Abstract

We report the design of a waveguide optical isolator based on multimode interferometer (MMI) structure using silicon on insulator (SOI) and deposited magneto-optical (MO) thin films. The optical isolator is based on a vertical 1 × 2 SOI MMI utilizing the nonreciprocal phase shift (NRPS) difference of different TM modes of the MO garnet thin film/SOI waveguide. By constructing a silicon/MO thin film/silicon structure, we demonstrate that the NRPS of the fundamental and first order TM modes can show opposite signs for certain device dimensions, therefore significantly reduce the device length. For a 310.42 μm long device, 20 dB isolation bandwidth larger than 1.6 nm with total insertion loss of 0.817 dB is achieved at 1550 nm wavelength. The fabrication tolerances and materials losses are also discussed to satisfy the state-of-the-art fabrication technology and material properties.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Towards heterogeneous integration of optical isolators and circulators with lasers on silicon [Invited]

Duanni Huang, Paolo Pintus, and John E. Bowers
Opt. Mater. Express 8(9) 2471-2483 (2018)

Magneto-optical materials and designs for integrated TE- and TM-mode planar waveguide isolators: a review [Invited]

Karthik Srinivasan and Bethanie J. H. Stadler
Opt. Mater. Express 8(11) 3307-3318 (2018)

Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding

S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets
Opt. Express 20(2) 1839-1848 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
    [Crossref]
  2. P. G. van Engen, “Mode degeneracy in magnetic garnet optical waveguides with high Faraday rotation,” J. Appl. Phys. 49(9), 4660–4662 (1978).
    [Crossref]
  3. H. Yokoi and T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33(21), 1787–1788 (1997).
    [Crossref]
  4. V. J. Fratello and R. Wolfe, “Epitaxial garnet films for nonreciprocal magneto-optic devices,” Handbook of Thin Films 4 (Academic, 2000).
  5. M. Torfeh, L. Courtois, L. Smoczynski, H. L. Gall, and J. M. Desvignes, “Coupling and phase matching coefficients in a magneto-optical TE-TM mode converter,” Physica B-C 89, 255–259 (1977).
  6. S. Yamamoto and T. Makimoto, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974).
    [Crossref]
  7. T. Mizumoto, T. Oochi, K. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
    [Crossref]
  8. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39(33), 6158–6164 (2000).
    [Crossref] [PubMed]
  9. J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, “An integrated optical waveguide isolator based on multimode interference by wafer direct bonding,” IEEE Trans. Magn. 41(10), 3520–3522 (2005).
    [Crossref]
  10. T. K. Carroll, M. Levy, and R. El-Ganainy, “Nonreciprocal coupler isolator,” in Fiber-Optics and Photonics Technology Conference (AVFOP) (IEEE,2014).
  11. H. Yokoi and T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33(21), 1787–1788 (1997).
    [Crossref]
  12. Y. Shirato, Y. Shoji, and T. Mizumoto, “Over 20-dB isolation with 8-nm bandwidth in silicon MZI optical isolator,” in 10th International Conference on Group IV Photonics. 2013.
    [Crossref]
  13. S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20(2), 1839–1848 (2012).
    [Crossref] [PubMed]
  14. Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8 nm bandwidth for over 20 dB isolation,” Jpn. J. Appl. Phys. 53(2), 022202 (2014).
    [Crossref]
  15. M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011).
    [Crossref] [PubMed]
  16. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
    [Crossref]
  17. X. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 2(7), 856–863 (2015).
    [Crossref]
  18. N. Bahlmann, M. Lohmeyer, O. Zhuromskyy, H. Dotsch, and P. Hertel, “Nonreciprocal Coupled Waveguides for Integrated Optical Isolators and Circulators for TM-Modes,” Opt. Commun. 161(4-6), 330–337 (1999).
    [Crossref]
  19. O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, P. Hertel, H. Dötsch, and A. F. Popkov, “Analysis of nonreciprocal light propagation in multimode imaging devices,” Opt. Quantum Electron. 32(6/8), 885–897 (2000).
    [Crossref]
  20. M. Lohmeyer, L. Wilkens, O. Zhuromskyy, H. Dötsch, and P. Hertel, “Integrated magnetooptic cross strip isolator,” Opt. Commun. 189(4–6), 251–259 (2001).
    [Crossref]
  21. R. Chen, D. Tao, H. Zhou, Y. Hao, J. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun. 282(5), 862–866 (2009).
    [Crossref]
  22. Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18(1), 013001 (2016).
    [Crossref]
  23. S. Sung, A. Sharma, A. Block, K. Keuhn, and J. H. Stadler, “Magneto-optical garnet waveguides on semiconductor platforms: magnetics, mechanics, and photonics,” J. Appl. Phys.109(7), 07B738 (2011).
  24. A. Fujie, Y. Shoji, and T. Mizumoto, “Silicon waveguide optical isolator integrated with TE-TM mode converter,” in Optical Fiber Communication Conference.2015.
    [Crossref]
  25. Y. Zhang, L. Bi, and L. Deng, “Enhanced magneto-optical effect in Ce1.5Y1.5Fe5O12 thin films deposited on silicon by pulsed laser deposition,” in preparation.
  26. H. Dötsch, P. Hertel, B. Luhrmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28(5), 2979–2984 (1992).
    [Crossref]
  27. X. Liang, J. Xie, L. Deng, and L. Bi, “First principles calculation on the magnetic, optical properties and oxygen vacancy effect of CexY3− xFe5O12,” Appl. Phys. Lett. 106(5), 052401 (2015).
    [Crossref]
  28. M. Lohmeyer and R. Stoffer, “Integrated optical cross strip polarizer concept,” Opt. Quantum Electron. 33(4/5), 413–431 (2001).
    [Crossref]
  29. S. Darmawan, S. Y. Lee, C. W. Lee, and M. K. Chin, “A Rigorous Comparative Analysis of Directional Couplers and Multimode Interferometers Based on Ridge Waveguides,” IEEE J. Sel. Top. Quantum Electron. 11(2), 466–475 (2005).
  30. S. Y. Lee, S. Darmawan, C. W. Lee, and M. K. Chin, “Transformation between directional couplers and multi-mode interferometers based on ridge waveguides,” Opt. Express 12(14), 3079–3085 (2004).
    [Crossref] [PubMed]
  31. L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
    [Crossref]
  32. Y. Zhang, J. Xie, L. Deng, and L. Bi, “Growth of Phase Pure Yttrium Iron Garnet Thin Films on Silicon: The Effect of Substrate and Postdeposition Annealing Temperatures,” IEEE Trans. Magn. 51(11), 1–4 (2015).
    [PubMed]
  33. T. Goto, M. C. Onbaşlò, and C. A. Ross, “Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits,” Opt. Express 20(27), 28507–28517 (2012).
    [Crossref] [PubMed]
  34. S. H. Wemple, S. L. Blank, J. A. Seman, and W. A. Biolsi, “Optical properties of epitaxial iron garnet thin films,” Phys. Rev. B 9(5), 2134–2144 (1974).
    [Crossref]
  35. C. J. Brooks, A. P. Knights, and P. E. Jessop, “Vertically-integrated multimode interferometer coupler for 3D photonic circuits in SOI,” Opt. Express 19(4), 2916–2921 (2011).
    [Crossref] [PubMed]

