Abstract

Sound-field imaging, the visualization of spatial and temporal distribution of acoustical properties such as sound pressure, is useful for understanding acoustical phenomena. This study investigated the use of parallel phase-shifting interferometry (PPSI) with a high-speed polarization camera for imaging a sound field, particularly high-speed imaging of propagating sound waves. The experimental results showed that the instantaneous sound field, which was generated by ultrasonic transducers driven by a pure tone of 40 kHz, was quantitatively imaged. Hence, PPSI can be used in acoustical applications requiring spatial information of sound pressure.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous imaging of flow and sound using high-speed parallel phase-shifting interferometry

Kenji Ishikawa, Risako Tanigawa, Kohei Yatabe, Yasuhiro Oikawa, Takashi Onuma, and Hayato Niwa
Opt. Lett. 43(5) 991-994 (2018)

Time-directional filtering of wrapped phase for observing transient phenomena with parallel phase-shifting interferometry

Kohei Yatabe, Risako Tanigawa, Kenji Ishikawa, and Yasuhiro Oikawa
Opt. Express 26(11) 13705-13720 (2018)

Sound in flight: measurement of sound fields by use of TV holography

Ole J. Løkberg
Appl. Opt. 33(13) 2574-2584 (1994)

References

  • View by:
  • |
  • |
  • |

  1. K. Nakamura, M. Hirayama, and S. Ueha, “Measurements of air-borne ultrasound by detecting the modulation in optical refractive index of air,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2002), pp. 609–612.
    [Crossref]
  2. A. R. Harland, J. N. Petzing, and J. R. Tyrer, “Non-invasive measurements of underwater pressure fields using laser Doppler velocimetry,” J. Sound Vibrat. 252(1), 169–177 (2002).
    [Crossref]
  3. A. R. Harland, J. N. Petzing, J. R. Tyrer, C. J. Bickley, S. P. Robinson, and R. C. Preston, “Application and assessment of laser Doppler velocimetry for underwater acoustic measurements,” J. Sound Vibrat. 265(3), 627–645 (2003).
    [Crossref]
  4. L. Zipser, H. Franke, E. Olsson, N. E. Molin, and M. Sjödahl, “Reconstructing two-dimensional acoustic object fields by use of digital phase conjugation of scanning laser vibrometry recordings,” Appl. Opt. 42(29), 5831–5838 (2003).
    [Crossref] [PubMed]
  5. L. Zipser and H. Franke, “Laser-scanning vibrometry for ultrasonic transducer development,” Sens. Actuators A Phys. 110(1–3), 264–268 (2004).
    [Crossref]
  6. A. R. Harland, J. N. Petzing, and J. R. Tyrer, “Nonperturbing measurements of spatially distributed underwater acoustic fields using a scanning laser Doppler vibrometer,” J. Acoust. Soc. Am. 115(1), 187–195 (2004).
    [Crossref] [PubMed]
  7. S. Frank and J. Schell, “Sound field simulation and visualisation based on laser Doppler vibrometer measurements,” in Forum Acousticum (2005), pp. 91–97.
  8. R. Malkin, T. Todd, and D. Robert, “A simple method for quantitative imaging of 2D acoustic fields using refracto-vibrometry,” J. Sound Vibrat. 333(19), 4473–4482 (2014).
    [Crossref]
  9. K. Yatabe and Y. Oikawa, “PDE-based interpolation method for optically visualized sound field,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2014), pp. 4738–4742.
    [Crossref]
  10. K. Yatabe and Y. Oikawa, “Optically visualized sound field reconstruction based on sparse selection of point sound sources,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2015), pp. 504–508.
    [Crossref]
  11. Y. Oikawa, Y. Ikeda, M. Goto, T. Takizawa, and Y. Yamasaki, “Sound field measurements based on reconstruction from laser projections,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2005), pp. 661–664.
  12. E. Olsson and F. Forsberg, “Three-dimensional selective imaging of sound sources,” Opt. Eng. 48(3), 035801 (2009).
    [Crossref]
  13. Y. Oikawa, T. Hasegawa, Y. Ouchi, Y. Yamasaki, and Y. Ikeda, “Visualization of sound field and sound source vibration using laser measurement method,” in 20th International Congress on Acoustics, M. Burgess, ed. (Australian Acoustical Society, 2010), pp. 1–5.
  14. A. Torras-Rosell, S. Barrera-Figueroa, and F. Jacobsen, “Sound field reconstruction using acousto-optic tomography,” J. Acoust. Soc. Am. 131(5), 3786–3793 (2012).
    [Crossref] [PubMed]
  15. T. Sakoda and Y. Sonoda, “Visualization of sound field with uniform phase distribution using laser beam microphone coupled with computerized tomography method,” Acoust. Sci. Technol. 29(4), 295–299 (2008).
    [Crossref]
  16. Y. Sonoda and Y. Nakazono, “Development of optophone with no diaphragm and application to sound measurement in jet flow,” Adv. Acoust. Vib. 2012, 1–17 (2012).
