Abstract

A novel method for enhanced circular dichroism (CD) detection is proposed based on a surface plasmon resonance (SPR) prism coupler and a polarization scanning ellipsometry technique. An analytical model is derived to extract the CD and degree of polarization (DOP) properties of optical samples with and without scattering effects, respectively. The validity of the analytical model is confirmed by means of numerical simulations. The simulation results show that the proposed detection method has a sensitivity of 10−5~10−6 RIU (refractive index unit) for refractive indices in the range of 1.32~1.36 and 1.3100~1.3118. The practical feasibility of the proposed method is demonstrated by the experimental results for the sensitivity of the CD with the chlorophyllin samples with/without scattering effect. It is shown that for both types of sample, the extracted CD value increases linearly with the chlorophyll concentration over the considered range. In general, the results obtained in this study show that the measured CD response is highly sensitive to the polarization scanning angle. Consequently, the potential of polarization scanning ellipsometry for high-resolution CD detection is confirmed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon resonance prism coupler for enhanced circular birefringence sensing and application to non-invasive glucose detection

Quoc-Hung Phan, You-Rui Lai, Wei-Zhe Xiao, Thi-Thu-Hien Pham, and Chi-Hsiang Lien
Opt. Express 28(17) 24889-24899 (2020)

Giant circular dichroism enhancement and chiroptical illusion in hybrid molecule-plasmonic nanostructures

Yineng Liu, Rongyao Wang, and Xiangdong Zhang
Opt. Express 22(4) 4357-4370 (2014)

Probing bianisotropic biomolecules via a surface plasmon resonance sensor

Maoyan Wang, Hailong Li, Tong Xu, Hu Zheng, Mengxia Yu, Guiping Li, Jun Xu, and Jian Wu
Opt. Express 26(22) 28277-28287 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Li, X. Nguyen, L. Narhi, L. Chemmalil, E. Towers, S. Muzammil, J. Gabrielson, and Y. Jiang, “Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near- and far-UV CD for protein higher order structural analysis,” J. Pharm. Sci. 100(11), 4642–4654 (2011).
    [Crossref] [PubMed]
  2. S. Fiedler, L. Cole, and S. Keller, “Automated circular dichroism spectroscopy for medium-throughput analysis of protein conformation,” Anal. Chem. 85(3), 1868–1872 (2013).
    [Crossref] [PubMed]
  3. G. Siligardi, R. Hussain, S. G. Patching, and M. K. Phillips-Jones, “Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy,” Biochim. Biophys. Acta 1838(11 Pt A), 34–42 (2014).
    [Crossref] [PubMed]
  4. N. Greenfield and G. D. Fasman, “Computed circular dichroism spectra for the evaluation of protein conformation,” Biochemistry 8(10), 4108–4116 (1969).
    [Crossref] [PubMed]
  5. K. Matsuo, R. Yonehara, and K. Gekko, “Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy,” J. Biochem. 135(3), 405–411 (2004).
    [Crossref] [PubMed]
  6. Z. Fan, H. Zhang, and A. O. Govorov, “Optical properties of chiral plasmonic tetramers: circular dichroism and multiple effects,” J. Phys. Chem. C 117(28), 14770–14777 (2013).
    [Crossref]
  7. M. G. Cox, J. Ravi, P. D. Rakowska, and A. E. Knight, “Uncertainty in measurement of protein circular dichroism spectra,” Metrologia 51(1), 67–79 (2014).
    [Crossref]
  8. C. C. Liao and Y. L. Lo, “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices,” Opt. Express 21(14), 16831–16853 (2013).
    [Crossref] [PubMed]
  9. T. Nehira, K. Ishihara, K. Matsuo, S. Izumi, T. Yamazaki, and A. Ishida, “A sensitive method based on fluorescence-detected circular dichroism for protein local structure analysis,” Anal. Biochem. 430(2), 179–184 (2012).
    [Crossref] [PubMed]
  10. S. Nagatomo, M. Nagai, T. Ogura, and T. Kitagawa, “Near-UV circular dichroism and UV resonance Raman spectra of tryptophan residues as a structural marker of proteins,” J. Phys. Chem. B 117(32), 9343–9353 (2013).
    [Crossref] [PubMed]
  11. Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, and Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
    [Crossref] [PubMed]
  12. A. De Simone, F. Mancini, F. Real Fernàndez, P. Rovero, C. Bertucci, and V. Andrisano, “Surface plasmon resonance, fluorescence, and circular dichroism studies for the characterization of the binding of BACE-1 inhibitors,” Anal. Bioanal. Chem. 405(2-3), 827–835 (2013).
    [Crossref] [PubMed]
  13. O. Govorov, “Plasmon induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystal application to various geometries,” J. Phys. Chem. C 115(16), 7914–7923 (2011).
    [Crossref]
  14. A. Querejeta-Fernández, B. Kopera, K. S. Prado, A. Klinkova, M. Methot, G. Chauve, J. Bouchard, A. S. Helmy, and E. Kumacheva, “Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles,” ACS Nano 9(10), 10377–10385 (2015).
    [Crossref] [PubMed]
  15. Y. L. Lo, Y. F. Chung, and H. H. Lin, “Polarization scanning ellipsometry for measuring effective ellipsometry parameters of isotropic and anisotropic thin films,” J. Lightwave Technol. 31(14), 2361–2369 (2013).
    [Crossref]
  16. H. H. Lin, Q. H. Phan, and Y. L. Lo, “Characterization of voltage-driven twisted nematic liquid crystal cell by dynamic polarization scanning ellipsometry,” Opt. Express 23(8), 10213–10223 (2015).
    [Crossref] [PubMed]
  17. T. T. Pham and Y. L. Lo, “Extraction of effective parameters of turbid media utilizing the Mueller matrix approach: study of glucose sensing,” J. Biomed. Opt. 17(9), 0970021 (2012).
    [Crossref] [PubMed]
  18. Q. H. Phan, P. M. Yang, and Y. L. Lo, “Surface plasmon resonance prism coupler for gas sensing based on Stokes polarimetry,” Sens. Actuat. B 216, 247–254 (2015).
    [Crossref]
  19. F. Lin and Y. J. Jen, “Use of Ta2O5 biaxial thin film as a high efficiency polarization converter,” J. Nanophotonics 6, 061507 (2012).
    [Crossref]
  20. W. Berreman, “Optics in stratified and anisotropic media 4x4 matrix formulation,” J. Opt. Soc. Am. 62(4), 502–510 (1972).
    [Crossref]
  21. M. W. Williams, “Depolarization and cross polarization in ellipsometry of rough surfaces,” Appl. Opt. 25(20), 3616–3622 (1986).
    [Crossref] [PubMed]
  22. C. Houssier and K. Sauer, “Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments,” J. Am. Chem. Soc. 92(4), 779–791 (1970).
    [Crossref]
  23. R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, and Y. M. Irwan, “Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC),” Energy Procedia 79, 896–902 (2015).
    [Crossref]
  24. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  25. J. Ye. Huang, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012).
    [Crossref]
  26. S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano 5(2), 897–904 (2011).
    [Crossref] [PubMed]
  27. P. G. Campo, V. Bonanni, C. J. Fernandez, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic models in gold nanoparticles,” Nano Lett. 13, 4785–4789 (2013).
    [PubMed]
  28. Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Circular dichroism based refractive index sensing using chiral metamaterials,” Chem. Commun. (Camb.) 52(10), 2047–2050 (2016).
    [Crossref] [PubMed]

