S. Ghosh and C. Preza, “Three-Dimensional Block-Based Restoration Integrated with Wide-field Fluorescence Microscopy for the Investigation Of Thick Specimens with Spatially Variant Refractive Index,” J. Biomed. Opt. 21(4), 046010 (2016).

[Crossref]
[PubMed]

B. Kim and T. Naemura, “Blind Depth-variant Deconvolution of 3D Data in Wide-field Fluorescence Microscopy,” Sci. Rep. 5, 9894 (2015).

[Crossref]
[PubMed]

A. Wong, X. Y. Wang, and M. Gorbet, “Bayesian-based deconvolution fluorescence microscopy using dynamically updated nonstationary expectation estimates,” Sci. Rep. 5, 10849 (2015).

[Crossref]
[PubMed]

N. Patwary, S. V. King, and C. Preza, “3D microscope imaging robust to restoration artifacts introduced by optically thick specimens,” Proc. SPIE 9330, 93300O (2015).

[Crossref]

A. Masson, P. Escande, C. Frongia, G. Clouvel, B. Ducommun, and C. Lorenzo, “High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM,” Sci. Rep. 5, 16898 (2015).

[Crossref]
[PubMed]

N. Patwary and C. Preza, “Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions,” Biomed. Opt. Express 6(10), 3826–3841 (2015).

[Crossref]
[PubMed]

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy,” Appl. Opt. 54(29), 8587–8595 (2015).

[Crossref]
[PubMed]

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

[Crossref]

N. Patwary, A. Doblas, S. V. King, and C. Preza, “Reducing depth induced spherical aberration in 3D widefield fluorescence microscopy by wavefront coding using the SQUBIC phase mask,” Proc. SPIE 8949, 894911 (2014).

[Crossref]

L. Silvestri, L. Sacconi, and F. S. Pavone, “Correcting spherical aberrations in confocal light sheet microscopy: A theoretical study,” Microsc. Res. Tech. 77(7), 483–491 (2014).

[Crossref]
[PubMed]

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).

[Crossref]
[PubMed]

M. Persson, D. Engström, and M. Goksör, “Reducing the effect of pixel crosstalk in phase only spatial light modulators,” Opt. Express 20(20), 22334–22343 (2012).

[Crossref]
[PubMed]

O. Haeberlé, “Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part I: Conventional microscopy,” Opt. Commun. 216(1), 55–63 (2003).

[Crossref]

J.-A. Conchello and J. G. McNally, “Fast regularization technique for expectation maximization algorithm for optical sectioning microscopy,” Proc. SPIE 2655, 199–208 (1996).

[Crossref]

I. J. Good, “Non-Parametric Roughness Penalty for Probability Densities,” Nature 229(1), 29–30 (1971).

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).

[Crossref]
[PubMed]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).

[Crossref]
[PubMed]

A. Masson, P. Escande, C. Frongia, G. Clouvel, B. Ducommun, and C. Lorenzo, “High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM,” Sci. Rep. 5, 16898 (2015).

[Crossref]
[PubMed]

C. Preza and J.-A. Conchello, “Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy,” J. Opt. Soc. Am. A 21(9), 1593–1601 (2004).

[Crossref]
[PubMed]

J.-A. Conchello, “Superresolution and convergence properties of the expectation-maximization algorithm for maximum-likelihood deconvolution of incoherent images,” J. Opt. Soc. Am. A 15(10), 2609–2619 (1998).

[Crossref]
[PubMed]

J.-A. Conchello and J. G. McNally, “Fast regularization technique for expectation maximization algorithm for optical sectioning microscopy,” Proc. SPIE 2655, 199–208 (1996).

[Crossref]

J.-A. Conchello and E. W. Hansen, “Enhanced 3-D reconstruction from confocal scanning microscope images. 1: Deterministic and maximum likelihood reconstructions,” Appl. Opt. 29(26), 3795–3804 (1990).

[Crossref]
[PubMed]

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy,” Appl. Opt. 54(29), 8587–8595 (2015).

[Crossref]
[PubMed]

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

[Crossref]

N. Patwary, A. Doblas, S. V. King, and C. Preza, “Reducing depth induced spherical aberration in 3D widefield fluorescence microscopy by wavefront coding using the SQUBIC phase mask,” Proc. SPIE 8949, 894911 (2014).