    [Crossref]
  17. K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22(24), 30346–30356 (2014).
    [Crossref] [PubMed]
  18. R. B. Barnes and C. J. Burton, “Visual methods for studying ultrasonic phenomena,” J. Appl. Phys. 20(3), 286–294 (1949).
    [Crossref]
  19. J. A. Bucaro, “Visualization of ultrasonic waves in air,” J. Acoust. Soc. Am. 62(6), 1506–1507 (1977).
    [Crossref]
  20. M. J. Hargather, G. S. Settles, and M. J. Madalis, “Schlieren imaging of loud sounds and weak shock waves in air near the limit of visibility,” Shock Waves 20(1), 9–17 (2010).
    [Crossref]
  21. N. Chitanont, K. Yaginuma, K. Yatabe, and Y. Oikawa, “Visualization of sound field by means of Schlieren method with spatio-temporal filtering,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2015), pp. 509–513.
    [Crossref]
  22. O. J. Løkberg, “Sound in flight: measurement of sound fields by use of TV holography,” Appl. Opt. 33(13), 2574–2584 (1994).
    [Crossref] [PubMed]
  23. O. J. Lokberg, “Recording of sound emission and propagation in air using TV holography,” J. Acoust. Soc. Am. 96(4), 2244–2250 (1994).
    [Crossref]
  24. K. Mizutani, T. Ezure, K. Nagai, and M. Yoshioka, “Optical measurement of sound fields information using Mach-Zehnder interferometer,” Jpn. J. Appl. Phys. 40(Part 1, No. 5B), 3617–3620 (2001).
    [Crossref]
  25. O. Matoba, H. Inokuchi, K. Nitta, and Y. Awatsuji, “Optical voice recorder by off-axis digital holography,” Opt. Lett. 39(22), 6549–6552 (2014).
    [Crossref] [PubMed]
  26. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
    [Crossref]
  27. J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
    [Crossref]
  28. J. Millerd, N. Brock, J. Hayes, M. North-Morris, B. Kimbrough, and J. Wyant, “Pixelated phase-mask dynamic interferometers,” in Fringe 2005 (Springer-Verlag, 2005), pp. 640–647.
  29. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44(32), 6861–6868 (2005).
    [Crossref] [PubMed]
  30. T. Onuma and Y. Otani, “A development of two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz,” Opt. Commun. 315, 69–73 (2014).
    [Crossref]
  31. T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36(21), 4131–4133 (2011).
    [Crossref] [PubMed]
  32. See, for example, J. E. Greivenkamp and J. H. Bruning, See, for example, J. E. Greivenkamp, and J. H. Bruning, “Phase-shifting interferometry,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1992), pp. 501–598.
  33. K. Ishikawa, K. Yatabe, Y. Ikeda, and Y. Oikawa, “Numerical analysis of acousto-optic effect caused by audible sound based on geometrical optics,” in 12th Western Pacific Acoustics Conference, K. M. Lim, ed. (Research publishing, 2015), pp. 165–169.
  34. R. Adler, “Interaction between light and sound,” IEEE Spectr. 4(5), 42–54 (1967).
    [Crossref]
  35. B. E. A. Saleh and M. C. Teich, “Acousto-optics,” in Fundamentals of Photonics (John Wiley & Sons, Inc., 1991).
  36. Bureau International des Poids et Measures, “Definition of the standard atmosphere,” http://www.bipm.org/en/CGPM/db/10/4/ .
  37. P. M. Morse and K. U. Ingard, Theoretical Acoustics (Princeton University, 1986), Ch. 13.
  38. R. Smythe and R. Moore, “Instantaneous Phase Measuring Interferometry,” Opt. Eng. 23(4), 234361 (1984).
    [Crossref]
  39. O. Y. Kwon, “Multichannel phase-shifted interferometer,” Opt. Lett. 9(2), 59–61 (1984).
    [Crossref] [PubMed]
  40. C. L. Koliopoulos, “Simultaneous phase-shift interferometer,” Proc. SPIE 1531, 119–127 (1992).
    [Crossref]
  41. B. A. Horwitz and A. J. MacGovern, “Wavefront sensor employing novel D.C. shearing interferometer,” US patent 4575248 A (1986).
  42. J. L. McLaughlin and B. A. Horwitz, “Real-time snapshot interferometer,” Proc. SPIE 680, 35–43 (1987).
    [Crossref]
  43. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, 1998).
  44. H. Takasaki and Y. Yoshino, “Polarization interferometer,” Appl. Opt. 8(11), 2344–2345 (1969).
    [Crossref] [PubMed]
  45. M. P. Kothiyal and C. Delisle, “Shearing interferometer for phase shifting interferometry with polarization phase shifter,” Appl. Opt. 24(24), 4439–4442 (1985).
    [Crossref] [PubMed]
  46. H. J. Okoomian, “A two-beam polarization technique to measure optical phase,” Appl. Opt. 8(11), 2363–2365 (1969).
    [Crossref] [PubMed]
  47. N. Brock, B. Kimbrough, and J. Millerd, “A pixelated micropolarizer-based camera for instantaneous interferometric measurements,” Proc. SPIE 8160, 81600W (2011).
    [Crossref]
  48. R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
    [Crossref]
  49. E. G. Williams, Fourier Acoustics (Academic, 1999), Ch. 8.

