Abstract

Anti-resonant hollow-core fibers are optical fiber waveguides which exhibit very low dispersion, high damage threshold and ultra-low nonlinear response. However, they typically deliver the light in several spatial modes, whereas their application usually requires that they support a single spatial mode. We report the principles, fabrication, demonstration and characterization of anti-resonant hollow-core fibres with strong differential modal attenuations and low overall attenuations. These fibers perform as single-mode and are eminently suitable for delivery of powerful ultrashort optical pulses in machining, cutting, welding and multiphoton microscopy applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Single-mode, low loss hollow-core anti-resonant fiber designs

Md. Selim Habib, J. E. Antonio-Lopez, Christos Markos, Axel Schülzgen, and Rodrigo Amezcua-Correa
Opt. Express 27(4) 3824-3836 (2019)

Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements

Md. Selim Habib, Ole Bang, and Morten Bache
Opt. Express 24(8) 8429-8436 (2016)

Measurement of resonant bend loss in anti-resonant hollow core optical fiber

Richard M. Carter, Fei Yu, William J. Wadsworth, Jonathan D. Shephard, Tim Birks, Jonathan C. Knight, and Duncan P. Hand
Opt. Express 25(17) 20612-20621 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  2. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  3. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
    [Crossref] [PubMed]
  4. F. Yu and J. Knight, “Negative curvature hollow core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4400610 (2016).
    [Crossref]
  5. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  6. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express 16(8), 5642–5648 (2008).
    [Crossref] [PubMed]
  7. P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
    [Crossref] [PubMed]
  8. P. Jaworski, F. Yu, R. M. Carter, J. C. Knight, J. D. Shephard, and D. P. Hand, “High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining,” Opt. Express 23(7), 8498–8506 (2015).
    [Crossref] [PubMed]
  9. J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
    [Crossref]
  10. M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, T. T. Alkeskjold, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
    [Crossref] [PubMed]
  11. K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14(16), 7342–7352 (2006).
    [Crossref] [PubMed]
  12. J. M. Fini, “Aircore microstructure fibers with suppressed higher-order modes,” Opt. Express 14(23), 11354–11361 (2006).
    [Crossref] [PubMed]
  13. J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
    [Crossref] [PubMed]
  14. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
    [Crossref] [PubMed]
  15. C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23(12), 15824–15832 (2015).
    [Crossref] [PubMed]
  16. M. C. Günendi, P. Uebel, M. H. Frosz, and P. S. J. Russell, “Broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” arXiv. 1448(2011), 11153–11158 (2015).
  17. P. Uebel, M. Günendi, M. H. Frosz, G. Ahmed, N. Edavalath, J.-M. Ménard, and P. S. Russell, “A broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW6C.2.
  18. J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.3.
    [Crossref]
  19. E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  20. C. Harvey, F. Yu, J. C. Knight, W. Wadsworth, and P. Almeida, “Reducing nonlinear limitations of Ytterbium mode-locked fibre lasers with hollow-core negative curvature fibre,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper STh1L.5.
  21. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
    [Crossref] [PubMed]
  22. J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Opt. Express 20(18), 20494–20505 (2012).
    [Crossref] [PubMed]
  23. http://doi.org/10.15125/BATH-00189

2016 (2)

2015 (4)

C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23(12), 15824–15832 (2015).
[Crossref] [PubMed]

M. C. Günendi, P. Uebel, M. H. Frosz, and P. S. J. Russell, “Broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” arXiv. 1448(2011), 11153–11158 (2015).

P. Jaworski, F. Yu, R. M. Carter, J. C. Knight, J. D. Shephard, and D. P. Hand, “High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining,” Opt. Express 23(7), 8498–8506 (2015).
[Crossref] [PubMed]

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (2)

2011 (1)

2010 (1)

2008 (2)

2006 (2)

2002 (1)

1964 (1)

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Abeeluck, A. K.