2016 (1)

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Circular dichroism based refractive index sensing using chiral metamaterials,” Chem. Commun. (Camb.) 52(10), 2047–2050 (2016).
[Crossref] [PubMed]

2015 (4)

Q. H. Phan, P. M. Yang, and Y. L. Lo, “Surface plasmon resonance prism coupler for gas sensing based on Stokes polarimetry,” Sens. Actuat. B 216, 247–254 (2015).
[Crossref]

R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, and Y. M. Irwan, “Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC),” Energy Procedia 79, 896–902 (2015).
[Crossref]

A. Querejeta-Fernández, B. Kopera, K. S. Prado, A. Klinkova, M. Methot, G. Chauve, J. Bouchard, A. S. Helmy, and E. Kumacheva, “Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles,” ACS Nano 9(10), 10377–10385 (2015).
[Crossref] [PubMed]

H. H. Lin, Q. H. Phan, and Y. L. Lo, “Characterization of voltage-driven twisted nematic liquid crystal cell by dynamic polarization scanning ellipsometry,” Opt. Express 23(8), 10213–10223 (2015).
[Crossref] [PubMed]

2014 (2)

G. Siligardi, R. Hussain, S. G. Patching, and M. K. Phillips-Jones, “Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy,” Biochim. Biophys. Acta 1838(11 Pt A), 34–42 (2014).
[Crossref] [PubMed]

M. G. Cox, J. Ravi, P. D. Rakowska, and A. E. Knight, “Uncertainty in measurement of protein circular dichroism spectra,” Metrologia 51(1), 67–79 (2014).
[Crossref]

2013 (7)

C. C. Liao and Y. L. Lo, “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices,” Opt. Express 21(14), 16831–16853 (2013).
[Crossref] [PubMed]

Z. Fan, H. Zhang, and A. O. Govorov, “Optical properties of chiral plasmonic tetramers: circular dichroism and multiple effects,” J. Phys. Chem. C 117(28), 14770–14777 (2013).
[Crossref]

S. Fiedler, L. Cole, and S. Keller, “Automated circular dichroism spectroscopy for medium-throughput analysis of protein conformation,” Anal. Chem. 85(3), 1868–1872 (2013).
[Crossref] [PubMed]

Y. L. Lo, Y. F. Chung, and H. H. Lin, “Polarization scanning ellipsometry for measuring effective ellipsometry parameters of isotropic and anisotropic thin films,” J. Lightwave Technol. 31(14), 2361–2369 (2013).
[Crossref]

S. Nagatomo, M. Nagai, T. Ogura, and T. Kitagawa, “Near-UV circular dichroism and UV resonance Raman spectra of tryptophan residues as a structural marker of proteins,” J. Phys. Chem. B 117(32), 9343–9353 (2013).
[Crossref] [PubMed]

A. De Simone, F. Mancini, F. Real Fernàndez, P. Rovero, C. Bertucci, and V. Andrisano, “Surface plasmon resonance, fluorescence, and circular dichroism studies for the characterization of the binding of BACE-1 inhibitors,” Anal. Bioanal. Chem. 405(2-3), 827–835 (2013).
[Crossref] [PubMed]

P. G. Campo, V. Bonanni, C. J. Fernandez, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic models in gold nanoparticles,” Nano Lett. 13, 4785–4789 (2013).
[PubMed]

2012 (5)

J. Ye. Huang, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012).
[Crossref]

F. Lin and Y. J. Jen, “Use of Ta2O5 biaxial thin film as a high efficiency polarization converter,” J. Nanophotonics 6, 061507 (2012).
[Crossref]

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, and Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[Crossref] [PubMed]