2014 (4)

R. Malkin, T. Todd, and D. Robert, “A simple method for quantitative imaging of 2D acoustic fields using refracto-vibrometry,” J. Sound Vibrat. 333(19), 4473–4482 (2014).
[Crossref]

T. Onuma and Y. Otani, “A development of two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz,” Opt. Commun. 315, 69–73 (2014).
[Crossref]

O. Matoba, H. Inokuchi, K. Nitta, and Y. Awatsuji, “Optical voice recorder by off-axis digital holography,” Opt. Lett. 39(22), 6549–6552 (2014).
[Crossref] [PubMed]

K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22(24), 30346–30356 (2014).
[Crossref] [PubMed]

2012 (2)

A. Torras-Rosell, S. Barrera-Figueroa, and F. Jacobsen, “Sound field reconstruction using acousto-optic tomography,” J. Acoust. Soc. Am. 131(5), 3786–3793 (2012).
[Crossref] [PubMed]

Y. Sonoda and Y. Nakazono, “Development of optophone with no diaphragm and application to sound measurement in jet flow,” Adv. Acoust. Vib. 2012, 1–17 (2012).
[Crossref]

2011 (2)

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36(21), 4131–4133 (2011).
[Crossref] [PubMed]

N. Brock, B. Kimbrough, and J. Millerd, “A pixelated micropolarizer-based camera for instantaneous interferometric measurements,” Proc. SPIE 8160, 81600W (2011).
[Crossref]

2010 (1)

M. J. Hargather, G. S. Settles, and M. J. Madalis, “Schlieren imaging of loud sounds and weak shock waves in air near the limit of visibility,” Shock Waves 20(1), 9–17 (2010).
[Crossref]

2009 (1)

E. Olsson and F. Forsberg, “Three-dimensional selective imaging of sound sources,” Opt. Eng. 48(3), 035801 (2009).
[Crossref]

2008 (1)

T. Sakoda and Y. Sonoda, “Visualization of sound field with uniform phase distribution using laser beam microphone coupled with computerized tomography method,” Acoust. Sci. Technol. 29(4), 295–299 (2008).
[Crossref]

2005 (1)

2004 (4)

L. Zipser and H. Franke, “Laser-scanning vibrometry for ultrasonic transducer development,” Sens. Actuators A Phys. 110(1–3), 264–268 (2004).
[Crossref]

A. R. Harland, J. N. Petzing, and J. R. Tyrer, “Nonperturbing measurements of spatially distributed underwater acoustic fields using a scanning laser Doppler vibrometer,” J. Acoust. Soc. Am. 115(1), 187–195 (2004).
[Crossref] [PubMed]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[Crossref]

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

2003 (2)

A. R. Harland, J. N. Petzing, J. R. Tyrer, C. J. Bickley, S. P. Robinson, and R. C. Preston, “Application and assessment of laser Doppler velocimetry for underwater acoustic measurements,” J. Sound Vibrat. 265(3), 627–645 (2003).
[Crossref]

L. Zipser, H. Franke, E. Olsson, N. E. Molin, and M. Sjödahl, “Reconstructing two-dimensional acoustic object fields by use of digital phase conjugation of scanning laser vibrometry recordings,” Appl. Opt. 42(29), 5831–5838 (2003).
[Crossref] [PubMed]

2002 (1)

A. R. Harland, J. N. Petzing, and J. R. Tyrer, “Non-invasive measurements of underwater pressure fields using laser Doppler velocimetry,” J. Sound Vibrat. 252(1), 169–177 (2002).
[Crossref]

2001 (1)

K. Mizutani, T. Ezure, K. Nagai, and M. Yoshioka, “Optical measurement of sound fields information using Mach-Zehnder interferometer,” Jpn. J. Appl. Phys. 40(Part 1, No. 5B), 3617–3620 (2001).
[Crossref]

1994 (2)

O. J. Lokberg, “Recording of sound emission and propagation in air using TV holography,” J. Acoust. Soc. Am. 96(4), 2244–2250 (1994).
[Crossref]

O. J. Løkberg, “Sound in flight: measurement of sound fields by use of TV holography,” Appl. Opt. 33(13), 2574–2584 (1994).
[Crossref] [PubMed]

1992 (1)

C. L. Koliopoulos, “Simultaneous phase-shift interferometer,” Proc. SPIE 1531, 119–127 (1992).
[Crossref]

1988 (1)

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

1987 (1)

J. L. McLaughlin and B. A. Horwitz, “Real-time snapshot interferometer,” Proc. SPIE 680, 35–43 (1987).
[Crossref]

1985 (1)

1984 (2)

R. Smythe and R. Moore, “Instantaneous Phase Measuring Interferometry,” Opt. Eng. 23(4), 234361 (1984).
[Crossref]

O. Y. Kwon, “Multichannel phase-shifted interferometer,” Opt. Lett. 9(2), 59–61 (1984).
[Crossref] [PubMed]

1977 (1)

J. A. Bucaro, “Visualization of ultrasonic waves in air,” J. Acoust. Soc. Am. 62(6), 1506–1507 (1977).
[Crossref]

1969 (2)

1967 (1)

R. Adler, “Interaction between light and sound,” IEEE Spectr. 4(5), 42–54 (1967).
[Crossref]

1949 (1)

R. B. Barnes and C. J. Burton, “Visual methods for studying ultrasonic phenomena,” J. Appl. Phys. 20(3), 286–294 (1949).
[Crossref]

Adler, R.

R. Adler, “Interaction between light and sound,” IEEE Spectr. 4(5), 42–54 (1967).
[Crossref]

Awatsuji, Y.

Barnes, R. B.