[Crossref]

A. Masson, P. Escande, C. Frongia, G. Clouvel, B. Ducommun, and C. Lorenzo, “High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM,” Sci. Rep. 5, 16898 (2015).

[Crossref]
[PubMed]

A. Masson, P. Escande, C. Frongia, G. Clouvel, B. Ducommun, and C. Lorenzo, “High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM,” Sci. Rep. 5, 16898 (2015).

[Crossref]
[PubMed]

A. Masson, P. Escande, C. Frongia, G. Clouvel, B. Ducommun, and C. Lorenzo, “High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM,” Sci. Rep. 5, 16898 (2015).

[Crossref]
[PubMed]

S. Ghosh and C. Preza, “Three-Dimensional Block-Based Restoration Integrated with Wide-field Fluorescence Microscopy for the Investigation Of Thick Specimens with Spatially Variant Refractive Index,” J. Biomed. Opt. 21(4), 046010 (2016).

[Crossref]
[PubMed]

I. J. Good, “Non-Parametric Roughness Penalty for Probability Densities,” Nature 229(1), 29–30 (1971).

A. Wong, X. Y. Wang, and M. Gorbet, “Bayesian-based deconvolution fluorescence microscopy using dynamically updated nonstationary expectation estimates,” Sci. Rep. 5, 10849 (2015).

[Crossref]
[PubMed]

O. Haeberlé, “Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part I: Conventional microscopy,” Opt. Commun. 216(1), 55–63 (2003).

[Crossref]

B. Kim and T. Naemura, “Blind Depth-variant Deconvolution of 3D Data in Wide-field Fluorescence Microscopy,” Sci. Rep. 5, 9894 (2015).

[Crossref]
[PubMed]

N. Patwary, S. V. King, and C. Preza, “3D microscope imaging robust to restoration artifacts introduced by optically thick specimens,” Proc. SPIE 9330, 93300O (2015).

[Crossref]

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy,” Appl. Opt. 54(29), 8587–8595 (2015).

[Crossref]
[PubMed]

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

[Crossref]

N. Patwary, A. Doblas, S. V. King, and C. Preza, “Reducing depth induced spherical aberration in 3D widefield fluorescence microscopy by wavefront coding using the SQUBIC phase mask,” Proc. SPIE 8949, 894911 (2014).

[Crossref]

A. Masson, P. Escande, C. Frongia, G. Clouvel, B. Ducommun, and C. Lorenzo, “High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM,” Sci. Rep. 5, 16898 (2015).

[Crossref]
[PubMed]

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy,” Appl. Opt. 54(29), 8587–8595 (2015).

[Crossref]
[PubMed]

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

[Crossref]

G. Saavedra, I. Escobar, R. Martínez-Cuenca, E. Sánchez-Ortiga, and M. Martínez-Corral, “Reduction of spherical-aberration impact in microscopy by wavefront coding,” Opt. Express 17(16), 13810–13818 (2009).

[Crossref]
[PubMed]

A. Masson, P. Escande, C. Frongia, G. Clouvel, B. Ducommun, and C. Lorenzo, “High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM,” Sci. Rep. 5, 16898 (2015).

[Crossref]
[PubMed]

J.-A. Conchello and J. G. McNally, “Fast regularization technique for expectation maximization algorithm for optical sectioning microscopy,” Proc. SPIE 2655, 199–208 (1996).

[Crossref]

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).

[Crossref]
[PubMed]

B. Kim and T. Naemura, “Blind Depth-variant Deconvolution of 3D Data in Wide-field Fluorescence Microscopy,” Sci. Rep. 5, 9894 (2015).

[Crossref]
[PubMed]

N. Patwary and C. Preza, “Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions,” Biomed. Opt. Express 6(10), 3826–3841 (2015).

[Crossref]
[PubMed]

N. Patwary, S. V. King, and C. Preza, “3D microscope imaging robust to restoration artifacts introduced by optically thick specimens,” Proc. SPIE 9330, 93300O (2015).

[Crossref]

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy,” Appl. Opt. 54(29), 8587–8595 (2015).

[Crossref]
[PubMed]

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

[Crossref]

N. Patwary, A. Doblas, S. V. King, and C. Preza, “Reducing depth induced spherical aberration in 3D widefield fluorescence microscopy by wavefront coding using the SQUBIC phase mask,” Proc. SPIE 8949, 894911 (2014).