T. T. Pham and Y. L. Lo, “Extraction of effective parameters of turbid media utilizing the Mueller matrix approach: study of glucose sensing,” J. Biomed. Opt. 17(9), 0970021 (2012).
[Crossref] [PubMed]

T. Nehira, K. Ishihara, K. Matsuo, S. Izumi, T. Yamazaki, and A. Ishida, “A sensitive method based on fluorescence-detected circular dichroism for protein local structure analysis,” Anal. Biochem. 430(2), 179–184 (2012).
[Crossref] [PubMed]

2011 (3)

C. H. Li, X. Nguyen, L. Narhi, L. Chemmalil, E. Towers, S. Muzammil, J. Gabrielson, and Y. Jiang, “Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near- and far-UV CD for protein higher order structural analysis,” J. Pharm. Sci. 100(11), 4642–4654 (2011).
[Crossref] [PubMed]

O. Govorov, “Plasmon induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystal application to various geometries,” J. Phys. Chem. C 115(16), 7914–7923 (2011).
[Crossref]

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref] [PubMed]

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

2004 (1)

K. Matsuo, R. Yonehara, and K. Gekko, “Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy,” J. Biochem. 135(3), 405–411 (2004).
[Crossref] [PubMed]

1986 (1)

1972 (1)

1970 (1)

C. Houssier and K. Sauer, “Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments,” J. Am. Chem. Soc. 92(4), 779–791 (1970).
[Crossref]

1969 (1)

N. Greenfield and G. D. Fasman, “Computed circular dichroism spectra for the evaluation of protein conformation,” Biochemistry 8(10), 4108–4116 (1969).
[Crossref] [PubMed]

Ahn, J.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref] [PubMed]

Andrisano, V.

A. De Simone, F. Mancini, F. Real Fernàndez, P. Rovero, C. Bertucci, and V. Andrisano, “Surface plasmon resonance, fluorescence, and circular dichroism studies for the characterization of the binding of BACE-1 inhibitors,” Anal. Bioanal. Chem. 405(2-3), 827–835 (2013).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Berreman, W.

Bertucci, C.

A. De Simone, F. Mancini, F. Real Fernàndez, P. Rovero, C. Bertucci, and V. Andrisano, “Surface plasmon resonance, fluorescence, and circular dichroism studies for the characterization of the binding of BACE-1 inhibitors,” Anal. Bioanal. Chem. 405(2-3), 827–835 (2013).
[Crossref] [PubMed]

Bonanni, V.

P. G. Campo, V. Bonanni, C. J. Fernandez, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic models in gold nanoparticles,” Nano Lett. 13, 4785–4789 (2013).
[PubMed]

Bouchard, J.

A. Querejeta-Fernández, B. Kopera, K. S. Prado, A. Klinkova, M. Methot, G. Chauve, J. Bouchard, A. S. Helmy, and E. Kumacheva, “Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles,” ACS Nano 9(10), 10377–10385 (2015).
[Crossref] [PubMed]

Campo, P. G.

P. G. Campo, V. Bonanni, C. J. Fernandez, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic models in gold nanoparticles,” Nano Lett. 13, 4785–4789 (2013).
[PubMed]

Caneschi, A.

P. G. Campo, V. Bonanni, C. J. Fernandez, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic models in gold nanoparticles,” Nano Lett. 13, 4785–4789 (2013).
[PubMed]

Chauve, G.

A. Querejeta-Fernández, B. Kopera, K. S. Prado, A. Klinkova, M. Methot, G. Chauve, J. Bouchard, A. S. Helmy, and E. Kumacheva, “Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles,” ACS Nano 9(10), 10377–10385 (2015).
[Crossref] [PubMed]

Chemmalil, L.

C. H. Li, X. Nguyen, L. Narhi, L. Chemmalil, E. Towers, S. Muzammil, J. Gabrielson, and Y. Jiang, “Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near- and far-UV CD for protein higher order structural analysis,” J. Pharm. Sci. 100(11), 4642–4654 (2011).
[Crossref] [PubMed]

Chung, Y. F.

Cole, L.

S. Fiedler, L. Cole, and S. Keller, “Automated circular dichroism spectroscopy for medium-throughput analysis of protein conformation,” Anal. Chem. 85(3), 1868–1872 (2013).
[Crossref] [PubMed]

Cox, M. G.

M. G. Cox, J. Ravi, P. D. Rakowska, and A. E. Knight, “Uncertainty in measurement of protein circular dichroism spectra,” Metrologia 51(1), 67–79 (2014).
[Crossref]

De Simone, A.

A. De Simone, F. Mancini, F. Real Fernàndez, P. Rovero, C. Bertucci, and V. Andrisano, “Surface plasmon resonance, fluorescence, and circular dichroism studies for the characterization of the binding of BACE-1 inhibitors,” Anal. Bioanal. Chem. 405(2-3), 827–835 (2013).
[Crossref] [PubMed]

Fan, Z.

Z. Fan, H. Zhang, and A. O. Govorov, “Optical properties of chiral plasmonic tetramers: circular dichroism and multiple effects,” J. Phys. Chem. C 117(28), 14770–14777 (2013).
[Crossref]

Fareq, M.

R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, and Y. M. Irwan, “Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC),” Energy Procedia 79, 896–902 (2015).
[Crossref]

Fasman, G. D.

N. Greenfield and G. D. Fasman, “Computed circular dichroism spectra for the evaluation of protein conformation,” Biochemistry 8(10), 4108–4116 (1969).
[Crossref] [PubMed]

Fernandez, C. J.