R. B. Barnes and C. J. Burton, “Visual methods for studying ultrasonic phenomena,” J. Appl. Phys. 20(3), 286–294 (1949).
[Crossref]

Barrera-Figueroa, S.

A. Torras-Rosell, S. Barrera-Figueroa, and F. Jacobsen, “Sound field reconstruction using acousto-optic tomography,” J. Acoust. Soc. Am. 131(5), 3786–3793 (2012).
[Crossref] [PubMed]

Bertling, K.

Bickley, C. J.

A. R. Harland, J. N. Petzing, J. R. Tyrer, C. J. Bickley, S. P. Robinson, and R. C. Preston, “Application and assessment of laser Doppler velocimetry for underwater acoustic measurements,” J. Sound Vibrat. 265(3), 627–645 (2003).
[Crossref]

Bosch, T.

Brock, N.

N. Brock, B. Kimbrough, and J. Millerd, “A pixelated micropolarizer-based camera for instantaneous interferometric measurements,” Proc. SPIE 8160, 81600W (2011).
[Crossref]

M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44(32), 6861–6868 (2005).
[Crossref] [PubMed]

Brock, N. J.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Bucaro, J. A.

J. A. Bucaro, “Visualization of ultrasonic waves in air,” J. Acoust. Soc. Am. 62(6), 1506–1507 (1977).
[Crossref]

Burton, C. J.

R. B. Barnes and C. J. Burton, “Visual methods for studying ultrasonic phenomena,” J. Appl. Phys. 20(3), 286–294 (1949).
[Crossref]

Chitanont, N.

N. Chitanont, K. Yaginuma, K. Yatabe, and Y. Oikawa, “Visualization of sound field by means of Schlieren method with spatio-temporal filtering,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2015), pp. 509–513.
[Crossref]

Delisle, C.

Ezure, T.

K. Mizutani, T. Ezure, K. Nagai, and M. Yoshioka, “Optical measurement of sound fields information using Mach-Zehnder interferometer,” Jpn. J. Appl. Phys. 40(Part 1, No. 5B), 3617–3620 (2001).
[Crossref]

Forsberg, F.

E. Olsson and F. Forsberg, “Three-dimensional selective imaging of sound sources,” Opt. Eng. 48(3), 035801 (2009).
[Crossref]

Franke, H.

Goldstein, R. M.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Goto, M.

Y. Oikawa, Y. Ikeda, M. Goto, T. Takizawa, and Y. Yamasaki, “Sound field measurements based on reconstruction from laser projections,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2005), pp. 661–664.

Hargather, M. J.

M. J. Hargather, G. S. Settles, and M. J. Madalis, “Schlieren imaging of loud sounds and weak shock waves in air near the limit of visibility,” Shock Waves 20(1), 9–17 (2010).
[Crossref]

Harland, A. R.

A. R. Harland, J. N. Petzing, and J. R. Tyrer, “Nonperturbing measurements of spatially distributed underwater acoustic fields using a scanning laser Doppler vibrometer,” J. Acoust. Soc. Am. 115(1), 187–195 (2004).
[Crossref] [PubMed]

A. R. Harland, J. N. Petzing, J. R. Tyrer, C. J. Bickley, S. P. Robinson, and R. C. Preston, “Application and assessment of laser Doppler velocimetry for underwater acoustic measurements,” J. Sound Vibrat. 265(3), 627–645 (2003).
[Crossref]

A. R. Harland, J. N. Petzing, and J. R. Tyrer, “Non-invasive measurements of underwater pressure fields using laser Doppler velocimetry,” J. Sound Vibrat. 252(1), 169–177 (2002).
[Crossref]

Hayes, J.

Hayes, J. B.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Hirayama, M.

K. Nakamura, M. Hirayama, and S. Ueha, “Measurements of air-borne ultrasound by detecting the modulation in optical refractive index of air,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2002), pp. 609–612.
[Crossref]

Horwitz, B. A.

J. L. McLaughlin and B. A. Horwitz, “Real-time snapshot interferometer,” Proc. SPIE 680, 35–43 (1987).
[Crossref]

Ikeda, Y.

K. Ishikawa, K. Yatabe, Y. Ikeda, and Y. Oikawa, “Numerical analysis of acousto-optic effect caused by audible sound based on geometrical optics,” in 12th Western Pacific Acoustics Conference, K. M. Lim, ed. (Research publishing, 2015), pp. 165–169.

Y. Oikawa, Y. Ikeda, M. Goto, T. Takizawa, and Y. Yamasaki, “Sound field measurements based on reconstruction from laser projections,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2005), pp. 661–664.

Inokuchi, H.

Ishikawa, K.

K. Ishikawa, K. Yatabe, Y. Ikeda, and Y. Oikawa, “Numerical analysis of acousto-optic effect caused by audible sound based on geometrical optics,” in 12th Western Pacific Acoustics Conference, K. M. Lim, ed. (Research publishing, 2015), pp. 165–169.

Jacobsen, F.

A. Torras-Rosell, S. Barrera-Figueroa, and F. Jacobsen, “Sound field reconstruction using acousto-optic tomography,” J. Acoust. Soc. Am. 131(5), 3786–3793 (2012).
[Crossref] [PubMed]

Kakue, T.

Kimbrough, B.