2016 (1)

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18(1), 013001 (2016).
[Crossref]

2015 (3)

X. Liang, J. Xie, L. Deng, and L. Bi, “First principles calculation on the magnetic, optical properties and oxygen vacancy effect of CexY3− xFe5O12,” Appl. Phys. Lett. 106(5), 052401 (2015).
[Crossref]

Y. Zhang, J. Xie, L. Deng, and L. Bi, “Growth of Phase Pure Yttrium Iron Garnet Thin Films on Silicon: The Effect of Substrate and Postdeposition Annealing Temperatures,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[PubMed]

X. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

2014 (1)

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8 nm bandwidth for over 20 dB isolation,” Jpn. J. Appl. Phys. 53(2), 022202 (2014).
[Crossref]

2012 (2)

2011 (4)

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

C. J. Brooks, A. P. Knights, and P. E. Jessop, “Vertically-integrated multimode interferometer coupler for 3D photonic circuits in SOI,” Opt. Express 19(4), 2916–2921 (2011).
[Crossref] [PubMed]

M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011).
[Crossref] [PubMed]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

2009 (1)

R. Chen, D. Tao, H. Zhou, Y. Hao, J. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun. 282(5), 862–866 (2009).
[Crossref]

2005 (2)

J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, “An integrated optical waveguide isolator based on multimode interference by wafer direct bonding,” IEEE Trans. Magn. 41(10), 3520–3522 (2005).
[Crossref]

S. Darmawan, S. Y. Lee, C. W. Lee, and M. K. Chin, “A Rigorous Comparative Analysis of Directional Couplers and Multimode Interferometers Based on Ridge Waveguides,” IEEE J. Sel. Top. Quantum Electron. 11(2), 466–475 (2005).

2004 (1)

2001 (2)

M. Lohmeyer and R. Stoffer, “Integrated optical cross strip polarizer concept,” Opt. Quantum Electron. 33(4/5), 413–431 (2001).
[Crossref]

M. Lohmeyer, L. Wilkens, O. Zhuromskyy, H. Dötsch, and P. Hertel, “Integrated magnetooptic cross strip isolator,” Opt. Commun. 189(4–6), 251–259 (2001).
[Crossref]

2000 (2)

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, P. Hertel, H. Dötsch, and A. F. Popkov, “Analysis of nonreciprocal light propagation in multimode imaging devices,” Opt. Quantum Electron. 32(6/8), 885–897 (2000).
[Crossref]

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39(33), 6158–6164 (2000).
[Crossref] [PubMed]

1999 (1)

N. Bahlmann, M. Lohmeyer, O. Zhuromskyy, H. Dotsch, and P. Hertel, “Nonreciprocal Coupled Waveguides for Integrated Optical Isolators and Circulators for TM-Modes,” Opt. Commun. 161(4-6), 330–337 (1999).
[Crossref]