P. G. Campo, V. Bonanni, C. J. Fernandez, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic models in gold nanoparticles,” Nano Lett. 13, 4785–4789 (2013).
[PubMed]

Fiedler, S.

S. Fiedler, L. Cole, and S. Keller, “Automated circular dichroism spectroscopy for medium-throughput analysis of protein conformation,” Anal. Chem. 85(3), 1868–1872 (2013).
[Crossref] [PubMed]

Gabrielson, J.

C. H. Li, X. Nguyen, L. Narhi, L. Chemmalil, E. Towers, S. Muzammil, J. Gabrielson, and Y. Jiang, “Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near- and far-UV CD for protein higher order structural analysis,” J. Pharm. Sci. 100(11), 4642–4654 (2011).
[Crossref] [PubMed]

Gao, Y.

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, and Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[Crossref] [PubMed]

Gatteschi, D.

P. G. Campo, V. Bonanni, C. J. Fernandez, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic models in gold nanoparticles,” Nano Lett. 13, 4785–4789 (2013).
[PubMed]

Gekko, K.

K. Matsuo, R. Yonehara, and K. Gekko, “Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy,” J. Biochem. 135(3), 405–411 (2004).
[Crossref] [PubMed]

Gomesh, N.

R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, and Y. M. Irwan, “Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC),” Energy Procedia 79, 896–902 (2015).
[Crossref]

Govorov, A. O.

Z. Fan, H. Zhang, and A. O. Govorov, “Optical properties of chiral plasmonic tetramers: circular dichroism and multiple effects,” J. Phys. Chem. C 117(28), 14770–14777 (2013).
[Crossref]

Govorov, O.

O. Govorov, “Plasmon induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystal application to various geometries,” J. Phys. Chem. C 115(16), 7914–7923 (2011).
[Crossref]

Greenfield, N.

N. Greenfield and G. D. Fasman, “Computed circular dichroism spectra for the evaluation of protein conformation,” Biochemistry 8(10), 4108–4116 (1969).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Han, B.

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, and Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[Crossref] [PubMed]

He, Y.

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Circular dichroism based refractive index sensing using chiral metamaterials,” Chem. Commun. (Camb.) 52(10), 2047–2050 (2016).
[Crossref] [PubMed]

Helmy, A. S.

A. Querejeta-Fernández, B. Kopera, K. S. Prado, A. Klinkova, M. Methot, G. Chauve, J. Bouchard, A. S. Helmy, and E. Kumacheva, “Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles,” ACS Nano 9(10), 10377–10385 (2015).
[Crossref] [PubMed]

Houssier, C.

C. Houssier and K. Sauer, “Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments,” J. Am. Chem. Soc. 92(4), 779–791 (1970).
[Crossref]

Huang, J. Ye.

J. Ye. Huang, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012).
[Crossref]

Hussain, R.

G. Siligardi, R. Hussain, S. G. Patching, and M. K. Phillips-Jones, “Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy,” Biochim. Biophys. Acta 1838(11 Pt A), 34–42 (2014).
[Crossref] [PubMed]

Ingram, W.

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Circular dichroism based refractive index sensing using chiral metamaterials,” Chem. Commun. (Camb.) 52(10), 2047–2050 (2016).
[Crossref] [PubMed]

Irwan, Y. M.

R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, and Y. M. Irwan, “Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC),” Energy Procedia 79, 896–902 (2015).
[Crossref]

Irwanto, M.

R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, and Y. M. Irwan, “Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC),” Energy Procedia 79, 896–902 (2015).
[Crossref]

Ishida, A.

T. Nehira, K. Ishihara, K. Matsuo, S. Izumi, T. Yamazaki, and A. Ishida, “A sensitive method based on fluorescence-detected circular dichroism for protein local structure analysis,” Anal. Biochem. 430(2), 179–184 (2012).
[Crossref] [PubMed]

Ishihara, K.

T. Nehira, K. Ishihara, K. Matsuo, S. Izumi, T. Yamazaki, and A. Ishida, “A sensitive method based on fluorescence-detected circular dichroism for protein local structure analysis,” Anal. Biochem. 430(2), 179–184 (2012).
[Crossref] [PubMed]

Izumi, S.

T. Nehira, K. Ishihara, K. Matsuo, S. Izumi, T. Yamazaki, and A. Ishida, “A sensitive method based on fluorescence-detected circular dichroism for protein local structure analysis,” Anal. Biochem. 430(2), 179–184 (2012).
[Crossref] [PubMed]

Jen, Y. J.

F. Lin and Y. J. Jen, “Use of Ta2O5 biaxial thin film as a high efficiency polarization converter,” J. Nanophotonics 6, 061507 (2012).
[Crossref]

Jiang, Y.

C. H. Li, X. Nguyen, L. Narhi, L. Chemmalil, E. Towers, S. Muzammil, J. Gabrielson, and Y. Jiang, “Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near- and far-UV CD for protein higher order structural analysis,” J. Pharm. Sci. 100(11), 4642–4654 (2011).
[Crossref] [PubMed]

Keller, S.

S. Fiedler, L. Cole, and S. Keller, “Automated circular dichroism spectroscopy for medium-throughput analysis of protein conformation,” Anal. Chem. 85(3), 1868–1872 (2013).
[Crossref] [PubMed]

Kim, M. G.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref] [PubMed]

Kitagawa, T.

S. Nagatomo, M. Nagai, T. Ogura, and T. Kitagawa, “Near-UV circular dichroism and UV resonance Raman spectra of tryptophan residues as a structural marker of proteins,” J. Phys. Chem. B 117(32), 9343–9353 (2013).
[Crossref] [PubMed]

Klinkova, A.