N. Brock, B. Kimbrough, and J. Millerd, “A pixelated micropolarizer-based camera for instantaneous interferometric measurements,” Proc. SPIE 8160, 81600W (2011).
[Crossref]

Koliopoulos, C. L.

C. L. Koliopoulos, “Simultaneous phase-shift interferometer,” Proc. SPIE 1531, 119–127 (1992).
[Crossref]

Kothiyal, M. P.

Kubota, T.

Kwon, O. Y.

Lokberg, O. J.

O. J. Lokberg, “Recording of sound emission and propagation in air using TV holography,” J. Acoust. Soc. Am. 96(4), 2244–2250 (1994).
[Crossref]

Løkberg, O. J.

Madalis, M. J.

M. J. Hargather, G. S. Settles, and M. J. Madalis, “Schlieren imaging of loud sounds and weak shock waves in air near the limit of visibility,” Shock Waves 20(1), 9–17 (2010).
[Crossref]

Malkin, R.

K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22(24), 30346–30356 (2014).
[Crossref] [PubMed]

R. Malkin, T. Todd, and D. Robert, “A simple method for quantitative imaging of 2D acoustic fields using refracto-vibrometry,” J. Sound Vibrat. 333(19), 4473–4482 (2014).
[Crossref]

Matoba, O.

McLaughlin, J. L.

J. L. McLaughlin and B. A. Horwitz, “Real-time snapshot interferometer,” Proc. SPIE 680, 35–43 (1987).
[Crossref]

Millerd, J.

N. Brock, B. Kimbrough, and J. Millerd, “A pixelated micropolarizer-based camera for instantaneous interferometric measurements,” Proc. SPIE 8160, 81600W (2011).
[Crossref]

M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44(32), 6861–6868 (2005).
[Crossref] [PubMed]

Millerd, J. E.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Mizutani, K.

K. Mizutani, T. Ezure, K. Nagai, and M. Yoshioka, “Optical measurement of sound fields information using Mach-Zehnder interferometer,” Jpn. J. Appl. Phys. 40(Part 1, No. 5B), 3617–3620 (2001).
[Crossref]

Molin, N. E.

Moore, R.

R. Smythe and R. Moore, “Instantaneous Phase Measuring Interferometry,” Opt. Eng. 23(4), 234361 (1984).
[Crossref]

Nagai, K.

K. Mizutani, T. Ezure, K. Nagai, and M. Yoshioka, “Optical measurement of sound fields information using Mach-Zehnder interferometer,” Jpn. J. Appl. Phys. 40(Part 1, No. 5B), 3617–3620 (2001).
[Crossref]

Nakamura, K.

K. Nakamura, M. Hirayama, and S. Ueha, “Measurements of air-borne ultrasound by detecting the modulation in optical refractive index of air,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2002), pp. 609–612.
[Crossref]

Nakazono, Y.

Y. Sonoda and Y. Nakazono, “Development of optophone with no diaphragm and application to sound measurement in jet flow,” Adv. Acoust. Vib. 2012, 1–17 (2012).
[Crossref]

Nishio, K.

Nitta, K.

North-Morris, M.

North-Morris, M. B.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Novak, M.

M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44(32), 6861–6868 (2005).
[Crossref] [PubMed]

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Oikawa, Y.

K. Ishikawa, K. Yatabe, Y. Ikeda, and Y. Oikawa, “Numerical analysis of acousto-optic effect caused by audible sound based on geometrical optics,” in 12th Western Pacific Acoustics Conference, K. M. Lim, ed. (Research publishing, 2015), pp. 165–169.

N. Chitanont, K. Yaginuma, K. Yatabe, and Y. Oikawa, “Visualization of sound field by means of Schlieren method with spatio-temporal filtering,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2015), pp. 509–513.
[Crossref]

K. Yatabe and Y. Oikawa, “Optically visualized sound field reconstruction based on sparse selection of point sound sources,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2015), pp. 504–508.
[Crossref]

Y. Oikawa, Y. Ikeda, M. Goto, T. Takizawa, and Y. Yamasaki, “Sound field measurements based on reconstruction from laser projections,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2005), pp. 661–664.

K. Yatabe and Y. Oikawa, “PDE-based interpolation method for optically visualized sound field,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2014), pp. 4738–4742.
[Crossref]

Okoomian, H. J.

Olsson, E.

Onuma, T.

T. Onuma and Y. Otani, “A development of two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz,” Opt. Commun. 315, 69–73 (2014).
[Crossref]

Otani, Y.

T. Onuma and Y. Otani, “A development of two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz,” Opt. Commun. 315, 69–73 (2014).
[Crossref]

Perchoux, J.

Petzing, J. N.

A. R. Harland, J. N. Petzing, and J. R. Tyrer, “Nonperturbing measurements of spatially distributed underwater acoustic fields using a scanning laser Doppler vibrometer,” J. Acoust. Soc. Am. 115(1), 187–195 (2004).
[Crossref] [PubMed]

A. R. Harland, J. N. Petzing, J. R. Tyrer, C. J. Bickley, S. P. Robinson, and R. C. Preston, “Application and assessment of laser Doppler velocimetry for underwater acoustic measurements,” J. Sound Vibrat. 265(3), 627–645 (2003).
[Crossref]

A. R. Harland, J. N. Petzing, and J. R. Tyrer, “Non-invasive measurements of underwater pressure fields using laser Doppler velocimetry,” J. Sound Vibrat. 252(1), 169–177 (2002).
[Crossref]

Preston, R. C.

