics (IEEE, 2007), paper CJ3.

Messaddeq, Y.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, “Clustering of rare earth in glasses, aluminum effect: experiments and modeling,” J. Non-Cryst. Solids 348, 44–50 (2004).
[Crossref]

Milanese, D.

M. Chiesa, K. Mattsson, St. Taccheo, T. Robin, L. Lablonde, D. Mechin, and D. Milanese, “Defects induced in Yb3+/Ce3+ co-doped aluminosilicate fiber glass preforms under UV and γ-ray irradiation,” J. Non-Cryst. Solids 403, 97–101 (2014).
[Crossref]

Monteil, A.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, “Clustering of rare earth in glasses, aluminum effect: experiments and modeling,” J. Non-Cryst. Solids 348, 44–50 (2004).
[Crossref]

Montiel I Ponsoda, J. J.

Mörl, K.

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and Technologies for Microstructured High Power Laser Fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

Nolte, S.

Norin, L.

Obriot, J.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, “Clustering of rare earth in glasses, aluminum effect: experiments and modeling,” J. Non-Cryst. Solids 348, 44–50 (2004).
[Crossref]

Ollier, N.

Otto, H.-J.

Payne, D. N.

Peng, J.

N. Zhao, Y. Wang, J. Li, C. Liu, J. Peng, H. Li, N. Dai, L. Yang, and J. Li, “Investigation of cerium influence on photo-darkening and photo-bleaching in Yb-doped fibers,” Appl. Phys., A Mater. Sci. Process. 122(2), 75 (2016).
[Crossref]

Peschel, T.

Qiu, S. R.

Reekie, L.

Ribeiro, S. J. L.

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, “Clustering of rare earth in glasses, aluminum effect: experiments and modeling,” J. Non-Cryst. Solids 348, 44–50 (2004).
[Crossref]

Robin, T.

M. Chiesa, K. Mattsson, St. Taccheo, T. Robin, L. Lablonde, D. Mechin, and D. Milanese, “Defects induced in Yb3+/Ce3+ co-doped aluminosilicate fiber glass preforms under UV and γ-ray irradiation,” J. Non-Cryst. Solids 403, 97–101 (2014).
[Crossref]

H. Gebavi, S. Taccheo, L. Lablonde, B. Cadier, T. Robin, D. Méchin, and D. Tregoat, “Mitigation of photodarkening phenomenon in fiber lasers by 633 nm light exposure,” Opt. Lett. 38(2), 196–198 (2013).
[Crossref] [PubMed]

Röpke, U.

Rothhardt, M.

M. Leich, J. Fiebrandt, A. Schwuchow, S. Jetschke, S. Unger, M. Jäger, M. Rothhardt, and H. Bartelt, “Length distributed measurement of temperature effects in Yb-doped fibers during pumping,” Opt. Eng. 53(6), 066101 (2014).
[Crossref]

Russell, P. St. J.

Schaffers, K. I.

Scheffel, A.

S. Unger, A. Schwuchow, S. Jetschke, S. Grimm, A. Scheffel, and J. Kirchhof, “Optical properties of cerium-codoped high-power laser fibers,” Proc. SPIE 8621, 862116 (2013).
[Crossref]

Schötz, G.

Schreiber, T.

Schuster, K.

K. Schuster, S. Grimm, A. Kalide, J. Dellith, M. Leich, A. Schwuchow, A. Langner, G. Schötz, and H. Bartelt, “Evolution of fluorine doping following the REPUSIL process for the adjustment of optical properties of silica materials,” Opt. Mater. Express 5(4), 887–897 (2015).
[Crossref]

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and Technologies for Microstructured High Power Laser Fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

Schwuchow, A.

K. Schuster, S. Grimm, A. Kalide, J. Dellith, M. Leich, A. Schwuchow, A. Langner, G. Schötz, and H. Bartelt, “Evolution of fluorine doping following the REPUSIL process for the adjustment of optical properties of silica materials,” Opt. Mater. Express 5(4), 887–897 (2015).
[Crossref]

S. Jetschke, A. Schwuchow, and S. Unger, “Transient absorption in Yb fibers opens a path to photodarkening,” Laser Phys. Lett. 11(8), 085101 (2014).
[Crossref]

M. Leich, J. Fiebrandt, A. Schwuchow, S. Jetschke, S. Unger, M. Jäger, M. Rothhardt, and H. Bartelt, “Length distributed measurement of temperature effects in Yb-doped fibers during pumping,” Opt. Eng. 53(6), 066101 (2014).
[Crossref]

S. Unger, A. Schwuchow, S. Jetschke, S. Grimm, A. Scheffel, and J. Kirchhof, “Optical properties of cerium-codoped high-power laser fibers,” Proc. SPIE 8621, 862116 (2013).
[Crossref]

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, and H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285(21-22), 4387–4390 (2012).
[Crossref]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

S. Unger, A. Schwuchow, J. Dellith, and J. Kirchhof, “Codoped materials for high power lasers: diffusion behaviour and optical properties,” Proc. SPIE 6469, 646913 (2007).
[Crossref]

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and Technologies for Microstructured High Power Laser Fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

Sheng, Y.