A. Querejeta-Fernández, B. Kopera, K. S. Prado, A. Klinkova, M. Methot, G. Chauve, J. Bouchard, A. S. Helmy, and E. Kumacheva, “Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles,” ACS Nano 9(10), 10377–10385 (2015).
[Crossref] [PubMed]

Knight, A. E.

M. G. Cox, J. Ravi, P. D. Rakowska, and A. E. Knight, “Uncertainty in measurement of protein circular dichroism spectra,” Metrologia 51(1), 67–79 (2014).
[Crossref]

Kopera, B.

A. Querejeta-Fernández, B. Kopera, K. S. Prado, A. Klinkova, M. Methot, G. Chauve, J. Bouchard, A. S. Helmy, and E. Kumacheva, “Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles,” ACS Nano 9(10), 10377–10385 (2015).
[Crossref] [PubMed]

Kumacheva, E.

A. Querejeta-Fernández, B. Kopera, K. S. Prado, A. Klinkova, M. Methot, G. Chauve, J. Bouchard, A. S. Helmy, and E. Kumacheva, “Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles,” ACS Nano 9(10), 10377–10385 (2015).
[Crossref] [PubMed]

Lagae, L.

J. Ye. Huang, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012).
[Crossref]

Lawrence, K.

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Circular dichroism based refractive index sensing using chiral metamaterials,” Chem. Commun. (Camb.) 52(10), 2047–2050 (2016).
[Crossref] [PubMed]

Lee, J. J.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref] [PubMed]

Lee, K. S.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref] [PubMed]

Lee, S. W.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref] [PubMed]

Li, C. H.

C. H. Li, X. Nguyen, L. Narhi, L. Chemmalil, E. Towers, S. Muzammil, J. Gabrielson, and Y. Jiang, “Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near- and far-UV CD for protein higher order structural analysis,” J. Pharm. Sci. 100(11), 4642–4654 (2011).
[Crossref] [PubMed]

Li, Z.

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, and Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[Crossref] [PubMed]

Liao, C. C.

Lin, F.

F. Lin and Y. J. Jen, “Use of Ta2O5 biaxial thin film as a high efficiency polarization converter,” J. Nanophotonics 6, 061507 (2012).
[Crossref]

Lin, H. H.

Liu, W.

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, and Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[Crossref] [PubMed]

Lo, Y. L.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Mancini, F.

A. De Simone, F. Mancini, F. Real Fernàndez, P. Rovero, C. Bertucci, and V. Andrisano, “Surface plasmon resonance, fluorescence, and circular dichroism studies for the characterization of the binding of BACE-1 inhibitors,” Anal. Bioanal. Chem. 405(2-3), 827–835 (2013).
[Crossref] [PubMed]

Matsuo, K.

T. Nehira, K. Ishihara, K. Matsuo, S. Izumi, T. Yamazaki, and A. Ishida, “A sensitive method based on fluorescence-detected circular dichroism for protein local structure analysis,” Anal. Biochem. 430(2), 179–184 (2012).
[Crossref] [PubMed]

K. Matsuo, R. Yonehara, and K. Gekko, “Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy,” J. Biochem. 135(3), 405–411 (2004).
[Crossref] [PubMed]

Mattei, G.

P. G. Campo, V. Bonanni, C. J. Fernandez, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic models in gold nanoparticles,” Nano Lett. 13, 4785–4789 (2013).
[PubMed]

Methot, M.

A. Querejeta-Fernández, B. Kopera, K. S. Prado, A. Klinkova, M. Methot, G. Chauve, J. Bouchard, A. S. Helmy, and E. Kumacheva, “Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles,” ACS Nano 9(10), 10377–10385 (2015).
[Crossref] [PubMed]

Muzammil, S.

C. H. Li, X. Nguyen, L. Narhi, L. Chemmalil, E. Towers, S. Muzammil, J. Gabrielson, and Y. Jiang, “Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near- and far-UV CD for protein higher order structural analysis,” J. Pharm. Sci. 100(11), 4642–4654 (2011).
[Crossref] [PubMed]

Nagai, M.

S. Nagatomo, M. Nagai, T. Ogura, and T. Kitagawa, “Near-UV circular dichroism and UV resonance Raman spectra of tryptophan residues as a structural marker of proteins,” J. Phys. Chem. B 117(32), 9343–9353 (2013).
[Crossref] [PubMed]

Nagatomo, S.

S. Nagatomo, M. Nagai, T. Ogura, and T. Kitagawa, “Near-UV circular dichroism and UV resonance Raman spectra of tryptophan residues as a structural marker of proteins,” J. Phys. Chem. B 117(32), 9343–9353 (2013).
[Crossref] [PubMed]

Narhi, L.

C. H. Li, X. Nguyen, L. Narhi, L. Chemmalil, E. Towers, S. Muzammil, J. Gabrielson, and Y. Jiang, “Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near- and far-UV CD for protein higher order structural analysis,” J. Pharm. Sci. 100(11), 4642–4654 (2011).
[Crossref] [PubMed]

Nehira, T.

T. Nehira, K. Ishihara, K. Matsuo, S. Izumi, T. Yamazaki, and A. Ishida, “A sensitive method based on fluorescence-detected circular dichroism for protein local structure analysis,” Anal. Biochem. 430(2), 179–184 (2012).
[Crossref] [PubMed]

Nguyen, X.

C. H. Li, X. Nguyen, L. Narhi, L. Chemmalil, E. Towers, S. Muzammil, J. Gabrielson, and Y. Jiang, “Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near- and far-UV CD for protein higher order structural analysis,” J. Pharm. Sci. 100(11), 4642–4654 (2011).
[Crossref] [PubMed]

Ogura, T.