A. R. Harland, J. N. Petzing, J. R. Tyrer, C. J. Bickley, S. P. Robinson, and R. C. Preston, “Application and assessment of laser Doppler velocimetry for underwater acoustic measurements,” J. Sound Vibrat. 265(3), 627–645 (2003).
[Crossref]

Rakic, A. D.

Robert, D.

K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22(24), 30346–30356 (2014).
[Crossref] [PubMed]

R. Malkin, T. Todd, and D. Robert, “A simple method for quantitative imaging of 2D acoustic fields using refracto-vibrometry,” J. Sound Vibrat. 333(19), 4473–4482 (2014).
[Crossref]

Robinson, S. P.

A. R. Harland, J. N. Petzing, J. R. Tyrer, C. J. Bickley, S. P. Robinson, and R. C. Preston, “Application and assessment of laser Doppler velocimetry for underwater acoustic measurements,” J. Sound Vibrat. 265(3), 627–645 (2003).
[Crossref]

Sakoda, T.

T. Sakoda and Y. Sonoda, “Visualization of sound field with uniform phase distribution using laser beam microphone coupled with computerized tomography method,” Acoust. Sci. Technol. 29(4), 295–299 (2008).
[Crossref]

Sasada, M.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[Crossref]

Settles, G. S.

M. J. Hargather, G. S. Settles, and M. J. Madalis, “Schlieren imaging of loud sounds and weak shock waves in air near the limit of visibility,” Shock Waves 20(1), 9–17 (2010).
[Crossref]

Sjödahl, M.

Smythe, R.

R. Smythe and R. Moore, “Instantaneous Phase Measuring Interferometry,” Opt. Eng. 23(4), 234361 (1984).
[Crossref]

Sonoda, Y.

Y. Sonoda and Y. Nakazono, “Development of optophone with no diaphragm and application to sound measurement in jet flow,” Adv. Acoust. Vib. 2012, 1–17 (2012).
[Crossref]

T. Sakoda and Y. Sonoda, “Visualization of sound field with uniform phase distribution using laser beam microphone coupled with computerized tomography method,” Acoust. Sci. Technol. 29(4), 295–299 (2008).
[Crossref]

Tahara, T.

Taimre, T.

Takasaki, H.

Takizawa, T.

Y. Oikawa, Y. Ikeda, M. Goto, T. Takizawa, and Y. Yamasaki, “Sound field measurements based on reconstruction from laser projections,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2005), pp. 661–664.

Todd, T.

R. Malkin, T. Todd, and D. Robert, “A simple method for quantitative imaging of 2D acoustic fields using refracto-vibrometry,” J. Sound Vibrat. 333(19), 4473–4482 (2014).
[Crossref]

Torras-Rosell, A.

A. Torras-Rosell, S. Barrera-Figueroa, and F. Jacobsen, “Sound field reconstruction using acousto-optic tomography,” J. Acoust. Soc. Am. 131(5), 3786–3793 (2012).
[Crossref] [PubMed]

Tyrer, J. R.

A. R. Harland, J. N. Petzing, and J. R. Tyrer, “Nonperturbing measurements of spatially distributed underwater acoustic fields using a scanning laser Doppler vibrometer,” J. Acoust. Soc. Am. 115(1), 187–195 (2004).
[Crossref] [PubMed]

A. R. Harland, J. N. Petzing, J. R. Tyrer, C. J. Bickley, S. P. Robinson, and R. C. Preston, “Application and assessment of laser Doppler velocimetry for underwater acoustic measurements,” J. Sound Vibrat. 265(3), 627–645 (2003).
[Crossref]

A. R. Harland, J. N. Petzing, and J. R. Tyrer, “Non-invasive measurements of underwater pressure fields using laser Doppler velocimetry,” J. Sound Vibrat. 252(1), 169–177 (2002).
[Crossref]

Ueha, S.

K. Nakamura, M. Hirayama, and S. Ueha, “Measurements of air-borne ultrasound by detecting the modulation in optical refractive index of air,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2002), pp. 609–612.
[Crossref]

Ura, S.

Werner, C. L.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Wyant, J.

Wyant, J. C.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Yaginuma, K.

N. Chitanont, K. Yaginuma, K. Yatabe, and Y. Oikawa, “Visualization of sound field by means of Schlieren method with spatio-temporal filtering,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2015), pp. 509–513.
[Crossref]

Yamasaki, Y.

Y. Oikawa, Y. Ikeda, M. Goto, T. Takizawa, and Y. Yamasaki, “Sound field measurements based on reconstruction from laser projections,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2005), pp. 661–664.

Yatabe, K.

K. Yatabe and Y. Oikawa, “PDE-based interpolation method for optically visualized sound field,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2014), pp. 4738–4742.
[Crossref]

K. Yatabe and Y. Oikawa, “Optically visualized sound field reconstruction based on sparse selection of point sound sources,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2015), pp. 504–508.
[Crossref]

N. Chitanont, K. Yaginuma, K. Yatabe, and Y. Oikawa, “Visualization of sound field by means of Schlieren method with spatio-temporal filtering,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2015), pp. 509–513.
[Crossref]

K. Ishikawa, K. Yatabe, Y. Ikeda, and Y. Oikawa, “Numerical analysis of acousto-optic effect caused by audible sound based on geometrical optics,” in 12th Western Pacific Acoustics Conference, K. M. Lim, ed. (Research publishing, 2015), pp. 165–169.