1997 (2)

H. Yokoi and T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33(21), 1787–1788 (1997).
[Crossref]

H. Yokoi and T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33(21), 1787–1788 (1997).
[Crossref]

1992 (1)

H. Dötsch, P. Hertel, B. Luhrmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28(5), 2979–2984 (1992).
[Crossref]

1986 (1)

T. Mizumoto, T. Oochi, K. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[Crossref]

1978 (1)

P. G. van Engen, “Mode degeneracy in magnetic garnet optical waveguides with high Faraday rotation,” J. Appl. Phys. 49(9), 4660–4662 (1978).
[Crossref]

1977 (1)

M. Torfeh, L. Courtois, L. Smoczynski, H. L. Gall, and J. M. Desvignes, “Coupling and phase matching coefficients in a magneto-optical TE-TM mode converter,” Physica B-C 89, 255–259 (1977).

1976 (1)

G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[Crossref]

1974 (2)

S. Yamamoto and T. Makimoto, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974).
[Crossref]

S. H. Wemple, S. L. Blank, J. A. Seman, and W. A. Biolsi, “Optical properties of epitaxial iron garnet thin films,” Phys. Rev. B 9(5), 2134–2144 (1974).
[Crossref]

Aimon, N. M.

X. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

Baets, R.

Bahlmann, N.

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, P. Hertel, H. Dötsch, and A. F. Popkov, “Analysis of nonreciprocal light propagation in multimode imaging devices,” Opt. Quantum Electron. 32(6/8), 885–897 (2000).
[Crossref]

N. Bahlmann, M. Lohmeyer, O. Zhuromskyy, H. Dotsch, and P. Hertel, “Nonreciprocal Coupled Waveguides for Integrated Optical Isolators and Circulators for TM-Modes,” Opt. Commun. 161(4-6), 330–337 (1999).
[Crossref]

Bi, L.

X. Liang, J. Xie, L. Deng, and L. Bi, “First principles calculation on the magnetic, optical properties and oxygen vacancy effect of CexY3− xFe5O12,” Appl. Phys. Lett. 106(5), 052401 (2015).
[Crossref]

Y. Zhang, J. Xie, L. Deng, and L. Bi, “Growth of Phase Pure Yttrium Iron Garnet Thin Films on Silicon: The Effect of Substrate and Postdeposition Annealing Temperatures,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[PubMed]

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Biolsi, W. A.

S. H. Wemple, S. L. Blank, J. A. Seman, and W. A. Biolsi, “Optical properties of epitaxial iron garnet thin films,” Phys. Rev. B 9(5), 2134–2144 (1974).
[Crossref]

Blank, S. L.

S. H. Wemple, S. L. Blank, J. A. Seman, and W. A. Biolsi, “Optical properties of epitaxial iron garnet thin films,” Phys. Rev. B 9(5), 2134–2144 (1974).
[Crossref]

Block, A.

S. Sung, A. Sharma, A. Block, K. Keuhn, and J. H. Stadler, “Magneto-optical garnet waveguides on semiconductor platforms: magnetics, mechanics, and photonics,” J. Appl. Phys.109(7), 07B738 (2011).

Bowers, J. E.

Brooks, C. J.

Byun, Y. T.

J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, “An integrated optical waveguide isolator based on multimode interference by wafer direct bonding,” IEEE Trans. Magn. 41(10), 3520–3522 (2005).
[Crossref]

Carroll, T. K.

T. K. Carroll, M. Levy, and R. El-Ganainy, “Nonreciprocal coupler isolator,” in Fiber-Optics and Photonics Technology Conference (AVFOP) (IEEE,2014).

Chen, R.

R. Chen, D. Tao, H. Zhou, Y. Hao, J. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun. 282(5), 862–866 (2009).
[Crossref]

Chin, M. K.

S. Darmawan, S. Y. Lee, C. W. Lee, and M. K. Chin, “A Rigorous Comparative Analysis of Directional Couplers and Multimode Interferometers Based on Ridge Waveguides,” IEEE J. Sel. Top. Quantum Electron. 11(2), 466–475 (2005).

S. Y. Lee, S. Darmawan, C. W. Lee, and M. K. Chin, “Transformation between directional couplers and multi-mode interferometers based on ridge waveguides,” Opt. Express 12(14), 3079–3085 (2004).
[Crossref] [PubMed]

Courtois, L.

M. Torfeh, L. Courtois, L. Smoczynski, H. L. Gall, and J. M. Desvignes, “Coupling and phase matching coefficients in a magneto-optical TE-TM mode converter,” Physica B-C 89, 255–259 (1977).

Darmawan, S.

S. Darmawan, S. Y. Lee, C. W. Lee, and M. K. Chin, “A Rigorous Comparative Analysis of Directional Couplers and Multimode Interferometers Based on Ridge Waveguides,” IEEE J. Sel. Top. Quantum Electron. 11(2), 466–475 (2005).

S. Y. Lee, S. Darmawan, C. W. Lee, and M. K. Chin, “Transformation between directional couplers and multi-mode interferometers based on ridge waveguides,” Opt. Express 12(14), 3079–3085 (2004).
[Crossref] [PubMed]

Deng, L.