[Crossref]

L. Silvestri, L. Sacconi, and F. S. Pavone, “Correcting spherical aberrations in confocal light sheet microscopy: A theoretical study,” Microsc. Res. Tech. 77(7), 483–491 (2014).

[Crossref]
[PubMed]

S. Ghosh and C. Preza, “Three-Dimensional Block-Based Restoration Integrated with Wide-field Fluorescence Microscopy for the Investigation Of Thick Specimens with Spatially Variant Refractive Index,” J. Biomed. Opt. 21(4), 046010 (2016).

[Crossref]
[PubMed]

N. Patwary, S. V. King, and C. Preza, “3D microscope imaging robust to restoration artifacts introduced by optically thick specimens,” Proc. SPIE 9330, 93300O (2015).

[Crossref]

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy,” Appl. Opt. 54(29), 8587–8595 (2015).

[Crossref]
[PubMed]

N. Patwary and C. Preza, “Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions,” Biomed. Opt. Express 6(10), 3826–3841 (2015).

[Crossref]
[PubMed]

N. Patwary, A. Doblas, S. V. King, and C. Preza, “Reducing depth induced spherical aberration in 3D widefield fluorescence microscopy by wavefront coding using the SQUBIC phase mask,” Proc. SPIE 8949, 894911 (2014).

[Crossref]

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

[Crossref]

S. Yuan and C. Preza, “Point-spread function engineering to reduce the impact of spherical aberration on 3D computational fluorescence microscopy imaging,” Opt. Express 19(23), 23298–23314 (2011).

[Crossref]
[PubMed]

C. Preza and J.-A. Conchello, “Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy,” J. Opt. Soc. Am. A 21(9), 1593–1601 (2004).

[Crossref]
[PubMed]

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy,” Appl. Opt. 54(29), 8587–8595 (2015).

[Crossref]
[PubMed]

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

[Crossref]

G. Saavedra, I. Escobar, R. Martínez-Cuenca, E. Sánchez-Ortiga, and M. Martínez-Corral, “Reduction of spherical-aberration impact in microscopy by wavefront coding,” Opt. Express 17(16), 13810–13818 (2009).

[Crossref]
[PubMed]

L. Silvestri, L. Sacconi, and F. S. Pavone, “Correcting spherical aberrations in confocal light sheet microscopy: A theoretical study,” Microsc. Res. Tech. 77(7), 483–491 (2014).

[Crossref]
[PubMed]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).

[Crossref]
[PubMed]

L. Silvestri, L. Sacconi, and F. S. Pavone, “Correcting spherical aberrations in confocal light sheet microscopy: A theoretical study,” Microsc. Res. Tech. 77(7), 483–491 (2014).

[Crossref]
[PubMed]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).

[Crossref]
[PubMed]

A. Wong, X. Y. Wang, and M. Gorbet, “Bayesian-based deconvolution fluorescence microscopy using dynamically updated nonstationary expectation estimates,” Sci. Rep. 5, 10849 (2015).

[Crossref]
[PubMed]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).

[Crossref]
[PubMed]

A. Wong, X. Y. Wang, and M. Gorbet, “Bayesian-based deconvolution fluorescence microscopy using dynamically updated nonstationary expectation estimates,” Sci. Rep. 5, 10849 (2015).

[Crossref]
[PubMed]

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).

[Crossref]
[PubMed]

J.-A. Conchello and E. W. Hansen, “Enhanced 3-D reconstruction from confocal scanning microscope images. 1: Deterministic and maximum likelihood reconstructions,” Appl. Opt. 29(26), 3795–3804 (1990).

[Crossref]
[PubMed]

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy,” Appl. Opt. 54(29), 8587–8595 (2015).

[Crossref]
[PubMed]

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).

[Crossref]
[PubMed]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).

[Crossref]
[PubMed]

S. Ghosh and C. Preza, “Three-Dimensional Block-Based Restoration Integrated with Wide-field Fluorescence Microscopy for the Investigation Of Thick Specimens with Spatially Variant Refractive Index,” J. Biomed. Opt. 21(4), 046010 (2016).

[Crossref]
[PubMed]

J.-A. Conchello, “Superresolution and convergence properties of the expectation-maximization algorithm for maximum-likelihood deconvolution of incoherent images,” J. Opt. Soc. Am. A 15(10), 2609–2619 (1998).