Yonesaka, R.

Yoshino, Y.

Yoshioka, M.

K. Mizutani, T. Ezure, K. Nagai, and M. Yoshioka, “Optical measurement of sound fields information using Mach-Zehnder interferometer,” Jpn. J. Appl. Phys. 40(Part 1, No. 5B), 3617–3620 (2001).
[Crossref]

Zebker, H. A.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Zipser, L.

Acoust. Sci. Technol. (1)

T. Sakoda and Y. Sonoda, “Visualization of sound field with uniform phase distribution using laser beam microphone coupled with computerized tomography method,” Acoust. Sci. Technol. 29(4), 295–299 (2008).
[Crossref]

Adv. Acoust. Vib. (1)

Y. Sonoda and Y. Nakazono, “Development of optophone with no diaphragm and application to sound measurement in jet flow,” Adv. Acoust. Vib. 2012, 1–17 (2012).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[Crossref]

IEEE Spectr. (1)

R. Adler, “Interaction between light and sound,” IEEE Spectr. 4(5), 42–54 (1967).
[Crossref]

J. Acoust. Soc. Am. (4)

J. A. Bucaro, “Visualization of ultrasonic waves in air,” J. Acoust. Soc. Am. 62(6), 1506–1507 (1977).
[Crossref]

O. J. Lokberg, “Recording of sound emission and propagation in air using TV holography,” J. Acoust. Soc. Am. 96(4), 2244–2250 (1994).
[Crossref]

A. Torras-Rosell, S. Barrera-Figueroa, and F. Jacobsen, “Sound field reconstruction using acousto-optic tomography,” J. Acoust. Soc. Am. 131(5), 3786–3793 (2012).
[Crossref] [PubMed]

A. R. Harland, J. N. Petzing, and J. R. Tyrer, “Nonperturbing measurements of spatially distributed underwater acoustic fields using a scanning laser Doppler vibrometer,” J. Acoust. Soc. Am. 115(1), 187–195 (2004).
[Crossref] [PubMed]

J. Appl. Phys. (1)

R. B. Barnes and C. J. Burton, “Visual methods for studying ultrasonic phenomena,” J. Appl. Phys. 20(3), 286–294 (1949).
[Crossref]

J. Sound Vibrat. (3)

A. R. Harland, J. N. Petzing, and J. R. Tyrer, “Non-invasive measurements of underwater pressure fields using laser Doppler velocimetry,” J. Sound Vibrat. 252(1), 169–177 (2002).
[Crossref]

A. R. Harland, J. N. Petzing, J. R. Tyrer, C. J. Bickley, S. P. Robinson, and R. C. Preston, “Application and assessment of laser Doppler velocimetry for underwater acoustic measurements,” J. Sound Vibrat. 265(3), 627–645 (2003).
[Crossref]

R. Malkin, T. Todd, and D. Robert, “A simple method for quantitative imaging of 2D acoustic fields using refracto-vibrometry,” J. Sound Vibrat. 333(19), 4473–4482 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Mizutani, T. Ezure, K. Nagai, and M. Yoshioka, “Optical measurement of sound fields information using Mach-Zehnder interferometer,” Jpn. J. Appl. Phys. 40(Part 1, No. 5B), 3617–3620 (2001).
[Crossref]

Opt. Commun. (1)

T. Onuma and Y. Otani, “A development of two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz,” Opt. Commun. 315, 69–73 (2014).
[Crossref]

Opt. Eng. (2)

E. Olsson and F. Forsberg, “Three-dimensional selective imaging of sound sources,” Opt. Eng. 48(3), 035801 (2009).
[Crossref]

R. Smythe and R. Moore, “Instantaneous Phase Measuring Interferometry,” Opt. Eng. 23(4), 234361 (1984).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (4)

C. L. Koliopoulos, “Simultaneous phase-shift interferometer,” Proc. SPIE 1531, 119–127 (1992).
[Crossref]

N. Brock, B. Kimbrough, and J. Millerd, “A pixelated micropolarizer-based camera for instantaneous interferometric measurements,” Proc. SPIE 8160, 81600W (2011).
[Crossref]

J. L. McLaughlin and B. A. Horwitz, “Real-time snapshot interferometer,” Proc. SPIE 680, 35–43 (1987).
[Crossref]

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Radio Sci. (1)

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[Crossref]

Sens. Actuators A Phys. (1)

L. Zipser and H. Franke, “Laser-scanning vibrometry for ultrasonic transducer development,” Sens. Actuators A Phys. 110(1–3), 264–268 (2004).
[Crossref]

Shock Waves (1)

M. J. Hargather, G. S. Settles, and M. J. Madalis, “Schlieren imaging of loud sounds and weak shock waves in air near the limit of visibility,” Shock Waves 20(1), 9–17 (2010).
[Crossref]

Other (16)

N. Chitanont, K. Yaginuma, K. Yatabe, and Y. Oikawa, “Visualization of sound field by means of Schlieren method with spatio-temporal filtering,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2015), pp. 509–513.
[Crossref]

J. Millerd, N. Brock, J. Hayes, M. North-Morris, B. Kimbrough, and J. Wyant, “Pixelated phase-mask dynamic interferometers,” in Fringe 2005 (Springer-Verlag, 2005), pp. 640–647.