Y. Zhang, J. Xie, L. Deng, and L. Bi, “Growth of Phase Pure Yttrium Iron Garnet Thin Films on Silicon: The Effect of Substrate and Postdeposition Annealing Temperatures,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[PubMed]

X. Liang, J. Xie, L. Deng, and L. Bi, “First principles calculation on the magnetic, optical properties and oxygen vacancy effect of CexY3− xFe5O12,” Appl. Phys. Lett. 106(5), 052401 (2015).
[Crossref]

Desvignes, J. M.

M. Torfeh, L. Courtois, L. Smoczynski, H. L. Gall, and J. M. Desvignes, “Coupling and phase matching coefficients in a magneto-optical TE-TM mode converter,” Physica B-C 89, 255–259 (1977).

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Dotsch, H.

N. Bahlmann, M. Lohmeyer, O. Zhuromskyy, H. Dotsch, and P. Hertel, “Nonreciprocal Coupled Waveguides for Integrated Optical Isolators and Circulators for TM-Modes,” Opt. Commun. 161(4-6), 330–337 (1999).
[Crossref]

Dötsch, H.

M. Lohmeyer, L. Wilkens, O. Zhuromskyy, H. Dötsch, and P. Hertel, “Integrated magnetooptic cross strip isolator,” Opt. Commun. 189(4–6), 251–259 (2001).
[Crossref]

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, P. Hertel, H. Dötsch, and A. F. Popkov, “Analysis of nonreciprocal light propagation in multimode imaging devices,” Opt. Quantum Electron. 32(6/8), 885–897 (2000).
[Crossref]

H. Dötsch, P. Hertel, B. Luhrmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28(5), 2979–2984 (1992).
[Crossref]

Du, Q.

X. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

El-Ganainy, R.

T. K. Carroll, M. Levy, and R. El-Ganainy, “Nonreciprocal coupler isolator,” in Fiber-Optics and Photonics Technology Conference (AVFOP) (IEEE,2014).

Fujie, A.

A. Fujie, Y. Shoji, and T. Mizumoto, “Silicon waveguide optical isolator integrated with TE-TM mode converter,” in Optical Fiber Communication Conference.2015.
[Crossref]

Futakuchi, N.

Gall, H. L.

M. Torfeh, L. Courtois, L. Smoczynski, H. L. Gall, and J. M. Desvignes, “Coupling and phase matching coefficients in a magneto-optical TE-TM mode converter,” Physica B-C 89, 255–259 (1977).

Ghosh, S.

Goto, T.

X. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

T. Goto, M. C. Onbaşlò, and C. A. Ross, “Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits,” Opt. Express 20(27), 28507–28517 (2012).
[Crossref] [PubMed]

Hao, Y.

R. Chen, D. Tao, H. Zhou, Y. Hao, J. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun. 282(5), 862–866 (2009).
[Crossref]

Harada, K.

T. Mizumoto, T. Oochi, K. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[Crossref]

Hertel, P.

M. Lohmeyer, L. Wilkens, O. Zhuromskyy, H. Dötsch, and P. Hertel, “Integrated magnetooptic cross strip isolator,” Opt. Commun. 189(4–6), 251–259 (2001).
[Crossref]

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, P. Hertel, H. Dötsch, and A. F. Popkov, “Analysis of nonreciprocal light propagation in multimode imaging devices,” Opt. Quantum Electron. 32(6/8), 885–897 (2000).
[Crossref]

N. Bahlmann, M. Lohmeyer, O. Zhuromskyy, H. Dotsch, and P. Hertel, “Nonreciprocal Coupled Waveguides for Integrated Optical Isolators and Circulators for TM-Modes,” Opt. Commun. 161(4-6), 330–337 (1999).
[Crossref]

H. Dötsch, P. Hertel, B. Luhrmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28(5), 2979–2984 (1992).
[Crossref]

Hu, J.

X. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Jessop, P. E.

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Jiang, X.

R. Chen, D. Tao, H. Zhou, Y. Hao, J. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun. 282(5), 862–866 (2009).
[Crossref]

Keuhn, K.

S. Sung, A. Sharma, A. Block, K. Keuhn, and J. H. Stadler, “Magneto-optical garnet waveguides on semiconductor platforms: magnetics, mechanics, and photonics,” J. Appl. Phys.109(7), 07B738 (2011).

Keyvavinia, S.

Kim, D. H.

X. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kimerling, L.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Knights, A. P.

Kromer, H.

Lacklison, D. E.

G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[Crossref]

Lee, C. W.

S. Darmawan, S. Y. Lee, C. W. Lee, and M. K. Chin, “A Rigorous Comparative Analysis of Directional Couplers and Multimode Interferometers Based on Ridge Waveguides,” IEEE J. Sel. Top. Quantum Electron. 11(2), 466–475 (2005).

S. Y. Lee, S. Darmawan, C. W. Lee, and M. K. Chin, “Transformation between directional couplers and multi-mode interferometers based on ridge waveguides,” Opt. Express 12(14), 3079–3085 (2004).
[Crossref] [PubMed]

Lee, S.