S. Nagatomo, M. Nagai, T. Ogura, and T. Kitagawa, “Near-UV circular dichroism and UV resonance Raman spectra of tryptophan residues as a structural marker of proteins,” J. Phys. Chem. B 117(32), 9343–9353 (2013).
[Crossref] [PubMed]

Patching, S. G.

G. Siligardi, R. Hussain, S. G. Patching, and M. K. Phillips-Jones, “Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy,” Biochim. Biophys. Acta 1838(11 Pt A), 34–42 (2014).
[Crossref] [PubMed]

Pham, T. T.

T. T. Pham and Y. L. Lo, “Extraction of effective parameters of turbid media utilizing the Mueller matrix approach: study of glucose sensing,” J. Biomed. Opt. 17(9), 0970021 (2012).
[Crossref] [PubMed]

Phan, Q. H.

H. H. Lin, Q. H. Phan, and Y. L. Lo, “Characterization of voltage-driven twisted nematic liquid crystal cell by dynamic polarization scanning ellipsometry,” Opt. Express 23(8), 10213–10223 (2015).
[Crossref] [PubMed]

Q. H. Phan, P. M. Yang, and Y. L. Lo, “Surface plasmon resonance prism coupler for gas sensing based on Stokes polarimetry,” Sens. Actuat. B 216, 247–254 (2015).
[Crossref]

Phillips-Jones, M. K.

G. Siligardi, R. Hussain, S. G. Patching, and M. K. Phillips-Jones, “Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy,” Biochim. Biophys. Acta 1838(11 Pt A), 34–42 (2014).
[Crossref] [PubMed]

Prado, K. S.

A. Querejeta-Fernández, B. Kopera, K. S. Prado, A. Klinkova, M. Methot, G. Chauve, J. Bouchard, A. S. Helmy, and E. Kumacheva, “Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles,” ACS Nano 9(10), 10377–10385 (2015).
[Crossref] [PubMed]

Querejeta-Fernández, A.

A. Querejeta-Fernández, B. Kopera, K. S. Prado, A. Klinkova, M. Methot, G. Chauve, J. Bouchard, A. S. Helmy, and E. Kumacheva, “Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles,” ACS Nano 9(10), 10377–10385 (2015).
[Crossref] [PubMed]

Rakowska, P. D.

M. G. Cox, J. Ravi, P. D. Rakowska, and A. E. Knight, “Uncertainty in measurement of protein circular dichroism spectra,” Metrologia 51(1), 67–79 (2014).
[Crossref]

Ravi, J.

M. G. Cox, J. Ravi, P. D. Rakowska, and A. E. Knight, “Uncertainty in measurement of protein circular dichroism spectra,” Metrologia 51(1), 67–79 (2014).
[Crossref]

Real Fernàndez, F.

A. De Simone, F. Mancini, F. Real Fernàndez, P. Rovero, C. Bertucci, and V. Andrisano, “Surface plasmon resonance, fluorescence, and circular dichroism studies for the characterization of the binding of BACE-1 inhibitors,” Anal. Bioanal. Chem. 405(2-3), 827–835 (2013).
[Crossref] [PubMed]

Rovero, P.

A. De Simone, F. Mancini, F. Real Fernàndez, P. Rovero, C. Bertucci, and V. Andrisano, “Surface plasmon resonance, fluorescence, and circular dichroism studies for the characterization of the binding of BACE-1 inhibitors,” Anal. Bioanal. Chem. 405(2-3), 827–835 (2013).
[Crossref] [PubMed]

Sangregorio, C.

P. G. Campo, V. Bonanni, C. J. Fernandez, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic models in gold nanoparticles,” Nano Lett. 13, 4785–4789 (2013).
[PubMed]

Sauer, K.

C. Houssier and K. Sauer, “Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments,” J. Am. Chem. Soc. 92(4), 779–791 (1970).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shin, Y. B.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref] [PubMed]

Siligardi, G.

G. Siligardi, R. Hussain, S. G. Patching, and M. K. Phillips-Jones, “Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy,” Biochim. Biophys. Acta 1838(11 Pt A), 34–42 (2014).
[Crossref] [PubMed]

Stakenborg, T.

J. Ye. Huang, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012).
[Crossref]

Syafinar, R.

R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, and Y. M. Irwan, “Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC),” Energy Procedia 79, 896–902 (2015).
[Crossref]

Tang, Z.

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, and Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[Crossref] [PubMed]

Towers, E.

C. H. Li, X. Nguyen, L. Narhi, L. Chemmalil, E. Towers, S. Muzammil, J. Gabrielson, and Y. Jiang, “Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near- and far-UV CD for protein higher order structural analysis,” J. Pharm. Sci. 100(11), 4642–4654 (2011).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Wang, S.

J. Ye. Huang, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012).
[Crossref]

Williams, M. W.

Yamazaki, T.

T. Nehira, K. Ishihara, K. Matsuo, S. Izumi, T. Yamazaki, and A. Ishida, “A sensitive method based on fluorescence-detected circular dichroism for protein local structure analysis,” Anal. Biochem. 430(2), 179–184 (2012).
[Crossref] [PubMed]

Yang, P. M.

Q. H. Phan, P. M. Yang, and Y. L. Lo, “Surface plasmon resonance prism coupler for gas sensing based on Stokes polarimetry,” Sens. Actuat. B 216, 247–254 (2015).
[Crossref]

Yonehara, R.