See, for example, J. E. Greivenkamp and J. H. Bruning, See, for example, J. E. Greivenkamp, and J. H. Bruning, “Phase-shifting interferometry,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1992), pp. 501–598.

K. Ishikawa, K. Yatabe, Y. Ikeda, and Y. Oikawa, “Numerical analysis of acousto-optic effect caused by audible sound based on geometrical optics,” in 12th Western Pacific Acoustics Conference, K. M. Lim, ed. (Research publishing, 2015), pp. 165–169.

B. E. A. Saleh and M. C. Teich, “Acousto-optics,” in Fundamentals of Photonics (John Wiley & Sons, Inc., 1991).

Bureau International des Poids et Measures, “Definition of the standard atmosphere,” http://www.bipm.org/en/CGPM/db/10/4/ .

P. M. Morse and K. U. Ingard, Theoretical Acoustics (Princeton University, 1986), Ch. 13.

K. Yatabe and Y. Oikawa, “PDE-based interpolation method for optically visualized sound field,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2014), pp. 4738–4742.
[Crossref]

K. Yatabe and Y. Oikawa, “Optically visualized sound field reconstruction based on sparse selection of point sound sources,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2015), pp. 504–508.
[Crossref]

Y. Oikawa, Y. Ikeda, M. Goto, T. Takizawa, and Y. Yamasaki, “Sound field measurements based on reconstruction from laser projections,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2005), pp. 661–664.

K. Nakamura, M. Hirayama, and S. Ueha, “Measurements of air-borne ultrasound by detecting the modulation in optical refractive index of air,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2002), pp. 609–612.
[Crossref]

Y. Oikawa, T. Hasegawa, Y. Ouchi, Y. Yamasaki, and Y. Ikeda, “Visualization of sound field and sound source vibration using laser measurement method,” in 20th International Congress on Acoustics, M. Burgess, ed. (Australian Acoustical Society, 2010), pp. 1–5.

S. Frank and J. Schell, “Sound field simulation and visualisation based on laser Doppler vibrometer measurements,” in Forum Acousticum (2005), pp. 91–97.

E. G. Williams, Fourier Acoustics (Academic, 1999), Ch. 8.

B. A. Horwitz and A. J. MacGovern, “Wavefront sensor employing novel D.C. shearing interferometer,” US patent 4575248 A (1986).

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of PPSI. (a) The phase-shifting array device is mounted onto each pixel of image sensor. Interfered light is incident into the phase-shifting array device and captured by the image sensor. Each phase-shifting component of the array device corresponds with each pixel of the image sensor. (b) The recorded image is divided into the four phase-shifted images and phase under the test is reconstructed. Note that the size of the reconstructed phase becomes N1/2 × N2/2 when that of measured data is N1 × N2, because the 2 × 2 pixel pair, phase-pixel, is required for calculating one object phase.
Fig. 2
Fig. 2 Schematic of the measurement system. M: Mirror, L: Lens system, Q: Quarter wave plate, PHC: high-speed polarization camera, PBS: Polarized beam splitter. A dashed line indicates the cabinet of the interferometer.
Fig. 3
Fig. 3 Experimental setup. Light is emitted from the interferometer, reflected by the mirror, and detected by the camera inside the interferometer.
Fig. 4
Fig. 4 Imaging results of (a) the instantaneous phase, (b) the amplitude, and (c) the phase of the sound field generated by the transducer driven by 40 kHz. The results of the instantaneous phase and the amplitude are shown in length unit, which are obtained by the phase of light multiplied by the wavenumber of light.The left side is the experimental result, and the right side is the simulation result. The dark gray squares in the top center of the experimental result are the shadow of the transducer.
Fig. 5
Fig. 5 Time sequential images of the instantaneous phase distribution obtained by the experiment. The time step is 10 μs; the time proceeds from left to right. The blue lines indicate the positions of the corresponding wavefront at the horizontal center column of each image, which are calculated from the measured data.
Fig. 6
Fig. 6 Imaging results of (a) the instantaneous phase, (b) the amplitude, and (c) the phase of the sound field generated by two transducers driven by 40 kHz. The results of the instantaneous phase and the amplitude are shown in length unit, which are obtained by the phase of light multiplied by the wavenumber of light. The left side is the experimental result, and the right side is the simulation result. The two dark gray squares in the top of each experimental result are the shadows of the transducers.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n=( n 0 1) ( 1+ p p 0 ) 1/γ +1,
n= n 0 + n 0 1 γ p 0 p.
E(r,t)= E h (r,t)exp[i ϕ p ],
E h (r,t)=| E h |exp[i(krωt)]
ϕ p =k n 0 1 γ p 0 L p (l,t)dl
ϕ=atan2(I(3π/2)I(π/2),I(0)I(π))
atan2(y,x)={ tan 1 y x (x>0) tan 1 y x +sgn(y)π (x<0) sgn(y) π 2 (x=0,y0) undefined (x=0,y=0) ,
p(r,t)=C S exp[ik|rr'|] |rr'| exp[iωt]d y d z ,
p(r,t)=C m=1 M exp[ik|r r m '|] |r r m '| exp[iωt]
ϕ sim (x,y,t)=2k n 0 1 γ p 0 0 Z p (r,t)dz,

Metrics