J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, “An integrated optical waveguide isolator based on multimode interference by wafer direct bonding,” IEEE Trans. Magn. 41(10), 3520–3522 (2005).
[Crossref]

Lee, S. Y.

S. Darmawan, S. Y. Lee, C. W. Lee, and M. K. Chin, “A Rigorous Comparative Analysis of Directional Couplers and Multimode Interferometers Based on Ridge Waveguides,” IEEE J. Sel. Top. Quantum Electron. 11(2), 466–475 (2005).

S. Y. Lee, S. Darmawan, C. W. Lee, and M. K. Chin, “Transformation between directional couplers and multi-mode interferometers based on ridge waveguides,” Opt. Express 12(14), 3079–3085 (2004).
[Crossref] [PubMed]

Lee, W. Y.

J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, “An integrated optical waveguide isolator based on multimode interference by wafer direct bonding,” IEEE Trans. Magn. 41(10), 3520–3522 (2005).
[Crossref]

Levy, M.

T. K. Carroll, M. Levy, and R. El-Ganainy, “Nonreciprocal coupler isolator,” in Fiber-Optics and Photonics Technology Conference (AVFOP) (IEEE,2014).

Liang, X.

X. Liang, J. Xie, L. Deng, and L. Bi, “First principles calculation on the magnetic, optical properties and oxygen vacancy effect of CexY3− xFe5O12,” Appl. Phys. Lett. 106(5), 052401 (2015).
[Crossref]

Lohmeyer, M.

M. Lohmeyer and R. Stoffer, “Integrated optical cross strip polarizer concept,” Opt. Quantum Electron. 33(4/5), 413–431 (2001).
[Crossref]

M. Lohmeyer, L. Wilkens, O. Zhuromskyy, H. Dötsch, and P. Hertel, “Integrated magnetooptic cross strip isolator,” Opt. Commun. 189(4–6), 251–259 (2001).
[Crossref]

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, P. Hertel, H. Dötsch, and A. F. Popkov, “Analysis of nonreciprocal light propagation in multimode imaging devices,” Opt. Quantum Electron. 32(6/8), 885–897 (2000).
[Crossref]

N. Bahlmann, M. Lohmeyer, O. Zhuromskyy, H. Dotsch, and P. Hertel, “Nonreciprocal Coupled Waveguides for Integrated Optical Isolators and Circulators for TM-Modes,” Opt. Commun. 161(4-6), 330–337 (1999).
[Crossref]

Luhrmann, B.

H. Dötsch, P. Hertel, B. Luhrmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28(5), 2979–2984 (1992).
[Crossref]

Makimoto, T.

S. Yamamoto and T. Makimoto, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974).
[Crossref]

Miura, K.

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18(1), 013001 (2016).
[Crossref]

Mizumoto, T.

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18(1), 013001 (2016).
[Crossref]

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8 nm bandwidth for over 20 dB isolation,” Jpn. J. Appl. Phys. 53(2), 022202 (2014).
[Crossref]

S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20(2), 1839–1848 (2012).
[Crossref] [PubMed]

M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011).
[Crossref] [PubMed]

J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, “An integrated optical waveguide isolator based on multimode interference by wafer direct bonding,” IEEE Trans. Magn. 41(10), 3520–3522 (2005).
[Crossref]

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39(33), 6158–6164 (2000).
[Crossref] [PubMed]

H. Yokoi and T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33(21), 1787–1788 (1997).
[Crossref]

H. Yokoi and T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33(21), 1787–1788 (1997).
[Crossref]

T. Mizumoto, T. Oochi, K. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[Crossref]

Y. Shirato, Y. Shoji, and T. Mizumoto, “Over 20-dB isolation with 8-nm bandwidth in silicon MZI optical isolator,” in 10th International Conference on Group IV Photonics. 2013.
[Crossref]

A. Fujie, Y. Shoji, and T. Mizumoto, “Silicon waveguide optical isolator integrated with TE-TM mode converter,” in Optical Fiber Communication Conference.2015.
[Crossref]

Naito, Y.

T. Mizumoto, T. Oochi, K. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[Crossref]

Nakano, Y.

Ok, S. H.

J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, “An integrated optical waveguide isolator based on multimode interference by wafer direct bonding,” IEEE Trans. Magn. 41(10), 3520–3522 (2005).
[Crossref]

Onbasli, M. C.

X. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

Onbaslò, M. C.

Oochi, T.

T. Mizumoto, T. Oochi, K. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[Crossref]

Pintus, P.

Popkov, A. F.

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, P. Hertel, H. Dötsch, and A. F. Popkov, “Analysis of nonreciprocal light propagation in multimode imaging devices,” Opt. Quantum Electron. 32(6/8), 885–897 (2000).
[Crossref]

Roelkens, G.

Roh, J. W.

J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, “An integrated optical waveguide isolator based on multimode interference by wafer direct bonding,” IEEE Trans. Magn. 41(10), 3520–3522 (2005).
[Crossref]

Ross, C. A.

X. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

T. Goto, M. C. Onbaşlò, and C. A. Ross, “Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits,” Opt. Express 20(27), 28507–28517 (2012).
[Crossref] [PubMed]

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Scott, G. B.

G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[Crossref]

Seman, J. A.

S. H. Wemple, S. L. Blank, J. A. Seman, and W. A. Biolsi, “Optical properties of epitaxial iron garnet thin films,” Phys. Rev. B 9(5), 2134–2144 (1974).
[Crossref]

Sharma, A.

S. Sung, A. Sharma, A. Block, K. Keuhn, and J. H. Stadler, “Magneto-optical garnet waveguides on semiconductor platforms: magnetics, mechanics, and photonics,” J. Appl. Phys.109(7), 07B738 (2011).

Shinjo, N.

Shirato, Y.

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8 nm bandwidth for over 20 dB isolation,” Jpn. J. Appl. Phys. 53(2), 022202 (2014).
[Crossref]

Y. Shirato, Y. Shoji, and T. Mizumoto, “Over 20-dB isolation with 8-nm bandwidth in silicon MZI optical isolator,” in 10th International Conference on Group IV Photonics. 2013.
[Crossref]

Shoji, Y.

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18(1), 013001 (2016).
[Crossref]

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8 nm bandwidth for over 20 dB isolation,” Jpn. J. Appl. Phys. 53(2), 022202 (2014).
[Crossref]

Y. Shirato, Y. Shoji, and T. Mizumoto, “Over 20-dB isolation with 8-nm bandwidth in silicon MZI optical isolator,” in 10th International Conference on Group IV Photonics. 2013.
[Crossref]

A. Fujie, Y. Shoji, and T. Mizumoto, “Silicon waveguide optical isolator integrated with TE-TM mode converter,” in Optical Fiber Communication Conference.2015.
[Crossref]

Smoczynski, L.

M. Torfeh, L. Courtois, L. Smoczynski, H. L. Gall, and J. M. Desvignes, “Coupling and phase matching coefficients in a magneto-optical TE-TM mode converter,” Physica B-C 89, 255–259 (1977).

Stadler, J. H.

S. Sung, A. Sharma, A. Block, K. Keuhn, and J. H. Stadler, “Magneto-optical garnet waveguides on semiconductor platforms: magnetics, mechanics, and photonics,” J. Appl. Phys.109(7), 07B738 (2011).

Stoffer, R.

M. Lohmeyer and R. Stoffer, “Integrated optical cross strip polarizer concept,” Opt. Quantum Electron. 33(4/5), 413–431 (2001).
[Crossref]

Sun, X.

X. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

Sung, S.

S. Sung, A. Sharma, A. Block, K. Keuhn, and J. H. Stadler, “Magneto-optical garnet waveguides on semiconductor platforms: magnetics, mechanics, and photonics,” J. Appl. Phys.109(7), 07B738 (2011).

Sure, S.

H. Dötsch, P. Hertel, B. Luhrmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28(5), 2979–2984 (1992).
[Crossref]

Tao, D.

R. Chen, D. Tao, H. Zhou, Y. Hao, J. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun. 282(5), 862–866 (2009).
[Crossref]

Tien, M. C.

Torfeh, M.

M. Torfeh, L. Courtois, L. Smoczynski, H. L. Gall, and J. M. Desvignes, “Coupling and phase matching coefficients in a magneto-optical TE-TM mode converter,” Physica B-C 89, 255–259 (1977).

van Engen, P. G.

P. G. van Engen, “Mode degeneracy in magnetic garnet optical waveguides with high Faraday rotation,” J. Appl. Phys. 49(9), 4660–4662 (1978).
[Crossref]

Van Roy, W.

Wang, M.

R. Chen, D. Tao, H. Zhou, Y. Hao, J. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun. 282(5), 862–866 (2009).
[Crossref]

Wemple, S. H.

S. H. Wemple, S. L. Blank, J. A. Seman, and W. A. Biolsi, “Optical properties of epitaxial iron garnet thin films,” Phys. Rev. B 9(5), 2134–2144 (1974).
[Crossref]

Wilkens, L.

M. Lohmeyer, L. Wilkens, O. Zhuromskyy, H. Dötsch, and P. Hertel, “Integrated magnetooptic cross strip isolator,” Opt. Commun. 189(4–6), 251–259 (2001).
[Crossref]

Winkler, H. P.

H. Dötsch, P. Hertel, B. Luhrmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28(5), 2979–2984 (1992).
[Crossref]

Woo, D. H.

J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, “An integrated optical waveguide isolator based on multimode interference by wafer direct bonding,” IEEE Trans. Magn. 41(10), 3520–3522 (2005).
[Crossref]

Xie, J.

Y. Zhang, J. Xie, L. Deng, and L. Bi, “Growth of Phase Pure Yttrium Iron Garnet Thin Films on Silicon: The Effect of Substrate and Postdeposition Annealing Temperatures,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[PubMed]

X. Liang, J. Xie, L. Deng, and L. Bi, “First principles calculation on the magnetic, optical properties and oxygen vacancy effect of CexY3− xFe5O12,” Appl. Phys. Lett. 106(5), 052401 (2015).
[Crossref]

Yamamoto, S.