[Crossref]
[PubMed]

S. F. Gibson and F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 9(1), 154–166 (1992).

[Crossref]
[PubMed]

C. Preza and J.-A. Conchello, “Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy,” J. Opt. Soc. Am. A 21(9), 1593–1601 (2004).

[Crossref]
[PubMed]

E. Maalouf, B. Colicchio, and A. Dieterlen, “Fluorescence microscopy three-dimensional depth variant point spread function interpolation using Zernike moments,” J. Opt. Soc. Am. A 28(9), 1864–1870 (2011).

[Crossref]

L. Silvestri, L. Sacconi, and F. S. Pavone, “Correcting spherical aberrations in confocal light sheet microscopy: A theoretical study,” Microsc. Res. Tech. 77(7), 483–491 (2014).

[Crossref]
[PubMed]

I. J. Good, “Non-Parametric Roughness Penalty for Probability Densities,” Nature 229(1), 29–30 (1971).

O. Haeberlé, “Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part I: Conventional microscopy,” Opt. Commun. 216(1), 55–63 (2003).

[Crossref]

S. Tucker, W. T. Cathey, and E. Dowski., “Extended depth of field and aberration control for inexpensive digital microscope systems,” Opt. Express 4(11), 467–474 (1999).

[Crossref]
[PubMed]

S. Yuan and C. Preza, “Point-spread function engineering to reduce the impact of spherical aberration on 3D computational fluorescence microscopy imaging,” Opt. Express 19(23), 23298–23314 (2011).

[Crossref]
[PubMed]

M. Persson, D. Engström, and M. Goksör, “Reducing the effect of pixel crosstalk in phase only spatial light modulators,” Opt. Express 20(20), 22334–22343 (2012).

[Crossref]
[PubMed]

G. Saavedra, I. Escobar, R. Martínez-Cuenca, E. Sánchez-Ortiga, and M. Martínez-Corral, “Reduction of spherical-aberration impact in microscopy by wavefront coding,” Opt. Express 17(16), 13810–13818 (2009).

[Crossref]
[PubMed]

M. Arigovindan, J. Shaevitz, J. McGowan, J. W. Sedat, and D. A. Agard, “A parallel product-convolution approach for representing the depth varying point spread functions in 3D widefield microscopy based on principal component analysis,” Opt. Express 18(7), 6461–6476 (2010).

[Crossref]
[PubMed]

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martínez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

[Crossref]

J.-A. Conchello and J. G. McNally, “Fast regularization technique for expectation maximization algorithm for optical sectioning microscopy,” Proc. SPIE 2655, 199–208 (1996).

[Crossref]

N. Patwary, S. V. King, and C. Preza, “3D microscope imaging robust to restoration artifacts introduced by optically thick specimens,” Proc. SPIE 9330, 93300O (2015).

[Crossref]

N. Patwary, A. Doblas, S. V. King, and C. Preza, “Reducing depth induced spherical aberration in 3D widefield fluorescence microscopy by wavefront coding using the SQUBIC phase mask,” Proc. SPIE 8949, 894911 (2014).

[Crossref]

A. Masson, P. Escande, C. Frongia, G. Clouvel, B. Ducommun, and C. Lorenzo, “High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM,” Sci. Rep. 5, 16898 (2015).

[Crossref]
[PubMed]

B. Kim and T. Naemura, “Blind Depth-variant Deconvolution of 3D Data in Wide-field Fluorescence Microscopy,” Sci. Rep. 5, 9894 (2015).

[Crossref]
[PubMed]

A. Wong, X. Y. Wang, and M. Gorbet, “Bayesian-based deconvolution fluorescence microscopy using dynamically updated nonstationary expectation estimates,” Sci. Rep. 5, 10849 (2015).

[Crossref]
[PubMed]

J. R. Swedlow, J. W. Sedat, and D. A. Agard, Deconvolution of images and spectra (Academic Press, 1997), Chap. 9.

N. Patwary and C. Preza, “Wavefront encoded computational optical sectioning microscopy reduces depth variability in 3D imaging,” in Imaging and Applied Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper CM2E.4.

Computational Imaging Research Laboratory, “Computational Optical Sectioning Microscopy Open Source (COSMOS) software package,” http://cirl.memphis.edu/COSMOS ].