K. Matsuo, R. Yonehara, and K. Gekko, “Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy,” J. Biochem. 135(3), 405–411 (2004).
[Crossref] [PubMed]

Zhang, H.

Z. Fan, H. Zhang, and A. O. Govorov, “Optical properties of chiral plasmonic tetramers: circular dichroism and multiple effects,” J. Phys. Chem. C 117(28), 14770–14777 (2013).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhao, Y.

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Circular dichroism based refractive index sensing using chiral metamaterials,” Chem. Commun. (Camb.) 52(10), 2047–2050 (2016).
[Crossref] [PubMed]

Zhou, Y.

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, and Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[Crossref] [PubMed]

Zhu, Z.

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, and Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[Crossref] [PubMed]

ACS Nano (2)

A. Querejeta-Fernández, B. Kopera, K. S. Prado, A. Klinkova, M. Methot, G. Chauve, J. Bouchard, A. S. Helmy, and E. Kumacheva, “Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles,” ACS Nano 9(10), 10377–10385 (2015).
[Crossref] [PubMed]

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano 5(2), 897–904 (2011).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

A. De Simone, F. Mancini, F. Real Fernàndez, P. Rovero, C. Bertucci, and V. Andrisano, “Surface plasmon resonance, fluorescence, and circular dichroism studies for the characterization of the binding of BACE-1 inhibitors,” Anal. Bioanal. Chem. 405(2-3), 827–835 (2013).
[Crossref] [PubMed]

Anal. Biochem. (1)

T. Nehira, K. Ishihara, K. Matsuo, S. Izumi, T. Yamazaki, and A. Ishida, “A sensitive method based on fluorescence-detected circular dichroism for protein local structure analysis,” Anal. Biochem. 430(2), 179–184 (2012).
[Crossref] [PubMed]

Anal. Chem. (1)

S. Fiedler, L. Cole, and S. Keller, “Automated circular dichroism spectroscopy for medium-throughput analysis of protein conformation,” Anal. Chem. 85(3), 1868–1872 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Ye. Huang, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012).
[Crossref]

Biochemistry (1)

N. Greenfield and G. D. Fasman, “Computed circular dichroism spectra for the evaluation of protein conformation,” Biochemistry 8(10), 4108–4116 (1969).
[Crossref] [PubMed]

Biochim. Biophys. Acta (1)

G. Siligardi, R. Hussain, S. G. Patching, and M. K. Phillips-Jones, “Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy,” Biochim. Biophys. Acta 1838(11 Pt A), 34–42 (2014).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Circular dichroism based refractive index sensing using chiral metamaterials,” Chem. Commun. (Camb.) 52(10), 2047–2050 (2016).
[Crossref] [PubMed]

Energy Procedia (1)

R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, and Y. M. Irwan, “Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC),” Energy Procedia 79, 896–902 (2015).
[Crossref]

J. Am. Chem. Soc. (2)

C. Houssier and K. Sauer, “Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments,” J. Am. Chem. Soc. 92(4), 779–791 (1970).
[Crossref]

Z. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, and Z. Tang, “Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies,” J. Am. Chem. Soc. 134(7), 3322–3325 (2012).
[Crossref] [PubMed]

J. Biochem. (1)

K. Matsuo, R. Yonehara, and K. Gekko, “Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy,” J. Biochem. 135(3), 405–411 (2004).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

T. T. Pham and Y. L. Lo, “Extraction of effective parameters of turbid media utilizing the Mueller matrix approach: study of glucose sensing,” J. Biomed. Opt. 17(9), 0970021 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Nanophotonics (1)

F. Lin and Y. J. Jen, “Use of Ta2O5 biaxial thin film as a high efficiency polarization converter,” J. Nanophotonics 6, 061507 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Pharm. Sci. (1)

C. H. Li, X. Nguyen, L. Narhi, L. Chemmalil, E. Towers, S. Muzammil, J. Gabrielson, and Y. Jiang, “Applications of circular dichroism (CD) for structural analysis of proteins: qualification of near- and far-UV CD for protein higher order structural analysis,” J. Pharm. Sci. 100(11), 4642–4654 (2011).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

S. Nagatomo, M. Nagai, T. Ogura, and T. Kitagawa, “Near-UV circular dichroism and UV resonance Raman spectra of tryptophan residues as a structural marker of proteins,” J. Phys. Chem. B 117(32), 9343–9353 (2013).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

Z. Fan, H. Zhang, and A. O. Govorov, “Optical properties of chiral plasmonic tetramers: circular dichroism and multiple effects,” J. Phys. Chem. C 117(28), 14770–14777 (2013).
[Crossref]

O. Govorov, “Plasmon induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystal application to various geometries,” J. Phys. Chem. C 115(16), 7914–7923 (2011).
[Crossref]

Metrologia (1)

M. G. Cox, J. Ravi, P. D. Rakowska, and A. E. Knight, “Uncertainty in measurement of protein circular dichroism spectra,” Metrologia 51(1), 67–79 (2014).
[Crossref]

Nano Lett. (1)

P. G. Campo, V. Bonanni, C. J. Fernandez, G. Mattei, A. Caneschi, D. Gatteschi, and C. Sangregorio, “Circular magnetoplasmonic models in gold nanoparticles,” Nano Lett. 13, 4785–4789 (2013).
[PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Opt. Express (2)

Sens. Actuat. B (1)