S. Yamamoto and T. Makimoto, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974).
[Crossref]

Yang, J.

R. Chen, D. Tao, H. Zhou, Y. Hao, J. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun. 282(5), 862–866 (2009).
[Crossref]

Yang, J. S.

J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, “An integrated optical waveguide isolator based on multimode interference by wafer direct bonding,” IEEE Trans. Magn. 41(10), 3520–3522 (2005).
[Crossref]

Ye, M.

H. Dötsch, P. Hertel, B. Luhrmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28(5), 2979–2984 (1992).
[Crossref]

Yokoi, H.

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39(33), 6158–6164 (2000).
[Crossref] [PubMed]

H. Yokoi and T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33(21), 1787–1788 (1997).
[Crossref]

H. Yokoi and T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33(21), 1787–1788 (1997).
[Crossref]

Zhang, Y.

Y. Zhang, J. Xie, L. Deng, and L. Bi, “Growth of Phase Pure Yttrium Iron Garnet Thin Films on Silicon: The Effect of Substrate and Postdeposition Annealing Temperatures,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[PubMed]

Zhou, H.

R. Chen, D. Tao, H. Zhou, Y. Hao, J. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun. 282(5), 862–866 (2009).
[Crossref]

Zhuromskyy, O.

M. Lohmeyer, L. Wilkens, O. Zhuromskyy, H. Dötsch, and P. Hertel, “Integrated magnetooptic cross strip isolator,” Opt. Commun. 189(4–6), 251–259 (2001).
[Crossref]

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, P. Hertel, H. Dötsch, and A. F. Popkov, “Analysis of nonreciprocal light propagation in multimode imaging devices,” Opt. Quantum Electron. 32(6/8), 885–897 (2000).
[Crossref]

N. Bahlmann, M. Lohmeyer, O. Zhuromskyy, H. Dotsch, and P. Hertel, “Nonreciprocal Coupled Waveguides for Integrated Optical Isolators and Circulators for TM-Modes,” Opt. Commun. 161(4-6), 330–337 (1999).
[Crossref]

ACS Photonics (1)

X. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation,” ACS Photonics 2(7), 856–863 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Liang, J. Xie, L. Deng, and L. Bi, “First principles calculation on the magnetic, optical properties and oxygen vacancy effect of CexY3− xFe5O12,” Appl. Phys. Lett. 106(5), 052401 (2015).
[Crossref]

Electron. Lett. (2)

H. Yokoi and T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33(21), 1787–1788 (1997).
[Crossref]

H. Yokoi and T. Mizumoto, “Proposed configuration of integrated optical isolator employing wafer-direct bonding technique,” Electron. Lett. 33(21), 1787–1788 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Darmawan, S. Y. Lee, C. W. Lee, and M. K. Chin, “A Rigorous Comparative Analysis of Directional Couplers and Multimode Interferometers Based on Ridge Waveguides,” IEEE J. Sel. Top. Quantum Electron. 11(2), 466–475 (2005).

IEEE Trans. Magn. (4)

Y. Zhang, J. Xie, L. Deng, and L. Bi, “Growth of Phase Pure Yttrium Iron Garnet Thin Films on Silicon: The Effect of Substrate and Postdeposition Annealing Temperatures,” IEEE Trans. Magn. 51(11), 1–4 (2015).
[PubMed]

H. Dötsch, P. Hertel, B. Luhrmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28(5), 2979–2984 (1992).
[Crossref]

G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[Crossref]

J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, “An integrated optical waveguide isolator based on multimode interference by wafer direct bonding,” IEEE Trans. Magn. 41(10), 3520–3522 (2005).
[Crossref]

J. Appl. Phys. (2)

S. Yamamoto and T. Makimoto, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974).
[Crossref]

P. G. van Engen, “Mode degeneracy in magnetic garnet optical waveguides with high Faraday rotation,” J. Appl. Phys. 49(9), 4660–4662 (1978).
[Crossref]

J. Lightwave Technol. (1)

T. Mizumoto, T. Oochi, K. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[Crossref]

J. Opt. (1)

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18(1), 013001 (2016).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8 nm bandwidth for over 20 dB isolation,” Jpn. J. Appl. Phys. 53(2), 022202 (2014).
[Crossref]

Nat. Photonics (1)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Opt. Commun. (3)

M. Lohmeyer, L. Wilkens, O. Zhuromskyy, H. Dötsch, and P. Hertel, “Integrated magnetooptic cross strip isolator,” Opt. Commun. 189(4–6), 251–259 (2001).
[Crossref]

R. Chen, D. Tao, H. Zhou, Y. Hao, J. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun. 282(5), 862–866 (2009).
[Crossref]

N. Bahlmann, M. Lohmeyer, O. Zhuromskyy, H. Dotsch, and P. Hertel, “Nonreciprocal Coupled Waveguides for Integrated Optical Isolators and Circulators for TM-Modes,” Opt. Commun. 161(4-6), 330–337 (1999).
[Crossref]

Opt. Express (5)