Alkeskjold, T. T.

Argyros, A.

Bang, O.

Belardi, W.

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
[Crossref] [PubMed]

Biriukov, A. S.

Carter, R. M.

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

P. Jaworski, F. Yu, R. M. Carter, J. C. Knight, J. D. Shephard, and D. P. Hand, “High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining,” Opt. Express 23(7), 8498–8506 (2015).
[Crossref] [PubMed]

Chenard, F.

Desantolo, A.

Dianov, E. M.

DiMarcello, F.

DiMarcello, F. V.

Docherty, A.

Dulashko, Y.

Eggleton, B. J.

Fini, J. M.

Florous, N. J.

Frosz, M. H.

M. C. Günendi, P. Uebel, M. H. Frosz, and P. S. J. Russell, “Broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” arXiv. 1448(2011), 11153–11158 (2015).

Ghalmi, S.

Günendi, M. C.

M. C. Günendi, P. Uebel, M. H. Frosz, and P. S. J. Russell, “Broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” arXiv. 1448(2011), 11153–11158 (2015).

Hand, D. P.

Hassan, M.

Headley, C.

Hu, J.

Jakobsen, C.

Jaworski, P.

Knight, J.

F. Yu and J. Knight, “Negative curvature hollow core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4400610 (2016).
[Crossref]

Knight, J. C.

Koshiba, M.

Kosolapov, A. F.

Kuis, R. A.

Lægsgaard, J.

Leon-Saval, S. G.

Litchinitser, N. M.

Lyngsø, J. K.

Maier, R. R. J.

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
[Crossref] [PubMed]

Mangan, B.

Marcatili, E.

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Meng, L.

Menyuk, C. R.

Michieletto, M.

Monberg, E.

Monberg, E. M.

Murao, T.

Nicholson, J. W.

Ortiz, R.

Pla, J.

Plotnichenko, V. G.

Pryamikov, A. D.

Ramachandran, S.

Russell, P. S. J.

M. C. Günendi, P. Uebel, M. H. Frosz, and P. S. J. Russell, “Broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” arXiv. 1448(2011), 11153–11158 (2015).

Saitoh, K.

Schmeltzer, R.

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Semjonov, S. L.

Setti, V.

Shephard, J. D.

Uebel, P.

M. C. Günendi, P. Uebel, M. H. Frosz, and P. S. J. Russell, “Broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” arXiv. 1448(2011), 11153–11158 (2015).

Urich, A.

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

Vincetti, L.

Wadsworth, W. J.

Wei, C.

Windeler, R. S.

Yablon, A. D.

Yu, F.

arXiv. (1)

M. C. Günendi, P. Uebel, M. H. Frosz, and P. S. J. Russell, “Broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” arXiv. 1448(2011), 11153–11158 (2015).

Bell Syst. Tech. J. (1)

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Front. Phys. (1)

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Yu and J. Knight, “Negative curvature hollow core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4400610 (2016).
[Crossref]

Opt. Express (13)

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, T. T. Alkeskjold, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
[Crossref] [PubMed]

K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14(16), 7342–7352 (2006).
[Crossref] [PubMed]

J. M. Fini, “Aircore microstructure fibers with suppressed higher-order modes,” Opt. Express 14(23), 11354–11361 (2006).
[Crossref] [PubMed]

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21(5), 6233–6242 (2013).
[Crossref] [PubMed]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref] [PubMed]

C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23(12), 15824–15832 (2015).
[Crossref] [PubMed]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[Crossref] [PubMed]

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Opt. Express 20(18), 20494–20505 (2012).
[Crossref] [PubMed]

A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express 16(8), 5642–5648 (2008).
[Crossref] [PubMed]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
[Crossref] [PubMed]

P. Jaworski, F. Yu, R. M. Carter, J. C. Knight, J. D. Shephard, and D. P. Hand, “High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining,” Opt. Express 23(7), 8498–8506 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (4)

P. Uebel, M. Günendi, M. H. Frosz, G. Ahmed, N. Edavalath, J.-M. Ménard, and P. S. Russell, “A broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW6C.2.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.3.
[Crossref]

http://doi.org/10.15125/BATH-00189

C. Harvey, F. Yu, J. C. Knight, W. Wadsworth, and P. Almeida, “Reducing nonlinear limitations of Ytterbium mode-locked fibre lasers with hollow-core negative curvature fibre,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper STh1L.5.