Y. Sheng, L. Yang, H. Luan, Z. Liu, Y. Yu, J. Li, and N. Dai, “Improvement of radiation resistence by introducing CeO2 in Yb-doped silicate glasses,” J. Nucl. Mater. 427(1-3), 58–61 (2012).
[Crossref]

Shubin, A. V.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnow, I. A. Bufetov, and E. M. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers & Electro-Optics (IEEE, 2007), paper CJ3.

Smirnow, S. A.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnow, I. A. Bufetov, and E. M. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers & Electro-Optics (IEEE, 2007), paper CJ3.

Söderlund, M. J.

Stroud, J. S.

J. S. Stroud, “Color-center kinetics in cerium-containing glass,” J. Chem. Phys. 43(7), 2442–2450 (1965).
[Crossref]

J. S. Stroud, “Color-centers in a cerium-containing silicate glass,” J. Chem. Phys. 37(2), 836–841 (1962).
[Crossref]

J. S. Stroud, “Photoionization of Ce3+ in Glass,” J. Chem. Phys. 35(3), 844–851 (1961).
[Crossref]

Stutzki, F.

Such, M.

Suratwala, T. I.

Taccheo, S.

Taccheo, St.

M. Chiesa, K. Mattsson, St. Taccheo, T. Robin, L. Lablonde, D. Mechin, and D. Milanese, “Defects induced in Yb3+/Ce3+ co-doped aluminosilicate fiber glass preforms under UV and γ-ray irradiation,” J. Non-Cryst. Solids 403, 97–101 (2014).
[Crossref]

Tammela, S. K. T.

Tanigawaa, S.

T. Arai, K. Ichiia, S. Tanigawaa, and M. Fujimakia, “Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses,” Proc. SPIE 7914, 79140K (2011).
[Crossref]

Tregoat, D.

Tünnermann, A.

Unger, S.

M. Leich, J. Fiebrandt, A. Schwuchow, S. Jetschke, S. Unger, M. Jäger, M. Rothhardt, and H. Bartelt, “Length distributed measurement of temperature effects in Yb-doped fibers during pumping,” Opt. Eng. 53(6), 066101 (2014).
[Crossref]

S. Jetschke, A. Schwuchow, and S. Unger, “Transient absorption in Yb fibers opens a path to photodarkening,” Laser Phys. Lett. 11(8), 085101 (2014).
[Crossref]

S. Unger, A. Schwuchow, S. Jetschke, S. Grimm, A. Scheffel, and J. Kirchhof, “Optical properties of cerium-codoped high-power laser fibers,” Proc. SPIE 8621, 862116 (2013).
[Crossref]

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, and H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285(21-22), 4387–4390 (2012).
[Crossref]

S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt. 51(32), 7758–7764 (2012).
[Crossref] [PubMed]

M. Leich, S. Jetschke, S. Unger, and J. Kirchhof, “Temperature influence on the photodarkening kinetics in Yb-doped silica fibers,” J. Opt. Soc. Am. B 28(1), 65–68 (2011).
[Crossref]

S. Jetschke, U. Röpke, S. Unger, and J. Kirchhof, “Characterization of photodarkening processes in Yb doped fibers,” Proc. SPIE 7195, 71952B (2009).
[Crossref]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
[Crossref] [PubMed]

S. Unger, A. Schwuchow, J. Dellith, and J. Kirchhof, “Codoped materials for high power lasers: diffusion behaviour and optical properties,” Proc. SPIE 6469, 646913 (2007).
[Crossref]

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and Technologies for Microstructured High Power Laser Fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

Vezin, H.

Wang, Y.

N. Zhao, Y. Wang, J. Li, C. Liu, J. Peng, H. Li, N. Dai, L. Yang, and J. Li, “Investigation of cerium influence on photo-darkening and photo-bleaching in Yb-doped fibers,” Appl. Phys., A Mater. Sci. Process. 122(2), 75 (2016).
[Crossref]

Yang, L.

N. Zhao, Y. Wang, J. Li, C. Liu, J. Peng, H. Li, N. Dai, L. Yang, and J. Li, “Investigation of cerium influence on photo-darkening and photo-bleaching in Yb-doped fibers,” Appl. Phys., A Mater. Sci. Process. 122(2), 75 (2016).
[Crossref]

Y. Sheng, L. Yang, H. Luan, Z. Liu, Y. Yu, J. Li, and N. Dai, “Improvement of radiation resistence by introducing CeO2 in Yb-doped silicate glasses,” J. Nucl. Mater. 427(1-3), 58–61 (2012).
[Crossref]

Yashkov, M. V.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnow, I. A. Bufetov, and E. M. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers & Electro-Optics (IEEE, 2007), paper CJ3.