Opt. Quantum Electron. (2)

M. Lohmeyer and R. Stoffer, “Integrated optical cross strip polarizer concept,” Opt. Quantum Electron. 33(4/5), 413–431 (2001).
[Crossref]

O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, P. Hertel, H. Dötsch, and A. F. Popkov, “Analysis of nonreciprocal light propagation in multimode imaging devices,” Opt. Quantum Electron. 32(6/8), 885–897 (2000).
[Crossref]

Phys. Rev. B (1)

S. H. Wemple, S. L. Blank, J. A. Seman, and W. A. Biolsi, “Optical properties of epitaxial iron garnet thin films,” Phys. Rev. B 9(5), 2134–2144 (1974).
[Crossref]

Physica B-C (1)

M. Torfeh, L. Courtois, L. Smoczynski, H. L. Gall, and J. M. Desvignes, “Coupling and phase matching coefficients in a magneto-optical TE-TM mode converter,” Physica B-C 89, 255–259 (1977).

Proc. SPIE (1)

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Other (6)

S. Sung, A. Sharma, A. Block, K. Keuhn, and J. H. Stadler, “Magneto-optical garnet waveguides on semiconductor platforms: magnetics, mechanics, and photonics,” J. Appl. Phys.109(7), 07B738 (2011).

A. Fujie, Y. Shoji, and T. Mizumoto, “Silicon waveguide optical isolator integrated with TE-TM mode converter,” in Optical Fiber Communication Conference.2015.
[Crossref]

Y. Zhang, L. Bi, and L. Deng, “Enhanced magneto-optical effect in Ce1.5Y1.5Fe5O12 thin films deposited on silicon by pulsed laser deposition,” in preparation.

Y. Shirato, Y. Shoji, and T. Mizumoto, “Over 20-dB isolation with 8-nm bandwidth in silicon MZI optical isolator,” in 10th International Conference on Group IV Photonics. 2013.
[Crossref]

T. K. Carroll, M. Levy, and R. El-Ganainy, “Nonreciprocal coupler isolator,” in Fiber-Optics and Photonics Technology Conference (AVFOP) (IEEE,2014).

V. J. Fratello and R. Wolfe, “Epitaxial garnet films for nonreciprocal magneto-optic devices,” Handbook of Thin Films 4 (Academic, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Sketch of the proposed SOI MMI optical isolator.
Fig. 2
Fig. 2 Hx field distribution for (a) the fundamental TM0 mode and (b) the first order TM1 mode of the Si/Ce:YIG/Si multimode waveguide. (c) Nonreciprocal phase shift NRPS0 for TM0 mode, NRPS1 for TM1 mode and their difference NRPS versus the SOI waveguide height. (d) Contour plot of NRPS for different silicon layer thickness.
Fig. 3
Fig. 3 (a) Coupling efficiencies w0 and w1 between the single mode waveguide and the two modes of the multimode waveguide, and the forward and backward power transmission Pf and Pb of the proposed device as a function of the single mode silicon waveguide height. (b)Isolation ratio and coupling loss of the isolator device as a function of the singlemode silicon waveguide height.
Fig. 4
Fig. 4 (a) Transmission spectrum for the forward and backward propagation directions of the proposed optical isolator. (b) Zoomed-in transmission spectrum at around 1550 nm wavelength. The dashed lines show the transmission spectrum of two cascaded MMI isolators, featuring wider 20 dB isolation bandwidth of 4.6 nm.
Fig. 5
Fig. 5 (a): Transmission spectrum for isolators that have different YIG layer. (b): Comparation of performance for isolators that have different YIG layer.

Tables (3)

Tables Icon

Table 1 The device parameters of the proposed MMI isolator

Tables Icon

Table 2 The radiation,reflection and absorption loss of the proposed MMI isolator

Tables Icon

Table 3 The fabrication tolerances of the proposed isolator

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δβ= β f β b = γ ε 2 ( y | H x | 2 )dxdy ε 1 | H x | 2 dxdy
P(L)= w 0 2 + w 1 2 +2 w 0 w 1 cos(( β 0 β 1 )L)
w n = z ^ ( E s * × H n + E n × H s * )dxdy z ^ ( E s * × H s + E s × H s * )dxdy
L MMI = π |( β f0 β f1 )( β b0 β b1 )| = π |( β f0 β b0 )( β f1 β b1 )| = π |Δ β 1 Δ β 0 |
dP dλ =2 w 0 d w 0 dλ +2 w 1 d w 1 dλ +2 w 0 w 1 ( d w 0 dλ + d w 1 dλ )cos(( β 0 β 1 )L) +2L w 0 w 1 sin(( β 0 β 1 )L) d( β 0 β 1 ) dλ
Isolation(dB)= ω 0 2 + ω 1 2 +2 ω 0 ω 1 cos(( β f0 β f 1 )L) ω 0 2 + ω 1 2 +2 ω 0 ω 1 cos(( β b0 β b1 )L)
Loss(dB)= ω 0 2 + ω 1 2 +2 ω 0 ω 1 cos(( β f0 β f 1 )L)

Metrics