Q. H. Phan, P. M. Yang, and Y. L. Lo, “Surface plasmon resonance prism coupler for gas sensing based on Stokes polarimetry,” Sens. Actuat. B 216, 247–254 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 SPR optical sensor: (a) schematic illustration of sensor structure, (b) resonance angle determination.
Fig. 2
Fig. 2 (a) Comparison of extracted value of R with known input value, (b) Error bar of extracted value of R with given input value 0.55.
Fig. 3
Fig. 3 (a) Comparison of extracted value of Δ with known input value, (b) Error bar of extracted value of Δ with given input value of 0.467.
Fig. 4
Fig. 4 Molecular structure of chlorophyllin.
Fig. 5
Fig. 5 (a) Variation of extracted CD value with polarization scanning angle given refractive index of chlorophyllin sample in range of 1.32 to 1.36 (step size of 0.004). Note that the arrow shows the direction of increasing refractive index. (b) Variation of extracted CD value with refractive index given scanning angle of θ = 150°. Estimated resolution of CD measurement is equal to 10−5 RIU.
Fig. 6
Fig. 6 (a) Variation of extracted CD value with polarization scanning angle given refractive index of chlorophyllin sample in range of 1.3100 to 1.3118 (step size of 0.0002). Note that the arrow shows the direction of increasing refractive index. (b) Variation of extracted CD value with refractive index given scanning angle of θ = 135°. Estimated resolution of CD measurement is equal to 10−6 RIU.
Fig. 7
Fig. 7 Schematic illustration of experimental setup.
Fig. 8
Fig. 8 Experimental and simulation results for variation of CD value with chlorophyllin concentration. Note that the scanning angle is θ = 150° and the incident angle is 60° in every case.
Fig. 9
Fig. 9 Variation of DOP with chlorophyllin concentration as function of scattering effect. Note that the scanning angle is θ = 150° and the incident angle is 60° in every case.
Fig. 10
Fig. 10 Variation of CD value with chlorophyllin concentration as function of scattering effect. Note that the scanning angle is θ = 150° and the incident angle is 60° in every case.

Tables (1)

Tables Icon

Table 1 Biosensing performance of existing plasmonic-based methods.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

[ S 1 S 2 S 3 S 4 ]=[ M 11 M 12 M 13 M 14 M 21 M 22 M 23 M 24 M 31 M 32 M 33 M 34 M 41 M 42 M 43 M 44 ][ S 0 S 1 S 2 S 3 ]
M= M CD M R
M CD =[ 1+ R 2 0 0 2R 0 1 R 2 0 0 0 0 1 R 2 0 2R 0 0 1+ R 2 ]
M R =[ m 11 m 12 0 0 m 12 m 11 0 0 0 0 m 33 m 34 0 0 m 34 m 33 ]
[ S 1 S 2 S 3 S 4 ]= M CD M R [ S 0 S 1 S 2 S 3 ]=[ m 11 ( R 2 +1) m 12 ( R 2 +1) 2R m 34 2R m 33 m 12 ( R 2 1) m 11 ( R 2 1) 0 0 0 0 m 33 ( R 2 1) m 34 ( R 2 1) 2R m 11 2R m 12 m 34 ( R 2 +1) m 33 ( R 2 +1) ][ S 0 S 1 S 2 S 3 ]
M= M CD M D M R
M D =[ 1 p 1 p 2 p 3 0 e 1 0 0 0 0 e 2 0 0 0 0 e 3 ]
Δ=1 e 1 2 + e 2 2 + e 3 2 3 ,0Δ1
[ S 0 S 1 S 2 S 3 ]= M CD M D M R [ S 0 S 1 S 2 S 3 ]=[ m 11 ( R 2 +1)+ m 12 p 1 ( R 2 +1) m 12 ( R 2 +1)+ m 11 p 1 ( R 2 +1) M 13 M 14 e 1 m 12 ( R 2 1) e 1 m 11 ( R 2 1) 0 0 0 0 e 2 m 33 ( R 2 1) e 2 m 34 ( R 2 1) 2R m 11 +2R p 1 m 12 2R m 12 +2R p 1 m 11 M 34 M 44 ][ S 0 S 1 S 2 S 3 ]
M 13 = m 33 p 2 ( R 2 +1) m 34 [ 2 Re 3 + p 3 ( R 2 +1) ]
M 14 = m 34 p 2 ( R 2 +1)+ m 33 [ 2 Re 3 + p 3 ( R 2 +1) ]
M 34 =2R m 33 p 2 m 34 [ 2R p 3 + e 3 ( R 2 +1) ]
M 44 =2R m 34 p 2 + m 33 [ 2R p 3 + e 3 ( R 2 +1) ]
R= S 0° (3) S 0° (0) ± [ S 0° (3) S 0° (0) ] 2 1 ,1R1
e 1 = 1 ( R 2 1) x [ S 0° (1)+ S 90° (1) ] 2 m 12
e 2 = 1 ( R 2 1) x 2 S 45° (2)[ S 0° (2)+ S 90° (2) ] 2 m 33
e 3 = 4 R 2 ( R 2 +1) 2 2RYX( R 2 +1)
p 1 = 1 2R x [ S 0° (3)+ S 90° (3) ] m 12 m 11 m 12
p 2 = 1 2R ( M 43 +X m 34 m 33 )
p 3 = X e 3 ( R 2 +1) 2R
X= { 2 S R (3)[ S 0° (3)+ S 90° (3) ] } m 33 m 34 { 2 S 45° (3)[ S 0° (3)+ S 90° (3) ] } m 33 2 + m 34 2
Y= m 33 { 2 S R (0)[ S 0° (0)+ S 90° (0) ] } m 34 { 2 S 45° (0)[ S 0° (0)+ S 90° (0) ] } m 33 2 + m 34 2

Metrics