Supplementary Material (5)

NameDescription
» Visualization 1: MP4 (575 KB)      video relating to fig.2(b)
» Visualization 2: MP4 (165 KB)      video relating to fig.2(c-1)
» Visualization 3: MP4 (112 KB)      video relating to fig.2(c-2)
» Visualization 4: MP4 (113 KB)      video referred in the manuscript above fig.2
» Visualization 5: MP4 (677 KB)      video referred in the manuscript above fig.2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scanning electron microscope images of AR-HCFs designed and fabricated with low loss transmission bands centred at 1 µm. Left: AR-HCF of 8 capillary cladding design. The inscribed diameter of core region is about 36 µm. Right: AR-HCF of new 7 capillary cladding design. Fitting an ellipse to the core region, we find long and short axes of 28 µm and 25.5 µm.
Fig. 2
Fig. 2 (a) Measured attenuations of AR-HCFs by cut-back measurement. 8 capillary cladding AR-HCF was cut from 57.5 m to 20 m; 7 capillary cladding AR-HCF was cut from 45 m to 11.8 m. (b) Near field images of mode patterns at the output end of 11.5 m 8 capillary cladding AR-HCF under 1D input scan. (see Visualization 1). (c-1) and (c-2) Near field images of modes at the output end of 11.3 m and 1.02 m 7 capillary cladding AR-HCF under 1D scan. (see Visualization 2 and Visualization 3 respectively). The step of spatial scan is 5 µm. Due to the core size difference, fewer images are shown in (c-1) and (c-2).
Fig. 3
Fig. 3 Scheme of S2 experiment. P1 and P2 are polarizers. L1, L2 and L3 are microscopic lenses. The near field image of output of test fiber is to project at imaging plane I. SMF is a single-mode fiber mounted on an X-Y translation stage rig and connected with OSA. OSA records spectra while SMF 2D scans at plane I under LABVIEW control. M is a flip mirror and a CCD camera is used to monitor the near field image at plane I.
Fig. 4
Fig. 4 S2 measurement of AR-HCFs at the spectral window from 1078 nm to 1082 nm. Insets are the reconstructed mode profiles at different group delays. Left: 11.5m long 8-capillary cladding AR-HCF in the optimized coupling condition. The first peak at 1.352 ps/m (labelled “(b)”) has the LP11 mode profile as shown on top. Right: Blue curve shows the measurement of 11.3m of 7-capillary cladding AR-HCF in the optimized coupling condition; Orange curve shows 8.8 m 7-capillary cladding AR-HCF in the offset coupling condition. No peak caused by the LP11 mode is found in the optimized or offset coupling conditions. In the 8.8 m length, the existence of LP21 mode is observed at 5.85 ps/m (labelled “(d)”).
Fig. 5
Fig. 5 Measured attenuation of single-mode AR-HCFs. Inset (1) to (4) are optical microscope images of AR-HCFs corresponding to the labelled attenuation curves. The attenuation curve of 7 capillary cladding AR-HCF in Fig. 2(b) is replotted as a reference. The minimum attenuations are 0.075 dB/m at 541 nm, 0.05 dB/m at 633 nm, 0.045 dB/m at 851 nm, 0.039 dB/m at 922 nm and 0.022 dB/m at 1068 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n eff =1 1 2 ( V νm λ 2πr ) 2
D core D clad ~ 3.832 2.405 1.59

Metrics