Yu, Y.

Y. Sheng, L. Yang, H. Luan, Z. Liu, Y. Yu, J. Li, and N. Dai, “Improvement of radiation resistence by introducing CeO2 in Yb-doped silicate glasses,” J. Nucl. Mater. 427(1-3), 58–61 (2012).
[Crossref]

Zellmer, H.

Zhao, N.

N. Zhao, Y. Wang, J. Li, C. Liu, J. Peng, H. Li, N. Dai, L. Yang, and J. Li, “Investigation of cerium influence on photo-darkening and photo-bleaching in Yb-doped fibers,” Appl. Phys., A Mater. Sci. Process. 122(2), 75 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys., A Mater. Sci. Process. (1)

N. Zhao, Y. Wang, J. Li, C. Liu, J. Peng, H. Li, N. Dai, L. Yang, and J. Li, “Investigation of cerium influence on photo-darkening and photo-bleaching in Yb-doped fibers,” Appl. Phys., A Mater. Sci. Process. 122(2), 75 (2016).
[Crossref]

J. Chem. Phys. (3)

J. S. Stroud, “Photoionization of Ce3+ in Glass,” J. Chem. Phys. 35(3), 844–851 (1961).
[Crossref]

J. S. Stroud, “Color-centers in a cerium-containing silicate glass,” J. Chem. Phys. 37(2), 836–841 (1962).
[Crossref]

J. S. Stroud, “Color-center kinetics in cerium-containing glass,” J. Chem. Phys. 43(7), 2442–2450 (1965).
[Crossref]

J. Non-Cryst. Solids (3)

M.-L. Brandily-Anne, J. Lumeau, L. Glebova, and L. B. Glebov, “Absorption spectra of cerium in multicomponent silicate glasses,” J. Non-Cryst. Solids 356(44-49), 2337–2343 (2010).
[Crossref]

A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, “Clustering of rare earth in glasses, aluminum effect: experiments and modeling,” J. Non-Cryst. Solids 348, 44–50 (2004).
[Crossref]

M. Chiesa, K. Mattsson, St. Taccheo, T. Robin, L. Lablonde, D. Mechin, and D. Milanese, “Defects induced in Yb3+/Ce3+ co-doped aluminosilicate fiber glass preforms under UV and γ-ray irradiation,” J. Non-Cryst. Solids 403, 97–101 (2014).
[Crossref]

J. Nucl. Mater. (1)

Y. Sheng, L. Yang, H. Luan, Z. Liu, Y. Yu, J. Li, and N. Dai, “Improvement of radiation resistence by introducing CeO2 in Yb-doped silicate glasses,” J. Nucl. Mater. 427(1-3), 58–61 (2012).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

S. Jetschke, A. Schwuchow, and S. Unger, “Transient absorption in Yb fibers opens a path to photodarkening,” Laser Phys. Lett. 11(8), 085101 (2014).
[Crossref]

Opt. Commun. (1)

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, and H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285(21-22), 4387–4390 (2012).
[Crossref]

Opt. Eng. (1)

M. Leich, J. Fiebrandt, A. Schwuchow, S. Jetschke, S. Unger, M. Jäger, M. Rothhardt, and H. Bartelt, “Length distributed measurement of temperature effects in Yb-doped fibers during pumping,” Opt. Eng. 53(6), 066101 (2014).
[Crossref]

Opt. Express (10)

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
[Crossref] [PubMed]

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
[Crossref] [PubMed]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
[Crossref] [PubMed]

S. G. Demos, P. R. Ehrmann, S. R. Qiu, K. I. Schaffers, and T. I. Suratwala, “Dynamics of defects in Ce³⁺ doped silica affecting its performance as protective filter in ultraviolet high-power lasers,” Opt. Express 22(23), 28798–28809 (2014).
[Crossref] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[Crossref] [PubMed]

K. E. Mattsson, “Photo darkening of rare earth doped silica,” Opt. Express 19(21), 19797–19812 (2011).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
[Crossref] [PubMed]

T. Deschamps, H. Vezin, C. Gonnet, and N. Ollier, “Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber,” Opt. Express 21(7), 8382–8392 (2013).
[Crossref] [PubMed]

M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008).
[Crossref] [PubMed]

Y.-S. Liu, T. C. Galvin, T. Hawkins, J. Ballato, L. Dong, P. R. Foy, P. D. Dragic, and J. G. Eden, “Linkage of oxygen deficiency defects and rare earth concentrations in silica glass optical fiber probed by ultraviolet absorption and laser excitation spectroscopy,” Opt. Express 20(13), 14494–14507 (2012).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. (1)

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1–2), 93–103 (2001).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (1)

J. Lægsgaard, “Dissolution of rare-earth clusters in SiO2 by Al codoping: A microscopic model,” Phys. Rev. B 65(17), 174114 (2002).
[Crossref]

Proc. SPIE (5)

S. Jetschke, U. Röpke, S. Unger, and J. Kirchhof, “Characterization of photodarkening processes in Yb doped fibers,” Proc. SPIE 7195, 71952B (2009).
[Crossref]

J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, and A. Schwuchow, “Materials and Technologies for Microstructured High Power Laser Fibers,” Proc. SPIE 5951, 595107 (2005).
[Crossref]

T. Arai, K. Ichiia, S. Tanigawaa, and M. Fujimakia, “Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses,” Proc. SPIE 7914, 79140K (2011).
[Crossref]

S. Unger, A. Schwuchow, S. Jetschke, S. Grimm, A. Scheffel, and J. Kirchhof, “Optical properties of cerium-codoped high-power laser fibers,” Proc. SPIE 8621, 862116 (2013).
[Crossref]

S. Unger, A. Schwuchow, J. Dellith, and J. Kirchhof, “Codoped materials for high power lasers: diffusion behaviour and optical properties,” Proc. SPIE 6469, 646913 (2007).
[Crossref]

Other (3)

G. Chen, Y. B. Wang, L. Xie, Y. B. Xing, H. Q. Li, Z. W. Jiang, J. G. Peng, N. L. Dai, and J. Y. Li, “Self-bleaching Phenomenon Observed in the Ce/Yb Co-doped Silica Fiber,” in Conference on Lasers and Electro-Optics (CLEO) 2013, OSA Technical Digest Series (Optical Society of America, 2013), paper CM41.5.
[Crossref]

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnow, I. A. Bufetov, and E. M. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers & Electro-Optics (IEEE, 2007), paper CJ3.

www.rp-photonics.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Typical PD curve of an Yb/Ce/Al fiber with additional loss observed only during pumping (about 10 dB/m) and partial self-bleaching of PD color centers after pump switched-off, (a) complete measurement, (b) time axis stretched around start of pump and (c) around end of pump.
Fig. 2
Fig. 2 (a) Excess loss in fibers with ion ratio Ce/Yb ≈1.7 measured during and after core pumping with 976 nm, 200 mW. (b) Loss jump at pump-on varying with probe wavelength, measured for core pumping with 976 nm, 200 mW and (c) varying with density of excited Yb ions, measured for cladding pumping with 915 nm (probe wavelength 633 nm).
Fig. 3
Fig. 3 (a) PD kinetics of the Yb fibers of series A measured at 633 nm during (and after) cladding pumping with 915 nm, (b) loss in PD equilibrium (without transient loss) versus Ce concentration for the series A and B (including fibers #C4 and #C5). The density of excited Yb ions was adjusted to Yb* = 1.1 1026 m−3 in all these measurements.
Fig. 4
Fig. 4 Typical absorption spectra in the UV range measured on Yb/Al- and Yb/Ce/Al-doped preform slices before (or after) and during pumping.
Fig. 5
Fig. 5 Transient loss spectra during pumping with 902 nm (a) measured on preform slices of series B with fixed Yb concentration (Yb inversion 0.22), inset: depression of transient loss at 300 nm vs. Ce concentration, (b) measured on preform sample #B4 for different pump powers, inset: depression of transient loss at 300 nm vs. Yb inversion (maximal 0.28).
Fig. 6
Fig. 6 Change of fiber temperature during core pumping with 976 nm (450 mW) measured on the fibers of series B: (a) versus time of pumping, (b) versus temporally increasing PD loss α(633 nm), thin solid lines are linear fits to the experimental results, black dashed line was calculated by [31] from PD color center absorption α(976nm) with a conversion factor α(633nm)/α(976nm) = 16.
Fig. 7
Fig. 7 Maximum change of fiber temperature during pumping with 976 nm (450 mW) versus Ce concentration for the fibers of series A, B, C and D (different concentrations of Yb and co-dopants, see Table 1). Full symbols: measurements, open symbols: values estimated by [31] from PD loss at pump wavelength.
Fig. 8
Fig. 8 Conception of PD inhibition in Yb/Al fibers by Ce3+ co-doping: the course of processes is to be read from left to right (* means the excitation of the Yb3+ ion by NIR-pumping, PD-CC+ terms a hole-related PD color center).

Tables (1)

Tables Icon

Table 1 Core composition of the samples investigated in this paper. The samples of series A were additionally co-doped with 0.5 mol% P2O5 to improve the solubility of rare earth ions and to reduce photodarkening.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α= α e + α h exp(VC e 3+ )
P abs /L= P 0 /L(1 10 αL/10 )

Metrics